WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 41 Issue 1
Feb.  2020
Article Contents
Turn off MathJax

Bai H Q. A study of plant community stability in Taiyuan parks[J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(1): 94−99 doi: 10.12172/201911040001
Citation: Bai H Q. A study of plant community stability in Taiyuan parks[J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(1): 94−99 doi: 10.12172/201911040001

A Study of Plant Community Stability in Taiyuan Parks


doi: 10.12172/201911040001
More Information
  • Received Date: 2019-11-04
    Available Online: 2019-12-20
  • Publish Date: 2020-02-27
  • 15 representative parks and 46 typical quadrats were selected from Taiyuan city. M-Godron method was used to determine the stability of selected quadrats. The result of stability was basically consistent with the actual status of Taiyuan city, which showed that the selected stability calculation method was feasible. It could be seen from the results that the stability was closely related to the species richness of the community. The plot with higher stability had higher species richness, and vice versa. The change patterns of both were basically identical. The ratio of shrubs to trees was close to 6:1 in the plots with higher stability, but the ratio was far away from 6:1 in the plots with lower stability. No. 19 (Xuefu park) and No. 27 (Taiyuan forest park) were relatively stable. The plant communities in these two plots were trees, shrubs and grasses, with richer species, with abundant plant species in each layer and reasonable density of plane layout. The community spatial structure of No. 25 (Xihaizi park) and No. 38 (Yuquanshan forest park) quadrats was only trees and herbs, and lacked shrub layer, with lower community richness, serious imbalance of trees and shrubs ratio, higher disturbance of tourists, lower maintenance frequency, lower overall stability of the plots. In summary, in order to ensure the stability of urban park green space community, besides the development and evolution of plant community, appropriate and reasonable artificial management and maintenance were also needed.
  • 加载中
  • [1] 杨子松,杨灿,黎云祥. 岷江上游干旱河谷荒坡植物群落的稳定性分析[J]. 生态与农村环境学报,2013,29(1):43−48. doi: 10.3969/j.issn.1673-4831.2013.01.007
    [2] 张继义,赵哈林. 植被(植物群落)稳定性研究评述[J]. 生态学杂志,2003,22(4):42−48. doi: 10.3321/j.issn:1000-4890.2003.04.009
    [3] 郑元润. 森林群落稳定性研究方法初探[J]. 林业科学,2000,36(5):28−32. doi: 10.3321/j.issn:1001-7488.2000.05.005
    [4] 彭少麟. 森林群落稳定性与动态测度[J]. 广西植物,1987,7(1):67−72.
    [5] 岳天祥,马世骏. 生态系统稳定性研究[J]. 生态学报,1991,11(4):361−366. doi: 10.3321/j.issn:1000-0933.1991.04.004
    [6] 赵勇,李树人,阎志平. 城市绿地的滞尘效应及评价方法[J]. 华中农业大学学报,2002,21(6):582−586. doi: 10.3321/j.issn:1000-2421.2002.06.021
    [7] 吴晓丽,李瑞军. 森林生态系统稳定性评价[J]. 南方农业,2015,9(24):99−101.
    [8] 陈璟. 莽山自然保护区南方铁杉种群物种多样性和稳定性研究[J]. 中国农学通报,2010,26(12):81−85.
    [9] 闫东锋,朱滢,杨喜田. 宝天曼栎类天然林物种多样性与稳定性[J]. ,2011,28(4):628−633.
    [10] 王加国,黄波,李晓芳,等. 清香木天然林物种多样性及稳定性对不同干扰强度的响应[J]. 林业资源管理,2014,34(6):69−74.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article views(498) PDF downloads(20) Cited by()

Related
Proportional views

A Study of Plant Community Stability in Taiyuan Parks

doi: 10.12172/201911040001
  • College of Forestry, Shanxi Agricultural University, Taigu 030801, China

