WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 41 Issue 2
Apr.  2020
Article Contents
Turn off MathJax

Chen X Z, Zhang L P, Chen Z, et al. Genetic variation and selection of seedling traits in superior Eucalyptus cloeziana families[J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(2): 8−14 doi: 10.12172/201912120001
Citation: Chen X Z, Zhang L P, Chen Z, et al. Genetic variation and selection of seedling traits in superior Eucalyptus cloeziana families[J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(2): 8−14 doi: 10.12172/201912120001

Genetic Variation and Selection of Seedling Traits in Superior Eucalyptus cloeziana Families


doi: 10.12172/201912120001
More Information
  • Corresponding author: yanghanbo6@sicau.edu.cn
  • Received Date: 2019-12-12
    Available Online: 2020-04-09
  • Publish Date: 2020-04-29
  • In order to provide theoretical basis for genetic variation and selection of Eucalyptus cloeziana F. Muell. families at seedling stage, the growth (tree height and diameter at ground) of E. cloeziana families were investigated. One-year-old E. cloeziana was used to carry out genetic variation, variance, and genetic parameters estimation of seedling height and ground diameter, and superior families were comprehensively selected by the membership function method. The height and diameter at ground of E. cloeziana were significantly different among the families, and the repeatability was between 0.895 and 0.985. The coefficient of variation of height and diameter at ground were 44.01% and 65.96%, respectively. The family heredity and single heredity of height were 0.894 and 1.605, and the family and single heredity of diameter at ground were 0.985 and 2.935, respectively. Correlation analysis results showed that seedling height and ground diameter were negatively correlated, but not significant. The results of general combining ability analysis showed that the families with high general combining ability of different traits had great differences, which was difficult to carry out combined screening and further analysis was needed. There were abundant genetic variations in seedling growth traits of E. cloeziana families, which were under strong genetic control and had good genetic improvement potential. The height and ground diameter of E. cloeziana families were independent and could be individually oriented. Five optimal families (39, 19, 38, 25, and 13) were selected through the membership function method. Family 39 and 19 had extremely high genetic gain of ground diameter, and they could be used as excellent parents and (or) directive breeding materials.
  • 加载中
  • [1] 祁述雄. 中国桉树[M]. 北京: 中国林业出版社, 2002.
    [2] 姜笑梅, 叶克林, 吕建雄. 中国桉树和相思人工林木材形质与加工利用[M]. 北京: 科学出版社, 2007.
    [3] 王建忠,熊涛,张磊,等. 25年生大花序桉种源生长与形质性状的遗传变异与选择[J]. 林业科学研究,2016,29(5):705−713. doi: 10.3969/j.issn.1001-1498.2016.05.012
    [4] 韦炬, 王国祥. 万亩桉树示范林[C]. 广东湛江: 国际桉树学术研讨会, 1990.
    [5] 欧阳林男,陈少雄,何沙娥,等. 基于MaxEnt模型对大花序桉在我国南方的适生区预测[J]. 桉树科技,2017,34(4):1−9. doi: 10.3969/j.issn.1674-3172.2017.04.001
    [6] 李昌荣,项东云,陈健波,等. 大花序桉木材基本密度的变异研究[J]. 中南林业科技大学学报,2012,32(6):158−162.
    [7] 黄振,张俊,陈炙,等. 大花序桉国内遗传育种现状与研究展望[J]. 四川林业科技,2018,39(1):17−21.
