[1] Viole C, Navas M L, Vile D, et al. Let the concept of traits be functional[J]. Oikos, 2007, 116(5):882~892.
[2] 李超, 赵广东, 王兵, 等. 中亚热带樟科3种植物幼苗叶结构型性状的中间差异及其相关性[D]. 植物科学学报, 2016, 34(1):27~37.
[3]

Craine J M, Froehle J, Tilman D G, et al. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients[J]. Oikos, 2001, 93(2):274~285.
[4]

Garnier E, Shipley B, Roumet C, et al. A standardized protocol for the determination ofspecific leaf area and leaf dry matter content[J]. Functional ecology, 2001, 15(5):688~695.
[5]

Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme[J]. Plant and soil, 1998, 199(2):213~227.
[6]

Wright I J, Reich P B, Westoby M, et al. The world-wide leaf economics spectrum[J]. Nature, 2004, 428(6985):821~827.
[7]

Schulze E-D, Kelliher F M, K?rner C. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition:a global ecology scaling exercise[J]. Annual Review of Ecology and Systematics, 1994, 25(1):629~660.
[8]

Azizi M R, Barnes D K. Characterization and inheritance of a spotted leaf trait in alfalfa1[J]. Crop Science, 1977, 17(1):126~132.
[9]

Díaz S, Cabido M, Casanoves F. Plant functional traits and environmental filters at a regional scale[J]. Journal of Vegetation Science, 1998, 9(1):113~122.
[10]

Díaz S, Cabido M, Zak M, et al. Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western argentina[J]. Journal of Vegetation Science, 1999, 10(5):651~660.
[11]

Weiher E, Werf A V D, Thompson K, et al. Challenging Theophrastus:A Common Core List of Plant Traits for Functional Ecology[J]. Journal of vegetation science, 1999, 10(5):609~620.
[12] 刘宏伟. 两种不同生态系统中植物叶片功能性状及养分再吸收比较研究[D]. 重庆:西南大学, 2014.
[13] 孙梅, 田昆, 张赟, 等. 植物叶片功能性状及其环境适应研究[J]. 植物科学学报, 2017, 35(6):940~949.
[14]

Xu F, Guo W, Xu W, Wei Y, Wang R. Leaf morphologycorrelates with water and light availability:what conse-quences for simple and compound leaves?[J]. Prog NatSci, 2009, 19(2):1789~1798.
[15] 张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6):844~852.
[16] 毛伟, 李玉霖, 张铜会, 等. 不同尺度生态学中植物叶性状研究概述[J]. 中国沙漠, 2012, 32(1):33~41.
[17] 王瑞雪, 张光福, 孙晶晶. 江苏宝华山主要常绿植物叶寿命与虫食频度相关性[J]. 生态学杂志, 2014, 33(6):1459~1466.
[18]

Lamppu J, Huttunen S. Relations between Scots pine needle element concentrations and decreased needle longevity along pollution gradients[J]. Environmental Pollution, 2003, 122(1):119~126.
[19] 田玉鹏. 亚热带常绿阔叶林植物发育的生态学研究[D]. 上海:华东师范大学, 2007.
[20] 王希华, 张婕, 张正祥. 浙江天童国家森林公园主要常绿阔叶树种叶子寿命的研究[J]. 植物生态学报, 2000, 24(5):625~629.
[21] 王磊.黄土高原常见落叶木本植物叶物候及功能性状研究[D]. 西安:西北大学, 2018.
[22]

Williams K, Mooney F H A. Relationships among leaf construetion cost, leaf longevity, and light environment in rain-forest plants of the genus piper[J]. The Ameriean Nat-uralist, 1989, 133(2):198~211.
[23] 吴琴, 胡启武, 郑林, 等. 青海云杉叶寿命与比叶重随海拔变化特征[J]. 西北植物学报, 2010, 30(8):1689~1694.
[24]