Abstract: 15 representative parks and 46 typical quadrats were selected from Taiyuan city. M-Godron method was used to determine the stability of selected quadrats. The result of stability was basically consistent with the actual status of Taiyuan city, which showed that the selected stability calculation method was feasible. It could be seen from the results that the stability was closely related to the species richness of the community. The plot with higher stability had higher species richness, and vice versa. The change patterns of both were basically identical. The ratio of shrubs to trees was close to 6:1 in the plots with higher stability, but the ratio was far away from 6:1 in the plots with lower stability. No. 19 (Xuefu park) and No. 27 (Taiyuan forest park) were relatively stable. The plant communities in these two plots were trees, shrubs and grasses, with richer species, with abundant plant species in each layer and reasonable density of plane layout. The community spatial structure of No. 25 (Xihaizi park) and No. 38 (Yuquanshan forest park) quadrats was only trees and herbs, and lacked shrub layer, with lower community richness, serious imbalance of trees and shrubs ratio, higher disturbance of tourists, lower maintenance frequency, lower overall stability of the plots. In summary, in order to ensure the stability of urban park green space community, besides the development and evolution of plant community, appropriate and reasonable artificial management and maintenance were also needed.

  • 植物群落的稳定性是一个极为复杂的问题,它与植物群落结构、物种组成、群落多样性等植被特征密切相关[1]。自然界中绝对稳定的植物群落是不存在的,而且植物群落的稳定性也与群落所处的阶段有关,还与外界干扰及干扰的性质和强度相关[2]。不同植物群落在不同演替阶段有不同的稳定特征。关于植物群落稳定性的测定,目前还缺乏规范的、统一的方法和标准。稳定性的测度方法和指标都以具体的研究对象为标准来确定。目前常用的稳定性测度方法主要有以下几种:郑元润提出的演替比较结合法,利用种群生态学的反馈调节原理,反应群落的发展演替情况[3];彭少麟对植物群落的年龄结构进行植物群落的稳定性分析[4];岳天祥、马世骏应用热力学稳定理论,研究植物群落的稳定性[5];赵勇、李树人用主成分分析理论、模糊聚类理论和逐步回归理论等多元方法,研究森林生态系统的稳定性[6];M-Godron法,起源于法国工业生产中,后将其引入植物生态学研究。它利用植物群落的植物种类数量与频度进行稳定性研究,从而反映群落的稳定状况[7]

    本文以太原市为例,利用M-Godron稳定性测度法,对公园植物群落的稳定性与群落植被特征的相关性进行研究。分析城市各公园绿地植物群落的稳定性,以期能从中得出一定规律,为城市绿地系统的深入研究提供参考依据。

1.   研究区概况
  • 太原位于山西省境中央,太原盆地的北端,在我国北部地区黄河流域中部,地处南北同蒲和石太铁路线的交汇处。地理坐标为东经111°30′~113°09′,北纬37°27′~38°25′。区域轮廓呈蝙蝠形,东西横距约144 km,南北纵约107 km,总面积6 989 km2。海拔最高点为2 670 m,最低点为760 m,平均海拔约800 m。夏季炎热多雨,冬季寒冷干燥。年平均气温9.5 ℃,无霜期平均202 d,年均降水量456 mm[8]

2.   研究方法
  • 本文从太原市现有的公园选取人工建造,群落年龄均在10年以上,15个有代表性的公园样地,46个样方数进行调查取样。根据公园所处位置和人流量的大小分为3类:中心公园、城郊公园、郊野公园。中心公园位于市、区中心,游人使用频率较高,管理养护频率也较高;郊野公园为位于城区边缘或之外,交通比较便利,游人使用频率较低,管理养护频率也较低,具有郊野气息的公园类型;城区公园为居于中心公园与郊野公园之间的公园类型。最终确定的公园及样方归属情况如表1所示。

    公园绿地Park样方号及归属Quadrat source公园类型Type
    迎泽公园1、2、3、4中心公园
    汾河公园5、6、7、8中心公园
    玉门河公园9、10、11、12中心公园
    文瀛公园13、14、15、16中心公园
    学府公园17、18、19、20中心公园
    龙潭公园21、22、23城郊公园
    饮马河公园24、25城郊公园
    太原森林公园26、27、28郊野公园
    万柏林生态园29、30、31、32郊野公园
    漪汾公园33、34、35城郊公园
    玉泉山森林公园36、37、38、39郊野公园
    唐槐公园40、41城郊公园
    碑林公园42、43城郊公园
    珠林园44、45城郊公园
    昌盛公园46城郊公园

