WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 41 Issue 4
Aug.  2020
Article Contents
Turn off MathJax

Xu Y, Liu S J, Yang Y Z, et al. Analysis of parental combining ability and competitive advantage for Alnus Mill. interspecific hybridization[J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(4): 51−57 doi: 10.12172/202003160004
Citation: Xu Y, Liu S J, Yang Y Z, et al. Analysis of parental combining ability and competitive advantage for Alnus Mill. interspecific hybridization[J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(4): 51−57 doi: 10.12172/202003160004

Analysis of Parental Combining Ability and Competitive Advantage for Alnus Mill. Interspecific Hybridization


doi: 10.12172/202003160004
More Information
  • Corresponding author: 594511612@qq.com
  • Received Date: 2020-03-16
    Available Online: 2020-06-26
  • Publish Date: 2020-08-17
  • The genetic basis of parental combining ability of hybridization between Alnus plants was studied to provide a theoretical basis for the selection of parents for interspecific hybridization of Alnus plants. Using two A. cremastogyne species, four A. formosana species, and three A. glutinosa species as hybrid parents, 18 hybrid combinations (3 × 6) were configured according to incomplete random mating design (NCⅡ) to calculate the genetic parameters and competitive advantages of 9 seed and fruit traits such as general combining ability (GCA), special combining ability (SCA). The results showed that there were significant genetic differences in seed and fruit traits of Alnus interspecific hybrid combination. All kinds of seed and fruit traits were mainly characterized by gene additive effect inheritance, and seed length, seed width, and 1000-grain weight were jointly controlled by gene additive effect and non-additive effect. The narrow heritability order of seed and fruit traits was FWH>FWH>FL>WTS>SL>SW>CL>SSF>SA. The GCA value between parents and SCA value between hybrid combinations were quite different, and there was no correlation between GCA and SCA. Among the tested 18 hybrid combinations, ACjt04, ACjg00, and AFhlt01, AGtc02 had higher GCA and SCA values in seed and fruit traits, and could be selected as excellent parents accessions. The competitive advantage of 9 seed and fruit traits of 18 hybrid combinations had positive correlation with GCA and SCA, and the correlation with SCA was higher than GCA. Comprehensive analysis showed that the competitive advantage of Alnus interspecific hybrids had close genetic correlation with GCA and SCA. The selection of high GCA parents and high SCA hybrid combinations was the key to the interspecific hybridization breeding of Alnus with strong dominance.
  • 加载中
  • [1] White T, Adams T, Neale D. Forest genetics [M]. 崔建国, 董京祥, 高彩球, 等译, 森林遗传学[M]. 科学出版社, 2013, 315−347.
    [2] Nikles DG. Hybrids of forest trees: the bases of hybrid superiority and a discussion of breeding methods. Proceedings of the International Union of Forest Research Organizations (IUFRO), Conference Resolving Tropical Forest Research Concerns Through Tree Improvement, Gene Conservation, and Domestication of New Species. Cali, Colombia, 1992, 333−347.
    [3] Nikles DG. Experience with some Pinus hybrids in Queenslan, Australia. In: Hybrid Breeding and Genetics of Forest Trees. Proceedings of the Queensland Forest Research Institute/Cooperative Research Center-Sustainble Production Forestry (QFRI/CRC-SPF). Symposium. Noosa, Queensland, Australia, 2000, 27−43.
    [4] Dieters MJ, Nikles DG. The genetic improvement of Caribbean pine (Pinus caribaea Morelet)-building on a firm foundation. Proceedings of the 24th Southern Forest Tree Improvement Conference. Orlando, FL, 1997, 33−52.
    [5] 饶龙兵,杨汉波,郭洪英,等. 桤木属7种植物的核型分析[J]. 西北植物学报,2013,33(7):1333−1338.
    [6] 陈益泰,卓仁英,吴天林. 桤木属植物的引种和早期适应性[J]. 林业科学研究,2004,17(2):139−146. doi: 10.3321/j.issn:1001-1498.2004.02.001
    [7] Lalone M. 桤木根瘤共生固氮研究技术与观测[J]. 亚热带植物通讯,1990,1:59−62.
    [8] 杨汉波,郭洪英,陈炙,等. 四川桤木杂交子代苗期性状遗传分析及选择[J]. 四川林业科技,2018,39(1):1−5.
    [9] 郭洪英,杨汉波,陈炙,等. 四川桤木7×7完全双列杂交种实、种苗性状的遗传效应分析[J]. 植物研究,2018,38(3):357−366. doi: 10.7525/j.issn.1673-5102.2018.03.007
    [10] 陈晓阳, 沈熙环. 林木遗传育种[M]. 北京: 高等教育出版社, 2008, 45.
    [11] 黄远樟,刘来福. 作物数量遗传学基础六—配合力: 不完全双列杂交[J]. 遗传,1980,2(2):43−46.
    [12] 续九如. 林木数量遗传学[M]. 高等交育出版社, 2006, 88−92.
    [13] 王利民,张建平,党照,等. 胡麻两系杂交亲本的配合力及杂种优势分析[J]. 中国农业科学,2016,49(6):1047−1059. doi: 10.3864/j.issn.0578-1752.2016.06.003
    [14] 程勇,顾敏,丛野,等. 淹水胁迫条件下甘蓝型油菜发芽期耐湿性的配合力分析[J]. 中国农业科学,2010,43(7):1339−1345. doi: 10.3864/j.issn.0578-1752.2010.07.003
    [15] 刘青华,金国庆,储德裕,等. 基于马尾松测交系子代的生长、干形和木材密度的配合力分析[J]. 南京林业大学学报: 自然科学版,2011,35(2):8−14.
    [16] 唐效荣,李宇珂,曾令文. 马尾松种子千粒重配合力及杂种优势分析[J]. 湖南林业科技,2016,43(5):34−39. doi: 10.3969/j.issn.1003-5710.2016.05.007
    [17] 何光华,袁祚廉,郑家奎,等. 水稻籽粒蛋白质、游离氨基酸含量的配合力与杂种优势分析[J]. 作物学报,1996,22(2):192−196. doi: 10.3321/j.issn:0496-3490.1996.02.012
    [18] 陈岳武,施季森,刘大林,等. 杉木种内杂种优势及亲本配合力的分析[J]. 南京林产工业学院学报,1982,2:1−20.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(7)

