用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桤木属植物遗传变异研究进展

王泽亮 李佳蔓 黄振 杨汉波 陈炙 刑文曦 郭洪英

王泽亮, 李佳蔓, 黄振, 杨汉波, 陈炙, 刑文曦, 郭洪英. 桤木属植物遗传变异研究进展[J]. 四川林业科技, 2019, 40(1): 81-86. doi: 10.16779/j.cnki.1003-5508.2019.01.018
引用本文: 王泽亮, 李佳蔓, 黄振, 杨汉波, 陈炙, 刑文曦, 郭洪英. 桤木属植物遗传变异研究进展[J]. 四川林业科技, 2019, 40(1): 81-86. doi: 10.16779/j.cnki.1003-5508.2019.01.018
WANG Ze-liang, LI Jia-man, HUANG Zhen, YANG Han-bo, CHEN Zhi, XING Wen-xi, GUO Hong-ying. Research Progress on Genetic Variation of Alnus[J]. Journal of Sichuan Forestry Science and Technology, 2019, 40(1): 81-86. doi: 10.16779/j.cnki.1003-5508.2019.01.018
Citation: WANG Ze-liang, LI Jia-man, HUANG Zhen, YANG Han-bo, CHEN Zhi, XING Wen-xi, GUO Hong-ying. Research Progress on Genetic Variation of Alnus[J]. Journal of Sichuan Forestry Science and Technology, 2019, 40(1): 81-86. doi: 10.16779/j.cnki.1003-5508.2019.01.018

桤木属植物遗传变异研究进展


doi: 10.16779/j.cnki.1003-5508.2019.01.018
详细信息
    作者简介:

    王泽亮(1978-),男,副研究员,博士,从事桤木、榛子遗传改良,e-mail:wzl-020304@163.com。

  • 基金项目:

    四川省科技计划项目(2017JY0278);四川省公益性科研院所基本科研业务费项目(JB2016-04)