    Table 1.  Basic information of surveyed quadrats in Taiyuan city

  • 根据公园植物群落特点,确定各个公园调查的样地和样方数量。记录群落的物种组成、群落空间层次等。采用标准样方调查法,乔木样方的面积取20 m×20 m,记录乔木名称、株数、胸径、高度、冠幅等;灌木样方的面积取5 m×5 m,记录灌木名称、株数、高度、盖度、绿篱密度等;草本样方采用典型抽样法,在标准样地的四个角和中心取5个1 m×1 m的小样方,记录草本植物的名称、株数/丛数、高度、盖度等。

  • 利用M-Godron稳定性测定方法,先计算出群落中不同种植物种的频度,从大到小排列,然后,把频度换算成相对频度,按从大到小的顺序逐步累积;同时,将群落内植物种类的总和取倒数,按相对频度的排列顺序逐步累积起来。将植物种类百分数同累积相对频度一一对应,画出散点图,并拟合成一条平滑的曲线。由于曲线的数值是百分数,因此将其数值乘以100后,与(0,100)与(100,0)的连线有交点,交点即为所求点。交点坐标越接近(20,80),群落就越稳定[9]

    采用EXCEL软件建立数学模型,模拟散点图平滑曲线,大大提高了曲线的准确度和工作效率,方法如下[10]:

    将两个方程求解,得到:

    式中:y为累积种百分数,x为累积相对频度,a,b,c为EXCEL拟合曲线后赋予方程的二次项系数,一次项系数和常数。

  • 式中,A为单位面积,S为群落中的物种数。

3.   结果与分析
  • 经过调查,得出各样方内乔木、灌木数量及灌乔比如表2所示。

    样方号
    Quadrat
    乔木数
    Number of trees
    灌木数
    Number of shrubs
    灌乔比
    Ratio of shrubs to trees
    18202.5
    27385.4
    36101.7
    47355.0
    58394.9
    69364.0
    71050.5
    823512.2
    934280.8
    1066520.8
    1142360.9
    1250390.8
    131250.4
    141030830.8
    151010510.5
    16945550.6
    172330.1
    18351012.9
    1914846.0
    2017130.8
    2166631.0
    2217804.7
    2311550.0
    2430291.0
    252000.0
    2620804.0
    2715906.0
    281520013.3
    29151439.5
    3066100.2
    3164100.2
    32461072.3
    3330331.1
    3448230.5
    3547250.5
    3623150.7
    372680.3
    383000.0
    391980.4
    4016161.0
    4115302.0
    4230321.1
    4311222.0
    4469150.2
    4558621.1
    462040.2

    Table 2.  Community species density in surveyed quadrats

    结果发现,乔灌比最接近1:6的样方为19和27,分别属于中心公园和郊野公园。另外,乔灌比较理想的样方中心公园占比20%郊野公园占比10%,城区公园均不太理想。

  • 经过调查,得出各样方内乔木种、灌木种及草本种数量计算出丰富度指数如表3所示。

    样方号
    Quadrat
    乔木种数
    Number of trees
    灌木种数
    Number of shrubs
    草本种数
    Number of herbs
    丰富度指数
    Richness index
    17522.34
    211823.51
    34021.00
    410813.17
    59813.01
    67322.00
    76121.50
    86722.50
    98722.84
    108612.50
    118712.67
    127622.50
    131120.67
    142411.17
    154511.67
    162421.34
    175221.50
    186221.67
    1914623.67
    207322.00
    213621.84
    221321.00
    232110.67
    243411.34
    251010.33
    264010.83
    2714723.84
    2810823.34
    299813.01
    304111.00
    311110.50
    324411.50
    337522.34
    348622.67
    358522.50
    364221.34
    371110.50
    381010.33
    394822.34
    4010723.17
    415822.50
    428322.17
    438823.01
    4410422.67
    456622.34
    4610122.17

    Table 3.  Community species richness in surveyed quadrats

    结果表明,丰富度最高的两个样方为19和27号,他们分别属于中心公园和郊野公园。中心公园丰富度较高的样方占20%左右,城区公园丰富度都较低,郊野公园丰富度较高的样方占25%。