Article views(402) PDF downloads(10) Cited by()

Related
Proportional views

Analysis of Parental Combining Ability and Competitive Advantage for Alnus Mill. Interspecific Hybridization

doi: 10.12172/202003160004
  • 1. Junlian County Natural Resources and Planning Bureau, Junlian 645250, China
  • 2. Institute of Ecological Forestry, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
  • 3. Sichuan Key Laboratory of Forestry Ecological Engineering in the Upper Reaches of the Yangtze River, Chengdu 611130, China
  • 4. Sichuan Academy of Forestry Sciences, Chengdu 610081, China
  • 5. Sichuan Key Laboratory of Forest and Wetland Ecological Restoration and Conservation, Chengdu 610000, China
  • Corresponding author: 594511612@qq.com

Abstract: The genetic basis of parental combining ability of hybridization between Alnus plants was studied to provide a theoretical basis for the selection of parents for interspecific hybridization of Alnus plants. Using two A. cremastogyne species, four A. formosana species, and three A. glutinosa species as hybrid parents, 18 hybrid combinations (3 × 6) were configured according to incomplete random mating design (NCⅡ) to calculate the genetic parameters and competitive advantages of 9 seed and fruit traits such as general combining ability (GCA), special combining ability (SCA). The results showed that there were significant genetic differences in seed and fruit traits of Alnus interspecific hybrid combination. All kinds of seed and fruit traits were mainly characterized by gene additive effect inheritance, and seed length, seed width, and 1000-grain weight were jointly controlled by gene additive effect and non-additive effect. The narrow heritability order of seed and fruit traits was FWH>FWH>FL>WTS>SL>SW>CL>SSF>SA. The GCA value between parents and SCA value between hybrid combinations were quite different, and there was no correlation between GCA and SCA. Among the tested 18 hybrid combinations, ACjt04, ACjg00, and AFhlt01, AGtc02 had higher GCA and SCA values in seed and fruit traits, and could be selected as excellent parents accessions. The competitive advantage of 9 seed and fruit traits of 18 hybrid combinations had positive correlation with GCA and SCA, and the correlation with SCA was higher than GCA. Comprehensive analysis showed that the competitive advantage of Alnus interspecific hybrids had close genetic correlation with GCA and SCA. The selection of high GCA parents and high SCA hybrid combinations was the key to the interspecific hybridization breeding of Alnus with strong dominance.