    [8] 余玉珠,苏远玉,陆艳柳,等. 大花序桉种源幼龄木材物理性质变异[J]. 桉树科技,2019,36(2):9−15. doi: 10.3969/j.issn.1674-3172.2019.02.002
    [9] Bootle K. Wood in Australia: Types, properties and uses [M]. Sydney, Australia Mo Graw-Hill Book Company, 1983.
    [10] Dickinson GR, Nikle DG, Leggate W, et al. Variation in Eucalyputs cloeziana in coastal north Queensland plantings and implications for future improvement strategies [C]// Proceeding of QFRI-IUFRO Conference. Caloundra, Queensland, Australia, 1996, 27 October-1 November.
    [11] Phillips FH. The pulping and papermaking potential of young plantation-grown Eucalypts from Dongmen, China Technical Communication No. 40 [R]. In China-Australia afforestation project at Dongmen State-owned Forest Farm, People’s Republic of China, 1989, 20−24 October.
    [12] Muneri A, Leggate W, Palmer G. Relationships between surface growth strain and some trees: Wood and sawn timber characteristics of Eucalyptus cloeziana[J]. S. Afr. For. J., 1999, 186: 41−49.
    [13] 杨汉波,郭洪英,陈炙,等. 引种桉树种源生长性状的遗传变异及早期评价[J]. 西北林学院学报,2019,34(6):1−7. doi: 10.3969/j.issn.1001-7461.2019.06.01
    [14] 邓紫宇,陈健波,郭东强,等. 大花序桉的遗传多样性分析[J]. 林业科学研究,2019,32(4):41−46.
    [15] 玉首杰,邓海群. 大花序桉(澳洲大花梨)木材用于家具制造的探索[J]. 国际木业,2019,49(1):39−40.
    [16] 郑仁华,杨宗武,施季森,等. 福建柏优树子代苗期性状遗传变异和生长规律研究[J]. 林业科学,2003,39(1):179−183.
    [17] 周永学,苏晓华,樊军锋,等. 引种欧洲黑杨无性系苗期生长测定与选择[J]. 西北农林科技大学学报: 自然科学版,2004,32(10):102−106.
    [18] 童春发,卫巍,尹辉,等. 林木半同胞子代测定遗传模型分析[J]. 林业科学,2010,46(1):29−34. doi: 10.11707/j.1001-7488.20100105
    [19] 续九如. 林木数量遗传学[M]. 北京: 中国林业出版社, 2006.
    [20] 李斌,刘立强,罗淑萍,等. 扁桃花芽的抗寒性测定与综合评价[J]. 经济林研究,2012,30(3):16−21.
    [21] 朱之悌. 林木遗传学基础[M]. 北京: 中国林业出版社, 1990.
    [22] 凌娟娟,肖遥,杨桂娟,等. 灰楸无性系生长和形质性状变异与研究[J]. 林业科学研究,2019,32(5):149−156.
    [23] White TL, Adams WT. Forest Genetics [M]. CABI, 2007.
    [24] 陈益泰. 林木早期选择研究新进展[J]. 林业科学研究,1994,7(7):13−22.
    [25] 王国良,罗建勋,文吉富,等. 马尾松种子园半同胞家系子代苗期性状遗传变异[J]. 四川林业科技,2009,30(3):18−21. doi: 10.3969/j.issn.1003-5508.2009.03.004
    [26] 王戈,唐源盛,杨汉波,等. 桢楠优良种源/家系苗期评价和选择研究[J]. 四川林业科技,2019,40(3):63−66.
    [27] 刘宇,徐焕文,边秀艳,等. 白桦半同胞家系苗期生长和光合特性及其选育评价指标筛选[J]. 西北植物学报,2013,33(5):0963−0969.
    [28] 董章凯,邢世岩,王亚明,等. 麻栎半同胞家系苗期特性分析[J]. 东北林业大学学报,2011,39(4):27−36. doi: 10.3969/j.issn.1000-5382.2011.04.009
    [29] 卢超,高明博,焦小钟,等. 几个小麦亲本主要农艺性状的配合力评价及遗传力分析[J]. 麦类作物学报,2010,30(6):1023−1028. doi: 10.7606/j.issn.1009-1041.2010.06.007
    [30] 尚秀华,罗建中,张沛健,等. 早期赤桉家系生长与抗风性遗传分析[J]. 分子植物育种,2017a,15(5):1918−1926.
    [31] Zhao XY, Li Y, Zheng M, et al. Comparative analysis of growth and photosynthetic characteristics of (Populus simonii × P. nigra) × (P. nigra × P. simonii) hybrid clones of different ploidies[J]. PloS One, 2015, 10(4): e0119259. doi: 10.1371/journal.pone.0119259
    [32] 张秦徽,王洪武,姜国云,等. 红松半同胞家系变异分析及选择研究[J]. 植物研究,2019,39(4):557−567. doi: 10.7525/j.issn.1673-5102.2019.04.010
    [33] 罗建中,Roger A,项东云,等. 邓恩桉生长、木材密度和树皮厚度的遗传变异研究[J]. 林业科学研究,2009,22(6):758−764. doi: 10.3321/j.issn:1001-1498.2009.06.002
    [34] 周志春,金国庆,秦国峰,等. 马尾松纸浆材重要经济性状配合力及杂种优势分析[J]. 林业科学,2004,40(4):52−57. doi: 10.3321/j.issn:1001-7488.2004.04.009
    [35] 贾庆彬,张含国,张磊,等. 杂种落叶松家系变异分析与优良家系选择[J]. 东北林业大学学报,2016,44(4):1−7. doi: 10.3969/j.issn.1000-5382.2016.04.001
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(6)