  • 中图分类号: S792.14

Research Progress on Genetic Variation of Alnus

More Information
  • 摘要: 桤木属为非豆科固氮树种,能改良土壤,适应性强,具有重要的生态价值。本文概述了桤木属植物在系统发育、染色体、同工酶与RFLP、RAPD、AFLP、SSR分子标记水平上的、包括亚属分类、倍性问题、不同桤木种的群体遗传多样性、遗传结构以及系统地理学等方面的研究进展,并探讨了现有研究中的存在问题,以期为桤木属植物进一步的遗传改良提供参考。
  • [1] 陈之端.桦木科植物的系统发育和地理分布(续)[J].植物分类学报,1994b,32(2):101~153.
    [2] 匡可任,李沛琼,郑斯绪,等.中国植物志(21卷)[M].北京:科学出版社,1979:93~103.
    [3] 陈之端,路安民.桦木科植物的系统发育和演化[J].中国科学院院刊,2001,16(3):188~191.
    [4] Furlow J.The systematics of the American species of Alnus (Betulaceae)[J].Rhodora,1979,81(1):1~121.
    [5] Savard L,Michaud M,Bousquet J.Genetic diversity and phylogenetic relationships between birches and alders using ITS,18S rRNA and rbcL gene sequences[J].Molecular Phylogenetics Evolution,1993,2(2):112~118.
    [6] Chen ZD,Li J.Phylogenetics and biogeography of Alnus (Betulaceae) inferred from sequences of nuclear ribosomal DNA ITS region[J].International Journal of Plant Sciences,2004,165(2):325~335.
    [7] Gryta H,Van DE PAER C,Manzi S,et al.Genome skimming and plastid microsatellite profiling of alder trees (Alnus spp.,Betulaceae):phylogenetic and phylogeographical prospects[J].Tree Genetics Genomes,2017,13(6):118.
    [8] Murai S.Phytotaxonomical and geobotanical studies on gen.Alnus in Japan (Ⅲ).Taxonomy of whole world species and distribution of each section[J].Bulletin of the Government Forest Experiment Station,1964,171:1~107.
    [9] Liu J,Ren BQ,Luo PG,et al.Karyotype analysis of Alnus Mill.(Betulaceae) species originating from Northeastern Asia[J].Silvae Genetica,2010,59(5):219~223.
    [10] 任保青,刘军.中国桤木属植物的细胞学研究(I)[J].广西植物,2006,26(4):356~359.
    [11] 饶龙兵,杨汉波,郭洪英,等.桤木属7种植物的核型分析[J].西北植物学报,2013,33(7):1333~1338.
    [12] 杨汉波,饶龙兵,郭洪英,等.5种桤木属植物的核型分析[J].植物遗传资源学报,2013,14(6):203~207.
    [13] 洪德元.植物细胞分类学[M].北京:科学出版社,1990.
    [14] Mandák B,Vít P,Krak K,et al.Flow cytometry,microsatellites and niche models reveal the origins and geographical structure of Alnus glutinosa populations in Europe[J].Annals of botany,2016,117(1):107~120.
    [15] Bousquet J,Cheliak W M,Lalonde M.Allozyme variability in natural populations of green alder (Alnus crispa) in Quebec[J].Genome,1987,29(2):345~352.
    [16] Bousquet J,Cheliak W M,Lalonde M.Genetic diversity within and among 11 juvenile populations of green alder (Alnus crispa) in Canada[J].Physiologia Plantarum,1987,70(2):311~318.
    [17] Bousquet J,Cheliak WM,Lalonde M.Allozyme variation within and among mature populations of speckled Alder (Alnus rugosa) and relationships with green Alder (A.crispa)[J].American Journal of Botany,1988,75(11):1678~1686.
    [18] Huh M K,Huh H W.Genetic diversity and population structure of Alnus hirsuta (Betulaceae) in Korea[J].Journal of Plant Research,1999,112(4):437~442.
    [19] Huh M K.Genetic diversity and population structure of Korean alder (Alnus japonica; Betulaceae)[J].Canadian Journal of Forest Research,1999,29(9):1311~1316.
    [20] Gibson J P,Rice SA,Stucke CM.Comparison of population genetic diversity between a rare,narrowly distributed species and a common,widespread species of Alnus (Betulaceae)[J].American journal of botany,2008,95(5):588~596.
    [21] King R A,Ferris C.Chloroplast DNA and nuclear DNA variation in the sympatric alder species,Alnus cordata (Lois.) Duby and A.glutinosa(L.) Gaertn[J].Biological journal of the Linnean society,2000,70(1):147~160.
    [22] King RA,Ferris C.Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn[J].Molecular Ecology,1998,7(9):1151~1161.