  • 种间杂交在自然界早已存在,且作为商业用材树种的重要性越来越突出,其杂种优势的利用是世界林木遗传改良的主要途径之一[1]。如加勒比洪都拉斯变种(Pinus caribaea var. hondurensis, PCH)与湿地松本种变种(P. elliottii var. elliottii, PEE)的杂种F1在材积生长量上具有超亲优势,通直度具有超中亲优势[2-4]。巨桉(Eucalyptus grandis)与其他桉树的杂种,尤其是与尾叶桉(E. urophylla)、赤桉(E. camaldulensis)、细叶桉(E. tereticornis)、亮果桉(E. nitens)的杂种,在提高产量、扩宽桉树在较干旱、较寒冷地区的适应性、增强抗病性等方面发挥着越来越重要的作用,还有木材密度大、纸浆得率高等特点[1]。桤木属植物(Alnus Mill.)为天然的属内多倍化木本植物,其根系发达,且具根瘤菌,能够固定空气中游离的氮增加土壤肥力,是集造纸、用材、绿化治荒等为一体的多功能树种[5]。国内外学者先后开展了引种、种源选择、固氮等系列研究[6, 7]。杨汉波等[8]、郭洪英等[9]进行了桤木(A. cremastogyne)种内杂交育种工作,但相对于作物,林木本身生长缓慢,对杂种优势利用及生产应用一直未有重大突破,对其杂种优势形成的遗传基础研究还相对薄弱。配合力包括一般配合力(GCA)和特殊配合力(SCA),是杂交育种亲本选配的重要指标,在林木多世代育种的实践中发挥着重要的作用[10]。郭洪英等[9]对桤木完全双列杂交的种实和种苗生长性状的GCA和SCA遗传效应进行了分析评价,结果表明种实性状主要受亲本基因加性效应影响,而种苗生长性状主要受亲本基因非加性效应影响。杨汉波等[8]对桤木半双列杂交子代苗期性状的GCA和SCA遗传效应分析结果发现,并以GCA和SCA值筛选出优良杂交亲本和优良杂交子代。但此前的研究都基于常规杂交,对于桤木属内种间杂交的配合力还未有研究。另外,引种的桤木属植物在某些性状上可能表现出较强的优势,但与本地桤木属植物杂交后是否能将其优势性状遗传给下一代还未可知。因此,通过对桤木属不同杂交组合进行配合力估算,对加快亲本选配、优势杂交组合的筛选,提高桤木育种效率和进程具有重要的理论指导意义。

    本研究以引种的1个欧洲桤木(A. glutinosa)和选育的2个桤木(A. cremastogyne)优树为母本,引种的4个台湾桤木(A. formosana)和2个欧洲桤木优树为父本,按照NCⅡ不完全双列杂交设计配置18份杂交组合,分析9个种实性状的一般配合力(GCA)和特殊配合力(SCA)及其与竞争优势的关系,以期为桤木属内种间杂交优良亲本的选配提供理论依据,并筛选具有高竞争优势的杂交组合。

1.   材料与方法
  • 筛选9个优良桤木属植物作为亲本材料,其中,母本3份,包括选育、定植于唐昌基地的桤木优树ACjt04、ACjg00及引种定植于唐昌基地的欧洲桤木优树AGyls02。父本选用引种、定植于黑龙潭国家林业和草原长期科研基地的台湾桤木优树AFhlt01、AFhlt05、AFhlt13及唐昌基地的欧洲桤木优树AGtc01和AGtc02,按照NCⅡ不完全双列杂交设计配置18份(3×6)杂交组合,配置信息见表1

  • 2017年4月在唐昌现代化育苗基地(四川省成都市唐昌镇)配置杂交组合,11月收获杂交F1代种子,以母本自由授粉的种子为对照组(CK)。试验共设置10个区组,3次重复,参照郭洪英等[9]的方法测定种实性状。测定指标包括:果柄长(CL/mm)、果长(FL/mm)、果宽(FWD/mm)、果重(FWH/g)、单果出种数(SSF/粒)、种子长(SL/mm)、种子宽(SW/mm)、种子面积(SA/mm2)、千粒重(WTS/g)。