Hemminga M A, Marbà N, Stapel J. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems[J]. Aquatic Botany, 1999, 65(1):141~158.
[25] 祝介东, 孟婷婷, 倪健, 等. 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异[J]. 植物生态学报, 2011, 35(7):687~698.
[26] 潘少安, 彭国全, 杨冬梅. 从叶内生物量分配策略的角度理解叶大小的优化[J]. 植物生态学报, 2015, 39(10):971~979.
[27]

Navarro T,Oualidi J E, Taleb M S, et al. Leaf patterns, leaf size and ecologically related traits in high Mediterranean mountain on the Moroccan High Atlas[J]. Plant ecology, 2010, 210(2):275~290.
[28]

Peppe D J, Royer D L, Cariglino B, et al. Sensitivity of leaf size and shape to climate:global patterns and paleoclimatic applications[J]. New Phytologist, 2011, 190(3):724~739.
[29] 任红剑, 丰震, 乔谦, 等. 元宝枫叶片形态特征的地理变异[J]. 西北林学院学报, 2017, 32(6):113~119.
[30]

Lebrija-Trejos E, Pérez-García, Eduardo A, Meave J A, et al. Functional traits and environmental filtering drive community assembly in a species-rich tropical system[J]. Ecology, 2010, 91(2):386~398.
[31] 祁建, 马克明, 张育新. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释[J]. 生态学报, 2007, 27(3):930~937.
[32] 刘明虎, 辛智鸣, 徐军, 等. 干旱区植物叶片大小对叶表面蒸腾及叶温的影响[J]. 植物生态学报, 2013, 37(5):436~442.
[33]

Knight C A, Ackerly D D. Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size:congeneric species from desert and coastal environments[J]. New Phytologist, 2003, 160(2):337~347.
[34] 李永华, 罗天祥, 卢琦, 等. 青海省沙珠玉治沙站17种主要植物叶性因子的比较[J]. 生态学报, 2005, 25(5):994~999.
[35]

Gonzalez-Paleo L, Ravetta D A. Relationship between photosynthetic rate, water use and leaf structure in desert annual and perennial forbs differing in their growth[J]. Photosynthetica, 2018, 56(4):1177~1187.
[36]

Terashima I, Hanba Y T, Taoze Y, et al. Irradiance and phenotype:comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion[J]. Journal of Experimental Botany, 2006, 57(2):343~354.
[37]

Peng S, Cassman K G, Kropff M J. Relationship between leaf photosynthesis and nitrogen content of field-growen rice in tropics[J]. Crop Sci, 1995, 35(6):1627~1630.
[38] 雷蕾, 赵成章, 李雪萍, 等. 密度制约下尕海湿地黄帚橐吾叶绿素与叶面积、叶厚度间的关系[J]. 生态学杂志, 2018, 37(12):3647~3653.
[39] 李群, 赵成章, 姚文秀, 等. 张掖湿地芦苇蒸腾速率与叶性状关系对土壤水分的响应[J]. 生态学杂志, 2018, 37(4):1095~1101.
[40]

Wright I J, Westoby M, Reich P B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span[J]. Journal of Ecology, 2002, 90(3):534~543.
[41]

Mária M, Franceso D B, Ji?í D, et al. Plant functionaltraits as determinants of population stability[J]. Ecology, 2014, 95(9):2369~2374.
[42]

Meziane D, Shipley B. Components of Interspecific Relative Growth Rate:Constancy and Change Under Differing Condition of Light and Nutrient Supply[J]. Functional Ecology, 2002, 13(5):611~622.
[43] 覃鑫浩. 辽东栎冠层叶建成消耗与比叶面积的空间异质性[J]. 林业资源管理, 2015(04):145~150+178.
[44] 胡耀升, 么旭阳, 刘艳红. 长白山森林不同演替阶段比叶面积及其影响因子[J]. 生态学报, 2015, 35(5):1480~1487.
[45] 余华, 钟全林, 黄云波, 等. 不同种源刨花楠林下幼苗叶功能性状与地理环境的关系[J]. 应用生态学报, 2018, 29(2):449~458.
[46] 李宏伟, 黄土高原子午岭森林群落叶功能性状与功能多样性研究[D]. 西安:陕西师范大学, 2012.
[47] 杨芳, 王振孟, 朱大海, 等. 常绿阔叶林林下6种木本植物叶片非结构性碳水化合物的动态特征[J/OL]. 应用与环境生物学报:1~13. https://doi.org/10.19675/j.cnki.1006