Article views(752) PDF downloads(7) Cited by()

Related
Proportional views

Genetic Variation and Selection of Seedling Traits in Superior Eucalyptus cloeziana Families

doi: 10.12172/201912120001
  • 1. Sichuan Forestry Working Station, Chengdu 610084, China
  • 2. Sichuan Forestry and Grassland Inventory and Planning Institute, Chengdu 610081, China
  • 3. Sichuan Academy of Forestry, Chengdu 610084, China
  • 4. Institute of Ecology & Forestry, College of Forestry, Sichuan Agricultural of University, Chengdu 611130, China
  • 5. Key laboratory of Ecological Forestry Engineering of Sichuan Province, Chengdu 611130, China
  • Corresponding author: yanghanbo6@sicau.edu.cn

Abstract: In order to provide theoretical basis for genetic variation and selection of Eucalyptus cloeziana F. Muell. families at seedling stage, the growth (tree height and diameter at ground) of E. cloeziana families were investigated. One-year-old E. cloeziana was used to carry out genetic variation, variance, and genetic parameters estimation of seedling height and ground diameter, and superior families were comprehensively selected by the membership function method. The height and diameter at ground of E. cloeziana were significantly different among the families, and the repeatability was between 0.895 and 0.985. The coefficient of variation of height and diameter at ground were 44.01% and 65.96%, respectively. The family heredity and single heredity of height were 0.894 and 1.605, and the family and single heredity of diameter at ground were 0.985 and 2.935, respectively. Correlation analysis results showed that seedling height and ground diameter were negatively correlated, but not significant. The results of general combining ability analysis showed that the families with high general combining ability of different traits had great differences, which was difficult to carry out combined screening and further analysis was needed. There were abundant genetic variations in seedling growth traits of E. cloeziana families, which were under strong genetic control and had good genetic improvement potential. The height and ground diameter of E. cloeziana families were independent and could be individually oriented. Five optimal families (39, 19, 38, 25, and 13) were selected through the membership function method. Family 39 and 19 had extremely high genetic gain of ground diameter, and they could be used as excellent parents and (or) directive breeding materials.

  • 大花序桉(Eucalyptus cloeziana F. Muell.),又名昆士兰桉,木材纹理直,基本密度大,材积生长率高,心材黄褐色至浅红褐色,是极具培育价值的中大径材树种之一[1-3]。我国从1972年开始引种大花序桉,1989年建立了大花序桉11个种源的区域试验林[4]。大花序桉在我国南方的发展空间较大,其最适分布区主要集中在广东、广西、海南和福建沿海[5]。其生长较迅速,材质优良,其木材品质与黄花梨相当,如17年生大花序桉平均基本密度达0.706 g·cm−3,目前已在广西、福建等地广泛用于实木用材林的营建[6, 7]。四川省林业科学研究院于1983年开始大花序桉引种试验,在黑龙潭基地,33年生大花序桉优树树高28.5 m、胸径55.5 cm,被筛选为生长良好且极具生长潜力的树种之一。2012年四川省林业科学研究院在宜宾市建立大花序桉种源试验林,6年生试验林平均树高、胸径和单株材积分别达10.2 m、11.4 cm和0.059 m3,表现出相当大的生长潜力,在当前具有重要的研究、开发和推广利用价值。