    母本Female父本Male
    AFhlt01AFhlt05AFhlt13AFhlt00AGtc01AGtc02
    ACjt04C1C2C3C4C5C6
    AGyls02C7C8C9C10C11C12
    ACjg00C13C14C15C16C17C18

    Table 1.  NCⅡ incomplete diallel mating design for Alnus plants

  • 采用IBM SPSS Statistic 25软件进行双因素方差分析。参照黄远樟等[11]和续九如等[12]提出的不完全双列杂交设计(NCⅡ)遗传配合力的估算方法,计算一般配合力方差和特殊配合力方差,在差异显著的基础上进一步估算一般配合力(GCA)、特殊配合力(SCA)及相关遗传参数。杂种优势计算:竞争优势CH(%)=(F1−CK)/CK,CK为对照值[13]

2.   结果
  • 除单果出种数(SSF)在组合间的差异为显著水平外(P<0.05),其余各性状组合间的差异均达极显著水平(P<0.01),表明18个种间杂交组合间存在丰富的遗传变异(见表2)。性状配合力方差分析结果显示,除果长(FL)的父本配合力方差不显著外,其余性状父、母本的一般配合力方差均显著或极显著水平。种子长度(SL)、种子宽度(SW)和千粒重(WTS)特殊配合力方差达显著水平,其余性状的特殊配合力方差均不显著。母本一般配合力方差均远远大于父本一般配合力方差和组合特殊配合力方差,如种子面积(SA)的母本一般配合类方差分别为父本一般配合力方差和组合特殊配合力方差的30.5倍和28.1倍,表明桤木属种间杂交种实性状主要受到母本基因加性效应控制,同时也表明母本对种实性状具有重要的遗传影响。SL、SW和WTS父/母本的一般配合力方差和杂交组合的特殊配合力方差均达到显著水平,说明这3个性状同时受基因加性效应和非加性效应共同影响,但主要由基因加性效应为主导。

    变异来源
    Source of variance
    区组
    Replications
    组合
    Crosses
    母本
    Female
    父本
    Male
    母本×父本
    Female×Male
    自由度df9172510
    果柄长CL0.5799.243**0.379**0.011*0.021
    果长FL1.29257.052**3.079**0.0090.013
    果宽FWD1.905111.659**5.567**0.162*0.046
    果重FWH0.809170.911**9.231**0.043*0.031
    单果出种数SSF1.0781.857*0.050**0.015**0.004
    种子面积SA2.280*24.225**1.069**0.035*0.038
    种子长度SL1.04821.496**0.753**0.097*0.039*
    种子宽度SW2.899**10.086**0.440**0.025*0.011*
    千粒重WTS0.9423.238**0.062**0.020*0.015*
      *表示P<0.05时的差异显著性,**表示P<0.01时的差异显著性,下同。
      * indicated significant at the level of P<0.05, and **indicated significant at the level of P<0.00.01, the same as below

    Table 2.  Variance analysis of seed and fruit traits and combining ability of interspecific hybridization in Alnus Mill.

  • 亲本的GCA在不同的种实性状间存在明显的差异,同一种实性状的GCA在不同的亲本间也存在明显的差异,表明不同的杂交亲本在各种实性状上受基因加性效的影响水平有所不同。3个母本材料中,ACjg00在9个种实性状上的GCA值最大,表明该亲本种实性状的GCA效应值表现最优。ACjt04作母本在全部种实性状上均表现为负向的一般配合力(GCA)效应,其GCA表现最差。6个父本材料中,AGtc02在果长(FL)和单果出种数(SSF)上具有较大的正向一般配合力(GCA)效应,是理想的父本材料。AFhlt05和AFhlt13在千粒重(WTS)、种子宽度(SL)和种子面积(SA)上具有较大的正向GCA值,它们可以作为杂交育种中优良的潜在父本材料(见表3)。