-687x.2018.11018.
[48] 郑淑霞, 上官周平. 不同功能型植物光合特性及其与叶氮含量、比叶重的关系[J]. 生态学报, 2007, 27(1):171~181.
[49]

Poorter H, Niinemets ü, Poorter L, et al. Causes and consequences of variation in leaf mass per area (LMA):a meta-analysis[J]. The New phytologist, 2009, 182(3):565~88.
[50]

Flores O, Garnier E, Wright I J, et al. An evolutionary perspective on leaf economics:Phylogenetics of leaf mass per area in vascular plants[J]. Ecology and Evolution, 2014, 4(14):2799~2811.
[51]

Xiang S, Reich P B, Sun S, et al. Contrasting leaf trait scaling relationships in tropical and temperate wet forest species[J]. Functional Ecology, 2013, 27(2):522~534.
[52] 温韦华, 陈燕, 刘东焕, 等. 10种园林植物的耐阴性比较研究[J]. 中国园林, 2018, 34(09):104~108.
[53] 龚容, 高琼. 叶片结构的水力学特性对植物生理功能影响的研究进展[J]. 植物生态学报, 2015, 39(3):300~308.
[54]

Blonder B, Violle C, Bentley L P, et al. Venation networks and the origin of the leaf economics spectrum.[J]. Ecology letters, 2011, 14(2):91~100.
[55]

Sack L, Scoffoni C, McKown AD, et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns[J]. Nature Communications, 2012, 3(837):1~10.
[56]

Brodribb T J, Jordan G J. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees[J]. New Phytologist, 2011, 192(2):437~448.
[57] 韩玲, 赵成章, 徐婷, 等. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系[J]. 植物生态学报, 2017, 41(5):529~538.
[58] 谢兆森, 杜鸿儒, 李建宝, 等. 组织透明法观察葡萄叶片生长过程中气孔与叶脉形态结构特征变化[J]. 植物生理学报, 2018, 54(2):237~246.
[59]
[60] 游文娟, 张庆费, 夏檑. 城市绿化植物叶片结构对光强的响应[J]. 西北林学院学报, 2008, 23(5):22~25.
[61] 李玉霖, 毛伟, 赵学勇, 等. 北方典型荒漠及荒漠化地区植物叶片化学计量特征研究[J]. 环境科学, 2010, 31(8):1716~1725.
[62]

Güsewell S. N:P ratios in terrestrial plants:Variation and functional significance[J]. New Phytologist, 2004, 164(2):243~266.
[63]
[64] 林恬, 郑怀舟, 王健, 等. 福建万木林自然保护区12种优势植物叶碳、氮含量及其与热值的关系[J]. 福建师范大学学报(自然科学版), 2018, 34(05

):56~66.
[65]

Takahashi K, Miyajima Y. Relationships between leaf lifespan, leaf mass per area, and leaf nitrogen cause differentaltitudinal changes in leaf δ13C between deciduous and ev-ergreen species[J]. Botany, 2008, 86(11):1233~1241.
[66] 苗艳明, 吕金枝, 毕润成. 不同功能型植物叶氮含量与光合特性的关系研究[J]. 植物研究, 2012, 32(4):425~429.
[67] 王利平, 张剑, 耿亚军, 等. 渥洼池湿地芦苇叶片碳、氮、磷生态化学计量学特征及其影响因素[J]. 湿地科学, 2018, 16(3):417~423.
[68]
[69]

Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30):11001~11006.
[70] 任书杰, 于贵瑞, 陶波, 等. 兴安落叶松(Larix gmelinii Rupr.)叶片养分的空间分布格局[J]. 生态学报, 2009, 29(4):1899~1906.
[71] 胡伟芳, 章文龙, 张林海, 等. 中国主要湿地植被氮和磷生态化学计量学特征[J]. 植物生态学报, 2014, 38(10):1041~1052.
[72] 林小涛, 梁海含, 梁华, 等. 澳门路氹湿地芦苇氮磷含量的季节变化[J]. 生态学杂志, 2007, 26(1):5~8.
[73]

Koerselman W, Meuleman A F M. The vegetation N:P ratio:A new tool to detect the nature of nutrient limitation[J].Journal ofApplied Ecology, 1996, 33(6):1441~1450.
[74]

Agren G I. The C:N:P stoichiometry of autotrophs-theory and observations[J]. Ecology letters, 2004, 7(3):185~191.
[75]

Gregry-Wodzicki K M. Relationship between leaf morphology and climate, Bolovia:Implications fou estimating paleoclimate from fossil floras[J]. Paleobiology, 2000,26(4):668~688.
[76] 杨冬梅, 占峰, 张宏伟. 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系[J], 植物生态学报, 2012, 36(4):281~291.
[77]
[78] 李永华, 李臻, 辛智鸣, 等. 形态变化对叶片表面温度的影响[J]. 植物生态学报, 2018, 42(2):202~208.
[79]

Niinemets ü, Portsmuth A, Tena D, et al. Do we underestimate the importance of leaf size in plant economics? Disproportionate scaling of support costs within the spectrum of leaf physiognomy[J]. Annals of Botany, 2007, 100(2):283~303.
[80]

Hikosaka K, Shigeno A. The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity[J]. Oecologia, 2009, 160(3):443~451.
[81]

Arredondo J T, Schnyder H. Components of leaf elongation rate and their relationship tospecific leaf area in contrasting grasses[J]. New Phytologist, 2003, 158(2):305~314.
[82] 张晶, 左小安, 吕朋, 等. 科尔沁沙地典型草地植物功能性状及其相互关系[J]. 干旱区研究, 2018, 35(1):137~143.
[83] 洪陈洁, 林晗, 洪伟, 等. 不同品系福建山樱花叶功能性状研究[J]. 热带亚热带植物学报, 2015, 23(2):191~196.
[84]

Reich P B, Walters M B, Ellsworth D S. Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems[J]. Ecological Monographs Ecological, 1992, 62(3):365~392.
[85] 韩玲, 赵成章, 冯威, 等. 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应[J]. 植物生态学报, 2017, 41(8):872~881.
[86] 徐婷, 赵成章, 段贝贝, 等. 兰州北山刺槐不同等级叶脉密度与叶大小关系的坡向差异性[J]. 生态学杂志, 2016, 35(1):41~47.
[87]

Wright I J, Groom P K, Lamont B B. Leaf traits relationships in Australian plant species[J]. Functional Plant Biology Functional, 2004, 31(5):551~558.
[88] 张继光, 傅声雷, 温达志, 等. 南亚热带人工林16种木本植物重要叶特征参数的相互关系[J]. 热带亚热带植物学报, 2009, 17(4):395~400.
[89] 彭阿辉, 王根绪, 罗辑, 等. 贡嘎山常绿落叶阔叶混交林主要树种叶功能性状[J]. 生态学杂志, 2016, 35(10):2599~2605.
[90]

Wright I J, Reich P B, Cornelissen J H C. Assessing the generality of global leaf trait relationships[J]. New Phytol-Newogist, 2005, 166(2):485~496.
[91] 徐婷, 赵成章, 韩玲, 等. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7):761~769.
[92] 张曦, 王振南, 陆姣云, 等. 紫花苜蓿叶性状对干旱的阶段性响应[J]. 生态学报, 2016, 36(9):2669~2676.
[93] 朱济友, 于强, 刘培亚, 等. 植物功能性状及其叶经济谱对城市热环境的响应[J]. 北京林业大学学报, 2018, 40(9):72~81.