    大花序桉作为实木材和中大径材的培育对象,逐渐成为桉树研究领域的热点[8]。国内外林木育种学家围绕大花序桉开展了一系列的研究,Bootle[9]、Dickinson[10]、Phillips[11]、Muneri[12]等对大花序桉的幼龄林材和成熟材的木材密度进行研究。李昌荣等[6]分析了广西东门林场11个种源的17年生大花序桉木材基本密度遗传变异。杨汉波等[13]开展5个大花序桉种源引种的生长性状遗传变异和早期评价。邓紫宇等[14]利用SSR分子标记技术研究了大花序桉4个主要分布区的群体遗传多样性,并将其划分为北部和南部两大类。余玉珠等[8]通过木材树皮率、横向全干缩率和体积全干缩率等性状对6年生大花序桉9个种源木材物理性质在种源、树干高度及径向上的变异规律进行了研究。玉首杰[15]参照红木干燥方法开展了大花序桉用于家具制造的探索,发现其木材含水率达到红木制作家具成品木材的标准,制成的家具高端大气,有红木古典家私的高雅风范,成功解决了家具加工的工艺问题。迄今为止,对大花序桉良种选育主要集中在种源和无性系的选择上,对大花序桉半同胞家系苗期特性还缺乏必要了解。苗期性状及遗传特性是林木良种家系选择的有效途径,具有加快育种进程、提早获得林木改良经济回报、方法简单、投产迅速且增益较高等优点[16, 17]。因此,本文以27个半同胞家系的大花序桉1年生苗为研究对象,通过对大花序桉半同胞家系苗期生长性状的测定,比较不同半同胞家系苗期生长指标的差异,旨在初步筛选出优良的大花序桉半同胞家系,以期为大花序桉优良家系的苗期选育提供一定的理论依据。

1.   材料与方法
  • 试验地位于四川省成都市郫都区唐昌镇现代化育苗基地(103.779041°E,30.937384°N),属亚热带季风性湿润气候,夏无酷暑,冬无严寒,雨量充沛。年均气温16℃,降水量979.4 mm,日照1 014 h。

    供试的27个大花序桉半同胞家系于2017年10月全部采自宜宾市6年生大花序桉引种试验林的优良单株(见表1),该大花序桉种源试验林种源由澳大利亚CSIRO中心提供,6年生时试验林生长良好,保存率在79%以上,平均树高、胸径和单株材积分别为10.2 m、11.4 cm和0.059 m3[13]。大花序桉种子即将成熟且少部分已脱落时采集。在2018年3月,将采集的大花序桉种子采用随机区组实验设计分别进行播种育苗。幼苗出土后,适时除草、松土,按常规方法进行育苗和苗期管理。

    来源Source编号No.
    27个半同胞家系
    27 Half-sib families
    357891113
    14151617181922
    24252628293031
    323436383941

    Table 1.  Experimental materials

  • 生长指标的测定方法:2019年7月对大花序桉1年生苗的株高(H)和地径(DGL)的生长状况进行测量。测定时在每小区随机选取10株植株,重复3次,用钢卷尺和游标卡尺分别测量苗木的H和DGL(距地面大约2 cm处的幼苗直径)。

  • 使用EXCEL 2013进行数据分析处理和图表制作。使用林木单地点半同胞子代测定分析软件HalfsibSS 1.0计算每个性状的方差分量、方差分量的假设检验统计量、家系遗传力、单株遗传力和性状间的遗传关系[18]

    统计分析模型为:

    式中,yijk为第i个区组第j个家系第k个单株的数量性状值;μ为总体平均值;Bi为第i个区组的固定效益,i=1,2,3,…,b;Fj为第j个家系的随机效应,j=1,2,…,f;BFij为第i个区组第j个家系的随机效应;eijk为第i个区组第j个家系第k个单株的随机误差。

    家系重复力采用公式:R=1−1/F,式中,F为方差分析的F[19]

    变异系数:CV=SD/$\bar X$×100%,式中,CV为变异系数,SD为各性状的标准差,$\bar X$为各性状均值。

    一般配合力(GCA)采用公式:g=x-μ,式中,g为亲本的一般配合力,x为亲本的某个交配组合在某个性状的子代平均值,μ为这个性状所有组合的子代总平均值。

    用隶属函数法综合各项指标进行评价[20],隶属函数值计算公式为:

    式中,i表示某个家系,j表示某项指标,Tij表示i家系j指标的隶属函数值,Xij表示i家系j指标的测定值,Xjmin表示所有家系j指标的最小值,Xjmax表示所有家系j指标的最大值。某一个体某一指标的隶属函数值越大,表明该指标越靠近最大值。

    家系现实遗传增益估算公式:

    式中,S为选择差,$\bar X$为各性状平均值。

    单株遗传增益估算公式:ΔGs=(R/$\bar X$)×100% R=h2·S[21]。式中,R为选择反应,S为选择差,$\bar X$表示各性状平均值。

2.   结果与分析
  • 参试的27个家系苗高(H)和地径(DGL)性状调查情况(见表2)表明:苗高平均9.12 cm,地径平均3.06 mm,其最小值仅为1.37 cm和0.78 mm,最大值为27.00 cm和18.00 mm。苗高和地径表型变异系数分别高达44.01%和65.96%。说明1年生大花序桉家系各性状间存在极为丰富的遗传变异,在家系和单株水平上具有巨大的遗传改良潜力。