  • 调查的植物种类共有121 种,依据群落总种数的累积种百分数及相对应的累积相对频度进行平滑曲线模拟,得到散点图并求出交点坐标,模拟结果见表4

    样方号Quadrat拟合曲线方程Curve equation交点坐标CoordinateR2欧氏距离平方Squared Euclidean distance稳定性Stability
    1y=−0.0164x2+2.2311x+17.22730.27,69.730.981210.95不稳定
    2y=−0.0663x2+4.6246x+3.032424.07,75.930.99733.13稳定
    3y=−0.0227x2+2.7076x+10.57529.42,70.580.979177.47不稳定
    4y=−0.0305x2+3.4199x+7.344125.42,74.580.98858.75稳定
    5y=−0.0392x2+3.4803x+7.826526.91,73.090.99395.50稳定
    6y=−0.0167x2+2.4026x+13.38429.82,70.180.963192.86不稳定
    7y=−0.0125x2+1.978x+20.74530.52,69.480.986221.34不稳定
    8y=−0.0172x2+2.4443x+9.699731.02,68.980.984242.88不稳定
    9y=−0.0261x2+2.8245x+10.84629.08,70.920.987164.89不稳定
    10y=−0.014x2+2.1754x+13.79231.53,68.470.966265.88不稳定
    11y=−0.0168x2+2.313x+14.15630.69,69.310.978228.55不稳定
    12y=−0.0145x2+2.2262x+11.53932.03,67.970.980289.44不稳定
    13y=−0.0172x2+2.081x+22.97530.04,69.961.000201.60不稳定
    14y=−0.0327x2+2.9959x+11.88428.87,71.130.998157.35不稳定
    15y=−0.0356x2+3.2759x+6.536828.73,71.270.990152.43不稳定
    16y=−0.0284x2+2.9874x+7.640629.26,70.740.985171.50不稳定
    17y=−0.0163x2+2.3294x+13.5630.52,69.480.972221.34不稳定
    18y=−0.0319x2+3.1181x+8.524228.51,71.490.986144.84不稳定
    19y=−0.0468x2+4.4435x+3.165621.92,78.080.9987.37稳定
    20y=−0.0145x2+2.1753x+16.7130.47,69.530.969219.24不稳定
    21y=−0.0625x2+3.9372x+6.815431.19,68.810.996250.43不稳定
    22y=−0.0213x2+2.6668x+13.10428.38,71.620.985140.45不稳定
    23y=−0.0097x2+1.5503x+31.35530.44,69.561.000218.00不稳定
    24y=−0.0456x2+3.4953x+8.736728.60,71.400.994147.92不稳定
    25y=−0.121x2+5.0683x+2.49330.999不稳定
    26y=−0.0559x2+4.0626x+4.889726.60,73.400.99487.12稳定
    27y=−0.0926x2+5.623x+0.897821.32,78.681.0003.48稳定
    28y=−0.0328x2+3.5504x+5.60725.39,74.610.99458.10稳定
    29y=−0.0195x2+2.7696x+12.95226.81,73.190.99792.75稳定
    30y=−0.0177x2+2.6539x+7.61729.50,70.500.990182.22不稳定
    31y=7.2094x+48.5666.27,93.731.000377.03不稳定
    32y=−0.0296x2+2.9933x+11.02728.16,71.840.990133.17不稳定
    33y=−0.029x2+3.0413x+8.405428.49,71.510.985144.16不稳定
    34y=−0.0283x2+2.9652x+9.780428.58,71.420.980147.23不稳定
    35y=−0.0195x2+2.7415x+9.172128.51,71.490.982144.84不稳定
    36y=−0.0147x2+2.2727x+12.41131.11,68.890.983246.86不稳定
    37y=−0.0029x2+0.8347x+45.1131.48,68.521.000263.58不稳定
    38y=1.0093x+8.063645.76,54.241.0001327.16不稳定
    39y=−0.0252x2+2.8226x+9.732229.26,70.740.997171.50不稳定
    40y=−0.0405x2+3.755x+5.888225.20,74.800.99454.08稳定
    41y=−0.0275x2+2.8437x+12.64128.57,71.430.983146.89不稳定
    42y=−0.0167x2+2.3569x+13.60130.31,69.690.982212.59不稳定
    43y=−0.0611x2+4.1706x+4.825427.06,72.940.99599.69稳定
    44y=−0.0249x2+2.8212x+11.62328.37,71.630.987140.11不稳定
    45y=−0.0237x2+2.7458x+11.9228.74,71.260.983152.78不稳定
    46y=−0.0159x2+2.3584x+14.08829.78,70.220.957191.30不稳定

