用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

祝国祥, 何铁祥. 基于像元二分模型的林地变化检测研究[J]. 四川林业科技, 2017, 38(5): 84-88. DOI: 10.16779/j.cnki.1003-5508.2017.05.020
引用本文: 祝国祥, 何铁祥. 基于像元二分模型的林地变化检测研究[J]. 四川林业科技, 2017, 38(5): 84-88. DOI: 10.16779/j.cnki.1003-5508.2017.05.020
ZHU Guo-xiang, HE Tie-xiang. A Study of Forestland Change Detection Based on Dimidiate Pixel Model[J]. Journal of Sichuan Forestry Science and Technology, 2017, 38(5): 84-88. DOI: 10.16779/j.cnki.1003-5508.2017.05.020
Citation: ZHU Guo-xiang, HE Tie-xiang. A Study of Forestland Change Detection Based on Dimidiate Pixel Model[J]. Journal of Sichuan Forestry Science and Technology, 2017, 38(5): 84-88. DOI: 10.16779/j.cnki.1003-5508.2017.05.020

基于像元二分模型的林地变化检测研究

A Study of Forestland Change Detection Based on Dimidiate Pixel Model

  • 摘要: 以宁夏回族自治区中卫市沙坡头区为研究区域,利用2015年及2016年两个年度的高分一号遥感影像分别提取NDVI值,以像元二分模型反演生成植被指数差值图像,检测出植被指数减少的信息。同时,叠加近期各类林业专题数据资料,通过目视解译、甄别归类、识别林地的变化情况。结果表明:该模型可以较为快捷、准确地反映研究区的林地变化情况,为林政管理人员的林地资源管理、监督、执法提供了技术支持。

     

    Abstract: This paper took Shapotou District of Zhongwei city in Ningxia Hui Autonomous Region as study area, using GF-1 remote sensing images of the year 2015 and 2016, from which the NDVI value were extracted to generate difference images of vegetation index generation two pixel inversion model, detect the reduced index information of vegetation. At the same time, overlay all kinds of recent forestry thematic data, and identify changes of forestland through visual interpretation, screening, classification. The results showed that the model reflected the change in the research area more quickly and accurately, which provided technical support for the management of forest resources, forest management, supervision and law enforcement.

     

/

返回文章
返回