    亲本ParentsCLFLFWDFWHSSFSLSWSAWTS
    ACjt04−0.81−4.49−2.48−0.98−15.23−0.24−0.16−1.24−0.17
    AGyls020.27−0.85−0.24−0.49−14.960.040.030.38−0.09
    ACjg000.545.332.711.4730.190.200.130.860.26
    AFhlt010.27−0.110.22−0.095.44−0.13−0.100.09−0.06
    AFhlt05−0.110.100.060.11−9.230.080.040.390.02
    AFhlt130.11−0.340.200.06−3.53−0.180.030.020.08
    AFhlt00−0.10−0.17−0.470.00−11.33−0.32−0.19−0.320.30
    AGtc010.02−0.21−0.92−0.20−17.090.380.36−0.33−0.22
    AGtc02−0.190.740.900.1235.740.17−0.140.16−0.12

    Table 3.  General combining ability (GCA) value of male and female parents in Alnus Mill.

  • 与一般配合力(GCA)的分析结果相似,各杂交组合在种实性状间的SCA值均存在较大差异。从杂交组合SCA效应值可以看出,SL变幅为−0.55~0.94,具有正向SCA效应值的杂交组合有8个,其中较优的组合为:C5大C14、C10和C13;SW变幅为−0.41~0.72,具有正向SCA效应值得杂交组合数10个,其中较优的组合为C5、C14和C13;WTS变幅为−0.48~0.73,具有正向SCA效应值的组合数有11个,其中较优的杂交组合为C16、C3和C2。CL、FL、FWD、FWH、SSF和SA的SCA效应值最高的杂交组合分别为C9、C2、C1、C18、C18和C14。进一步比较分析杂交组合的SCA值与亲本GCA值,结果显示杂交组合的SCA与亲本的GCA没有直接的相关性。例如,杂交组合C1的CL特殊配合力(SCA)效应值较高,但其母本的一般配合力(GCA)效应值为负值(−0.81),父本的一般配合力(GCA)效应值却为正值(0.27)。父本和母本GCA均较高的杂交组合,其杂交组合SCA效应值却为负值,如C6、C13的CL性状,其他性状也存在类似的情况(见表4)。

    组合CombinationCLFLFWDFWHSSFSLSWSAWTS
    C10.410.710.900.1325.89−0.21−0.22−0.160.11
    C20.180.86−0.28−0.10−10.74−0.39−0.16−0.120.12
    C3−0.160.29−0.26−0.10−1.04−0.17−0.140.350.19
    C4−0.37−1.15−0.210.00−2.94−0.25−0.22−0.20−0.48
    C50.06−0.08−0.850.15−15.170.940.72−0.430.04
    C6−0.11−0.640.70−0.073.990.080.020.560.02
    C7−0.320.08−0.420.106.930.000.05−0.230.05
    C8−0.35−0.650.190.1319.79−0.03−0.05−0.610.03
    C90.49−0.040.220.067.190.170.120.070.02
    C100.31−0.10−0.01−0.178.490.210.160.34−0.25
    C11−0.49−0.050.450.057.76−0.39−0.310.460.09
    C120.360.76−0.43−0.18−50.170.040.04−0.030.05
    C13−0.09−0.80−0.48−0.23−32.820.210.170.39−0.16
    C140.18−0.210.09−0.03−9.060.420.210.72−0.16
    C15−0.33−0.250.040.04−6.160.000.02−0.42−0.21
    C160.071.250.210.17−5.560.040.06−0.140.73
    C170.430.130.40−0.207.41−0.55−0.41−0.03−0.13
    C18−0.25−0.12−0.270.2546.18−0.12−0.06−0.52−0.07

    Table 4.  Special combining ability (SCA) of hybrid combinations in Alnus Mill.