  • 表3表明:大花序桉苗高和地径在家系间差异极显著。苗高和地径具有较高的重复力,分别为0.895和0.985,这表明大花序桉家系生长性状遗传变异显著,受较高强度的遗传控制。性状间遗传相关分析结果表明:苗高和地径的遗传相关两两之间呈负相关关系,但不显著(r=−0.5778,P>0.05),说明大花序桉苗期苗高和地径性状可能是独立进行遗传。苗高和地径均具有高的家系遗传力,均超过0.8,地径的家系遗传力高达0.985。从单株遗传力来看,苗高和地径的单株遗传力均相当大。

    性状Traits平均值Mean标准差Standard deviation表型变异系数Phenotype variable coefficient/%变幅Range of variation
    苗高H/cm9.124.0244.011.37~27.00
    地径DGL/mm3.062.0265.960.78~18.00
      H: height, DGL: diameter at ground

    Table 2.  Measured values of various traits in the tested families

    变异来源
    Variation of source
    自由度df方差分量
    Variance components
    FF value家系遗传力
    Family heredityedity
    单株遗传力
    Single heredity
    重复力Repeatability
    H266.5999.479**0.8941.6050.895
    DGL263.06668.235**0.9852.9350.985
      注:**代表P<0.01,差异极显著 Note: ** represents P<0.01, the difference is extremely significant.

    Table 3.  Variance analysis and estimation of repeatability of traits in E. cloeziana F. Muell. families

  • 各性状一般配合力(GCA)见表4。苗高一般配合力变化范围为−6.989(家系19)−5.909(家系38),其中18个家系的一般配合力为正值,9个家系的一般配合力为负值。地径一配合力变化范围为−1.151(家系34)−7.777(家系39),其中5个家系的一般配合力为正值,22个家系的一般配合力为负值。6个家系的苗高一般配合力较高,均在2.0以上。2个家系的地径一般配合力较高,分别为3.777(家系19)和7.777(家系39),其余均在1.0以下。其中家系13和25苗高和地径一般配合力均较高,其亲本可选作优良亲本材料。

    家系FamilyHDGL家系FamilyHDGL
    32.642−0.19924−0.891−0.084
    5−0.558−0.541252.7090.131
    7−2.325−0.851262.309−0.119
    81.509−0.516280.075−0.555
    90.309−0.33829−2.525−1.072
    111.309−0.099300.175−0.516
    132.4750.175310.975−0.462
    140.075−0.60232−2.858−1.028
    150.565−0.25734−3.225−1.151
    16−0.958−1.004360.842−0.327
    170.542−0.157385.9090.280
    181.075−0.26539−6.5397.777
    19−6.9893.777412.342−0.642
    220.875−0.847

    Table 4.  General combining ability values of different traits among different families

  • 为选育生长量大的家系,采用隶属函数法共筛选出5个家系39、19、38、25和13(见表5)。与整体平均值相比,筛选出的家系生长性状都有不同程度的提高,其中苗高的增益最大为64.75%,地径的增益最大为254.47%(见表6)。家系39和家系19的地径增益巨大,分别为254.47%和123.59%,但它们的苗高增益为负值,可用作培育高胸径生长量潜力优良家系的定向培育,或作为优良的杂交亲本,以获得其优良的地径生长性状。

    家系FamilyH隶属函数值
    Membership function value of H
    DGL隶属函数值
    Membership function value of DGL
    平均隶属函数值
    Average membership function value
    排序Order
    39−0.3103.3111.5001
    19−0.3511.9500.7992
    380.8210.7610.7913
    250.5300.7100.6204
    130.5090.7250.6175
    30.5240.5980.5616
    260.4940.6250.5597
    110.4030.6320.5178
    180.3820.5750.4789
    170.3330.6120.47310
    410.4970.4470.47211
    360.3610.5540.45712
    150.3350.5780.45713
    80.4210.4900.45614
    310.3730.5080.44015
    90.3120.5500.43116
    240.2030.6370.42017
    300.3000.4900.39518
    280.2910.4770.38419
    140.2910.4610.37620
    220.3640.3770.37021
    50.2330.4810.35722
    160.1970.3240.26023
    70.0730.3760.22424
    290.0550.3010.17825
    320.0240.3160.17026
    34−0.0090.2740.13227