    [23] Hantemirova EV,Pimenova EA,Korchagina OS.Polymorphism of Chloroplast DNA and Phylogeography of Green Alder (Alnus alnobetula (Ehrh.) K.Koch sl) in Asiatic Russia[J].Russian Journal of Genetics,2018,54(1):64~74.
    [24] Huh MK,Huh HW.Genetic diversity and phylogenetic relationships in alder,Alnus firma,revealed by AFLP[J].Journal of Plant Biology,2001,44(1):33~40.
    [25] 李洁,熊智,张成刚.云南尼泊尔桤木遗传多样性研究[J].浙江林学院学报,2008,25(1):16~21.
    [26] 饶龙兵,杨汉波,郭洪英,等.不同倍性桤木属植物遗传差异的AFLP分析[J].植物研究,2014,34(6):803~809.
    [27] 饶龙兵,杨汉波,郭洪英,等.17种桤木属植物的亲缘关系研究及模糊种鉴定[J].植物研究,2015,35(4):528~534.
    [28] Zhuk A,Veinberga I,Daugavietis M,et al.Cross-species amplification of Betula pendula Roth.simple sequence repeat markers in Alnus species[J].Baltic Forestry,2008,14(2):116~121.
    [29] Lance SL,Jones KL,Hagen C,et al.Development and characterization of nineteen polymorphic microsatellite loci from seaside alder,Alnus maritima[J].Conservation Genetics,2009,10(6):1907~1910.
    [30] Gürcan K,Mehlenbacher S A.Transferability of microsatellite markers in the Betulaceae[J].Journal of the American Society for Horticultural Science,2010,135(2):159~173.
    [31] Mingeot D,Baleux R,Watillon B.Characterization of microsatellite markers for black alder (Alnus glutinosa[L.] Gaertn)[J].Conservation Genetics Resources,2010,2:269~271.
    [32] Jones JM,Gibson JP.Population genetic diversity and structure within and among disjunct populations of Alnus maritima (seaside alder) using microsatellites[J].Conservation Genetics,2011,12(4):1003~1013.
    [33] Jones JM,Gibson JP.Mating System Analysis of Alnus maritima (Seaside Alder),a Rare Riparian Tree[J].Castanea,2012,77(1):11~20.
    [34] Lepais O,Bacles CFE.De novo discovery and multiplexed amplification of microsatellite markers for black alder (Alnus glutinosa) and related species using SSR-enriched shotgun pyrosequencing[J].Journal of Heredity,2011,102(5):627~632.
    [35] Schrader JA,Graves WR.Systematics of Alnus maritima (seaside alder) resolved by ISSR polymorphisms and morphological characters[J].Journal of the American Society for Horticultural Science,2004,129(2):231~236.
    [36] Lepais O,Muller SD,Saad-limam SB,et al.High genetic diversity and distinctiveness of rear-edge climate relicts maintained by ancient tetraploidisation for Alnus glutinosa[J].PLoS One,2013,8(9):e75029.
    [37] HAvrdová A,Douda J,Krak K,et al.Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture[J].Molecular Ecology,2015,24(18):4759~4777.
    [38] Mingeot D,Husson C,Mertens P,et al.Genetic diversity and genetic structure of black alder (Alnus glutinosa[L.] Gaertn) in the Belgium-Luxembourg-France cross-border area[J].Tree Genetics Genomes,2016,12(2):1~12.
    [39] Vít P,Douda J,Krak K,et al.Two new polyploid species closely related to Alnus glutinosa in Europe and North Africa-An analysis based on morphometry,karyology,flow cytometry and microsatellites[J].Taxon,2017,66(3):567~583.
    [40] Mandák B,Havrdová A,Krak K,et al.Recent similarity in distribution ranges does not mean a similar postglacial history:a phylogeographical study of the boreal tree species Alnus incana based on microsatellite and chloroplast DNA variation[J].New Phytologist,2016,210(4):1395-1407
    [41] Dering M,Lata?owa M,Boratyńska K,et al.Could clonality contribute to the northern survival of grey alder[Alnus incana (L.) Moench] during the Last Glacial Maximum[J].Acta Societatis Botanicorum Poloniae,2017,86(1):3523.
    [42] 吴际友,龙应忠,童方平,等.桤木优树选择研究[J].湖南林业科技,2004,31(6):10~12.
    [43] 杨春惠,谭琼,熊冬连,等.桤木地理种源/家系选择试验初报[J].中南林业科技大学学报,2008,28(1):64~69.
    [44] 龚细娟,张国君,梁丽容,等.25个桤木家系在湖区对比试验初报[J].林业实用技术,2013(8):23~24.