  • 从基因型方差和群体配合力方差可知,亲本各种实性状的群体配合力方差具有绝对优势,占总方差的53.59%(WTS)~100.00%(FWH),表明桤木属种间杂交子代种实性状的遗传中亲本基因加性效应起主导作用(见表5)。亲本群体配合力方差中,母本种实性状群体配合力方差具有绝对优势,占亲本群体配合力方差的44.08%(WTS)~99.74%(FWH)。WTS的特殊配合力方差占群体配合力方差的46.41%,但亲本群体配合力方差略高于特殊配合力方差,说明该种子千粒重性状同时受加性和非加性基因的共同控制,但是以加性基因为主导。从各种实性状的遗传力来看,FL、FWD、FWH、SL和SW均具有较高的广义遗传力和狭义遗传力,均在50%以上。SA的广义遗传力较高,为75.67%,但狭义遗传力仅为11.07%;WTS广义遗传力较低,为20.66%,而其狭义遗传力高达63.96%。SSF的广义遗传力和狭义遗传力均较低,分别为18.41%和13.79%。

    性状Traits基因型方差Variance of genotype群体配合力方差Variance of combing ability of group/%遗传力Heritability/%
    δfδmδf×mVfVmVfmVshBhN
    CL0.480.000.1773.640.0073.6426.3655.3640.76
    FL24.540.000.6497.470.0097.472.5388.9186.66
    FWD6.720.280.3491.563.8395.394.6193.8989.56
    FWH1.670.000.0099.740.26100.000.0095.9295.92
    SSF717.54341.25354.1150.7824.1574.9425.0618.4113.79
    SL0.190.030.0569.4911.3080.7919.2172.3858.48
    SW0.080.000.0188.195.7793.966.0455.3151.97
    SA1.170.000.2184.520.0084.5215.4875.6711.07
    WTS0.040.010.0444.089.5153.5946.4120.6663.96
      δf:母本基因型方差,δm:父本基因型方差,δf×m:母本×父本基因型方差,Vf:母本群体配合力方差,Vm:父本群体配合力方差,Vfm:亲本群体配合力方差,Vs:组合特殊配合力方差,hB:广义遗传力,hN:狭义遗传力
      δf : genotypic variance of femal, δm: genotypic variance of male, δf×m: genotypic variance of female×male, Vf : population GCA variance of female, Vm : population GCA variance of male, Vfm : population GCA of parent, Vs : SCA variance of cross, hB : broad-sense heritability, hN : Narrow-sense heritability

    Table 5.  Genetic parameters of nine seed and fruit traits

  • 表6可以看出,桤木属种间杂交种实性状杂种优势不突出。除SSF的竞争优势较强外,其余种实性状均处于较低的水平。但仍有少部分杂交组合具较强的竞争优势,如C16的WTS竞争优势高达88.54%。具有正向竞争优势的杂交组合中,仅SSF具有正向竞争优势的杂交组合最多,为66.67%;FWD、FWH和WTS均只有一个杂交组合具有正向竞争优势,表明通过桤木属内种间杂交以获得种实性状杂种优势的难度较大。

    性状
    Traits
    竞争优势Competitive advantage / CH, %
    变幅Range均值Mean正向竞争优势组合
    Positive competitive advantage combination
    正向竞争优势均值
    Mean of positive competitive advantage
    CL−0.50~−30.09−17.9700.00
    FL−3.34~−14.23−8.3800.00
    FWD0.80~−26.00−10.3410.80
    FWH4.13~−35.14−12.8014.13
    SSF101.79~−23.7714.571228.52
    WTS88.54~−70.40−33.62188.54

    Table 6.  Analysis on competitive advantage of 18 hybrid combinations

  • 相关分析结果表明,各种实性状的竞争优势与一般配合力(GCA)、特殊配合力(SCA)均呈正相关关系(见表7)。除FWH外,其余种实性状的特殊配合力(SCA)与杂种F1代竞争优势呈极显著的正相关相关关系。一般配合力(GCA)中,仅WTS竞争优势与一般配合力(GCA)呈极显著正相关关系,SSF竞争优势与一般配合力(GCA)呈显著正相关关系。综合分析,桤木属种间杂交杂种优势与杂交组合特殊配合力(SCA)和亲本一般配合力(GCA)均具有较为紧密的相关性。

    性状
    traits
    竞争优势Heterosis over control cultivar/CH, %
    GCASCA
    CL0.4130.656**
    FL0.5240.750**
    FWD0.5020.635**
    FWH0.1360.307
    SSF0.754*0.610**
    WTS0.978**0.768**

    Table 7.  Correlation analysis of competitive advantage of seed and fruit traits with GCA and SCA