    Table 4.  Plant community stability of surveyed quadrats

    表4可以看出,其中最稳定的是19、27两个样方,他们的欧式距离平方为7.37、3.48,坐标点为(21.92,78.08)和(21.32,78.68)与(20,80)非常接近。它们分别属于中心公园和郊野公园。样方号为2、4、5、19、26、27、28、29、40、43等10个样方植物群落稳定性稍差,其他36个样方稳定性较差。稳定性最差的两个样方号为25、38。25号样方没有交点坐标,38号交点坐标与(20,80)交点的欧式距离也很远。

    结合表2表3可以看出的稳定性结果与群落物种丰富度关系较为密切,稳定性高的样方,其物种丰富度也较高,反之也成立。两者的变化趋势基本一致。而稳定性较高的样方内,灌木与乔木的比值接近6:1;稳定性差的样方内,灌木与乔木的比值则远离6:1。这也与北京市园林科研所陈自新等提出的乔、灌、草配植的适宜比例为1:6:20:29,即在29 m2的绿地上应设计1株乔木、6株灌木、20 m2草坪的理论建议基本相符。较稳定的19号(学府公园)与27号(太原森林公园),这两个样方内植物群落都具有乔、灌、草结构,物种丰富,各层植物种类多样,平面布局密度合理。加上后期养护管理较及时,能帮助群落维持其稳定状态。而较不稳定25号(西海子公园)和38号(玉泉山森林公园)样方,群落空间结构只有乔木和草本两层,缺乏灌木层,群落丰富度较差,乔灌比例严重失调,同时游人干扰多,养护频率低,群整体稳定性较低。

    结合样地归属,我们可以知道:19号和27号样方乔灌比最合理、丰富度最高、稳定性也最好,它们分别归属于中心公园和郊野公园。其中,中心公园的乔灌比、丰富度占比均达到20%左右,郊野公园乔灌比和丰富度占比为30%和10%,城区公园的表现较差。这可能与它们建植初期的物种组成有关,与游人及外界干扰有关,也与后期管理养护频率有关。

4.   结论与讨论
  • 上述稳定性结果与太原市实际情况基本相符,表明所选择的稳定性计算方法可行。而且,群落物种的丰富度越高,群落越稳定;种植密度越合理群落越稳定;群落空间层次结构越合理群落越稳定。另外,群落稳定性与外界游人干扰情况和后期的管理养护有关,在植物群落演变过程中,适度的管理养护对群落稳定性能起到重要的作用;群落稳定性还与群落内植物生长状况、常绿落叶比例等很多因素有关。因此,为了维持植物群落的稳定性,给游人带来更舒适的景观感受,我们提出如下建议:

    1. 构建植物群落时,在保证以乡土树种为主的前提下,适当增加适应性较强的外来树种比例,提高植物群落的物种丰富度、多样性,如:引入花灌木和彩叶树种的比例,满足景观观赏要求;

    2. 营造乔-灌-草复合层次结构,保证合理的种植密度使乔灌比例接近1:6,同时,北方植物群落的落叶树比重大于常绿树;

    3. 减少公园绿地游人的干扰度,适当增加被干扰群落的养护管理频度,及时补栽受损植物,及时清理废纸屑等丢弃物,及时清除杂草、枯枝落叶,提高群落景观质量。

    4. 由于中心公园更贴近居民,游人使用频率较高,其管护频率也较高,因此,建议在合理的范围之内,适当增加外来引进树种比例,营造丰富多样的公园景观;郊野公园的使用频率较低,而养护频率也较低,则需要在建设初期构建合理的空间层次结构和平面密度结构,以乡土树种为主,降低外来树种比例,营造乡土郊野的自然环境氛围。城区公园游人量和管护频度居于中心公园和郊野公园之间,其乡土和外来树种比例与构建和管护成本居于上述两者之间即可。

    总之,必须建植和管护相结合,才能使植物群落保持旺盛的生命力,为居民生活带来良好的绿地景观氛围。

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return