    Table 5.  Membership function values of different traits of E. cloeziana families

    性状Traits优良家系Optimal family
    39增益Gain/%19增益Gain/%38增益Gain/%25增益Gain/%13增益Gain/%
    H2.59−71.672.14−76.5915.0364.7511.8329.6811.6027.13
    DGL10.83254.476.83123.593.349.153.194.293.235.72

    Table 6.  Comprehensive selection of optimal family characteristics

3.   讨论和结论
  • 遗传变异是选择的基础,对变异来源、特点和规律的研究是进行树种改良并获得遗传增益的理论前提[22, 23]。陈益泰[24]综合分析了不同树种、指标的评价结果,认为在林木苗期开展早期选择是有效的、可行的。苗高和地径是反映苗木质量最直观的指标[25]。本研究通过对1年生27个大花序桉家系生长性状进行统计分析发现,苗高和地径在家系间差异极显著,说明家系水平具有较大的遗传改良潜力。生长性状遗传力、重复力估算结果表明,苗高和地径受高强度的遗传控制,家系生长遗传改良具有可行性。这与桢楠、白桦及麻栎苗期评价和选择研究的结论基本保持一致[26-28]

    遗传力表示亲本某一性状遗传给子代能力的大小,是估算遗传增益的重要参数[29]。本研究中,苗高和地径家系遗传力均高于6年生大花序桉种源[13]、1年生赤桉家系[30],所有性状的家系遗传力均高于0.8,属高遗传力,表明所选材料各性状能稳定遗传[31]。大花序桉苗高和地径的单株遗传力分别为0.985和2.935,均超过杨汉波等[13]对6年生大花序桉种源、尚秀华等[30]对1年生赤桉家系的研究结果。单株遗传力较高,表明可在家系内进行优良单株的筛选,可为优良种质的发掘、优良亲本的选配和种子园营建提供材料[32]。本研究中各性状单株遗传力均高于家系遗传力,明显高于赤桉、邓恩桉种源、家系的研究结果[30, 33],表明各性状在单株水平上的遗传能力强于家系,单株在各性状的遗传差异具稳定的遗传能力。配合力反映亲本优良性状传递给子代的相对能力,其大小与具体性状有关[34]。除家系25和13各性状一般配合力均较高,其亲本可作为优良亲本材料外,其余家系不同性状一般配合力高的家系差异较大,难以进行联合选择,需结合隶属函数法进一步对家系进行评价选择。家系39和19地径性状一般配合力较高,家系38苗高性状的一般配合力较高,可作为特异亲本或材料加以选择、开发。

    育种目标决定育种方向,大花序桉是极具培育价值的锯材树种,但作为中大径材培育的周期较长,为缩短育种周期,选育高生长量的优质大花序桉资源,本文结合大花序桉实际情况,采用隶属函数法对各家系进行苗期评价。本研究在隶属函数法评分的基础上,选择分数靠前的5个家系作为优良家系,入选率为18.5%,其中家系39和19苗高和地径遗传增益形成两个相反的极端,地径遗传增益极高,分别为254.47%和123.59%,而苗高遗传增益分别为−71.67%和−76.59%,这两个家系可考虑作为特异优良亲本培育,用于杂交育种有望获得高杂种优势的杂交种质。家系38、25和13苗高和地径均存在较高的遗传增益,高于红松[32]、桢楠[26]、麻栎[28]等针、阔叶用材树种,表明利用苗期生长性状选择对大花序桉进行遗传改良具有较好的效果,入选的家系在生长上存在明显的优势,若用优良家系进行生产造林,有望减少林分工艺成熟时间,进而提高经济效益[35]

    1年生大花序桉家系苗高和地径性状存在丰富的遗传变异,且受到高的遗传控制,有非常好的遗传改良潜力。综合生长指标结合隶属函数法,初步选定家系39、19、38、25和13为优良家系。本次试验是对1年生大花序桉幼苗进行测定和评价,其结果仅为大花序桉优良家系早期选额提供参考,初选的可靠性和稳定性还有待对区域造林试验的表现进行跟踪观测和验证分析。然而,本次研究至少为大花序桉早期选择提供了一定的理论依据和创新思路。

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return