3.   讨论
  • 一般配合力(GCA)由基因的加性效应决定,可以稳定遗传;特殊配合力(SCA)由基因非加性效应决定,只在特定的杂交组合中反映出来,是不能遗传的部分[14]。关于桤木育种程序中各性状的配合力研究,前人已做了一些探讨,不同的试验材料,其研究结果有所差异。杨汉波等[8]研究表明,桤木杂交子代苗期性状的基因加性效应与非加性效应均有重要作用,并根据一般配合力(GCA)和特殊配合力(SCA)初步筛选出优良亲本和杂交组合。桤木完全双列杂交试验中,杂交F1代种实性状主要受基因加性效应控制,苗期生长性状主要受基因非加性效应控制[9]。本文对桤木属内种间杂交亲本种实性状一般配合力(GCA)和特殊配合力(SCA)的研究结果表明,桤木属内种间杂交的种实性状遗传是以基因加性效应为主,其种子长度(SL)、宽度(SW)和千粒重(WTS)同时也受基因非加性效应影响。这与前人研究结果相一致。本研究发现,各种实性状中,杂交组合的特殊配合力(SCA)与亲本的一般配合力(GCA)并没有直接的关系。这进一步证实了刘青华等[15]、唐效蓉等[16]由2个GCA最高的亲本组配的自交组合,其SCA效应并不一定是最好的研究结果。种实性状中,FL、FWD和FWH的广义遗传力和狭义遗传力均处于十分高的水平,均在80%以上,因此,应在较早的世代对这些种实性状进行选择研究。

    配合力效应是杂种优势利用亲本选配的重要遗传基础,杂交组合的优势由双亲一般配合力效应(GCA)和杂交组合的特殊配合力效应(SCA)共同决定。已有研究表明,杂种优势的形成与亲本一般配合力(GCA)和杂交组合特殊配合力(SCA)具有重要的遗传相关[13]。如水稻杂交育种最佳亲本的类型应是具高的一般配合力(GCA)和特殊配合力(SCA)[17]。陈岳武等[18]认为表现较强的杂种优势的组合,是父母本GCA和杂交组合SCA联合作用的结果,杂交组合SCA值越大,该杂交组合就具有越高的杂种优势。本研究结果发现,桤木属种间杂交组合竞争优势与组合特殊配合力呈显著或极显著的正相关,其中2个性状与亲本一般配合力(GCA)呈显著正相关,具有较强的竞争优势的杂交组合的特点是双亲或亲本之一具有较高的一般配合了(GCA)效应,或较高的特殊配合力(SCA)效应。所以,桤木属内种间杂交杂种优势的重点在于对父母本GCA和组配的杂交组合的SCA的准确评估。从桤木属种间杂交亲本的GCA和杂交组合的SCA可以看出,ACjt04、ACjg00和AFhlt01、AGtc02在种子和果实表型性状上的GCA,及其组配的杂交组合的SCA值均较高,可以选择作为优良的杂交亲本材料。其中,ACjt04和AGtc02在单果出种数(SSF)和千粒重(WTS)主要种实性状上具有较为突出的亲本一般配合力(GCA)和组合特殊配合力(SCA)效应,这些材料应该在杂交育种工作中重点利用。

    有关桤木属植物的杂种优势,郭洪英等[9]研究表明,高特殊配合力优势组合的苗高和地径分别可实现20.47%~76.22%和5.07%~43.18%的遗传增益。本研究结果表明,桤木属中间杂种组合中仅少部分组合的种实性状存在竞争优势,其中,单果出种数(SSF)具有竞争优势的杂交组合最多,竞争优势最高达101.79%;仅4个杂交组合表现出较强的竞争优势,可进一步开展评价研究。综合分析可知,通过桤木属内种间杂交以获取具有种子和果实表型性状较强竞争优势的苦难较大;但种实关键性状,如单果出种数(SSF)和千粒重(WTS)的竞争优势普遍存在,并且与父母本的GCA和杂交组合SCA值均具有较为密切的遗传关联。因此,在桤木新品种创制中,应充分利用现有的桤木属优良种源、家系或无性系选择和改良的遗传基础开展广泛的遗传交配设计,以进一步加强基于GCA的亲本选配和SCA的优良杂交组合选择,以保证最大限度的利用桤木属内种间杂交的杂种优势,寻求更大的突破。

Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return