    [45] 朱俊义,陆静梅.桤木属花序和花的形态发生[J].植物分类学报,2008,46(4):641~650.
    [46] 陈益泰,卓仁英,吴天林.桤木属植物的引种和早期适应性[J].林业科学研究,2004,17(2):139~146.
    [47] 陈益泰,李桂英,王惠雄.桤木自然分布区内表型变异的研究[J].林业科学研究,1999,12(4):379~385.
    [48] 王军辉.桤木遗传变异与选择的研究[D].北京:北京林业大学,2000.
    [49] 卓仁英,陈益泰.四川桤木不同群体间遗传分化研究[J].浙江林业科技,2005,25(1):13~16.
    [50] 饶龙兵,杨汉波,郭洪英,等.基于桤木属转录组测序的SSR分子标记的开发[J].林业科学研究,2016,29(6):875~882.
    [51] Yang A,Wu B,Shen C,et al.Microsatellite records for volume 9,issue 3[J].Conservation Genetics Resources,2017,9(3):507~511.
  • [1] 赵永树, 张世超, 杨澜, 谢佳鑫, 刘明, 杨汉波, 辜云杰, 彭建, 刘闵豪.  基于SSR标记的四川楠木种源(家系)遗传多样性分析 . 四川林业科技, 2024, 45(): 1-8. doi: 10.12172/202401030001
    [2] 陈国全, 朱元伟, 张小国, 罗红, 李俊, 杨昌通, 朱鹏.  四川杉木2代种子园半同胞子代测定林生长性状的遗传变异分析 . 四川林业科技, 2024, 45(1): 66-74. doi: 10.12172/202305110001
    [3] 黄振, 李强, 张丽, 李佳蔓, 陈炙, 李德鹏, 杭金建, 慕长龙.  杉木家系种实与幼苗性状变异及相关遗传力分析 . 四川林业科技, 2023, 44(3): 39-44. doi: 10.12172/202211090002
    [4] 王泽亮, 杨勇智, 杜晋城, 陈炙, 黄振, 郭洪英.  桤木Genomic-SSR与EST-SSR分子标记的差异分析 . 四川林业科技, 2023, 44(4): 36-42. doi: 10.12172/202210080001
    [5] 李文俊, 姜丽琼, 刘琼, 肖前刚, 浣杰, 徐志萍, 杨洪燕.  基于ITS和ycf1序列的白及遗传多样性分析 . 四川林业科技, 2021, 42(1): 125-129. doi: 10.12172/202007070001
    [6] 余姣姣, 刘家斌, 徐永涛, 吴永胜, 杨雪, 齐桂兰.  成都麻羊种群微卫星标记遗传多样性评估 . 四川林业科技, 2021, 42(1): 130-136. doi: 10.12172/202006300002
    [7] 王泽亮, 吴斌, 邢文曦, 郑崇文, 李丕军.  基于SSR的四川榛子资源亲缘关系研究 . 四川林业科技, 2021, 42(4): 78-82. doi: 10.12172/202012070002
    [8] 卢军, 程一伦, 陈炙, 黄振, 李佳蔓, 杨汉波.  桤木种源家系生长性状遗传变异及选择 . 四川林业科技, 2021, 42(3): 69-73. doi: 10.12172/202010190004
    [9] 徐远, 刘世杰, 杨勇智, 李佳蔓, 陈炙.  桤木属内种间杂交亲本种实性状的配合力及竞争优势分析 . 四川林业科技, 2020, 41(4): 51-57. doi: 10.12172/202003160004
    [10] 陈小中, 张临萍, 陈炙, 刘欢欢, 黄振, 李佳蔓, 杨汉波.  大花序桉优树家系苗期性状的遗传变异 . 四川林业科技, 2020, 41(2): 8-14. doi: 10.12172/201912120001
    [11] 苗婷婷, 吴中能, 于一苏, 刘俊龙, 孙慧, 曹志华.  安庆地区杨树优良无性系选育初报 . 四川林业科技, 2019, 40(5): 78-82. doi: 10.16779/j.cnki.1003-5508.2019.05.016
    [12] 王泽亮, 刘青, 邢文曦, 郑崇文.  基于SSR的8个平欧杂交榛品种指纹图谱构建 . 四川林业科技, 2019, 40(2): 5-8. doi: 10.16779/j.cnki.1003-5508.2019.02.002
    [13] 唐杰, 曹振宇, 侯丹, 张含国.  长白落叶松变异分析及优良家系早期选择 . 四川林业科技, 2019, 40(6): 19-24. doi: 10.16779/j.cnki.1003-5508.2019.06.004
    [14] 袁美灵, 文亚峰, 武星彤, 李鑫玉, 王敏求, 蔡梦颖, 李霞, 张原.  柳杉遗传资源及其研究进展 . 四川林业科技, 2019, (): 1-6.
    [15] 袁美灵, 文亚峰, 武星彤, 李鑫玉, 王敏求, 蔡梦颖, 李霞, 张原.  柳杉遗传资源及其研究进展 . 四川林业科技, 2019, 40(5): 91-95. doi: 10.16779/j.cnki.1003-5508.2019.05.019
    [16] 黄振, 张俊, 陈炙, 王丽华, 郭洪英.  大花序桉国内遗传育种现状与研究展望 . 四川林业科技, 2018, 39(1): 17-21. doi: 10.16779/j.cnki.1003-5508.2018.01.004
    [17] 杨汉波, 郭洪英, 陈炙, 王泽亮, 黄振, 李佳蔓, 肖兴翠.  四川桤木杂交子代苗期性状遗传分析及选择 . 四川林业科技, 2018, 39(1): 1-5. doi: 10.16779/j.cnki.1003-5508.2018.01.001
    [18] 王泽亮, 郑永琴, 苏玲, 刘青, 余明忠.  滇榛(Corylus yunnanensis)SSR引物的筛选 . 四川林业科技, 2017, 34(6): 55-58. doi: 10.16779/j.cnki.1003-5508.2017.06.014
    [19] 宋云平, 闫朝福, 刘洪志, 陈淑萍, 张振, 张含国.  苇河红松二代种子园自由授粉子代评选 . 四川林业科技, 2015, 36(6): 74-76. doi: 10.16779/j.cnki.1003-5508.2015.06.013
    [20] 王泽亮, 冯桂英, 黄洋, 白斌, 吴宗兴.  榛属植物遗传基础研究进展 . 四川林业科技, 2014, 35(6): 22-26. doi: 10.16779/j.cnki.1003-5508.2014.06.004
  • 加载中
  • 计量
    • 文章访问数:  332
    • HTML全文浏览量:  63
    • PDF下载量:  9
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-10-29

    桤木属植物遗传变异研究进展

    doi: 10.16779/j.cnki.1003-5508.2019.01.018
      作者简介:

      王泽亮(1978-),男,副研究员,博士,从事桤木、榛子遗传改良,e-mail:wzl-020304@163.com。

    基金项目:

    四川省科技计划项目(2017JY0278);四川省公益性科研院所基本科研业务费项目(JB2016-04)

    • 中图分类号: S792.14

    摘要: 桤木属为非豆科固氮树种,能改良土壤,适应性强,具有重要的生态价值。本文概述了桤木属植物在系统发育、染色体、同工酶与RFLP、RAPD、AFLP、SSR分子标记水平上的、包括亚属分类、倍性问题、不同桤木种的群体遗传多样性、遗传结构以及系统地理学等方面的研究进展,并探讨了现有研究中的存在问题,以期为桤木属植物进一步的遗传改良提供参考。

    English Abstract

    参考文献 (51)

    目录

      /

      返回文章
      返回