用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杉木家系种实与幼苗性状变异及相关遗传力分析

黄振 李强 张丽 李佳蔓 陈炙 李德鹏 杭金建 慕长龙

黄振, 李强, 张丽, 等. 杉木家系种实与幼苗性状变异及相关遗传力分析[J]. 四川林业科技, 2023, 44(3): 39−44 doi: 10.12172/202211090002
引用本文: 黄振, 李强, 张丽, 等. 杉木家系种实与幼苗性状变异及相关遗传力分析[J]. 四川林业科技, 2023, 44(3): 39−44 doi: 10.12172/202211090002
HUANG Z, LI Q, ZHANG L, et al. Analysis on variation and correlative heritability of cone, seed and seedling traits in families of Cunninghamia lanceolata[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(3): 39−44 doi: 10.12172/202211090002
Citation: HUANG Z, LI Q, ZHANG L, et al. Analysis on variation and correlative heritability of cone, seed and seedling traits in families of Cunninghamia lanceolata[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(3): 39−44 doi: 10.12172/202211090002

杉木家系种实与幼苗性状变异及相关遗传力分析


doi: 10.12172/202211090002
详细信息
    作者简介:

    黄振(1984—),男,博士,hz7210@126.com

    通讯作者: mucl2006@aliyun.com
  • 基金项目:  世界银行贷款长江流域上游森林生态系统恢复项目(2019-510000-02-01-400761);四川省科技计划(2021YFYZ0032)

Analysis on Variation and Correlative Heritability of Cone, Seed and Seedling Traits in Families of Cunninghamia lanceolata

More Information
    Corresponding author: mucl2006@aliyun.com
  • 摘要: 通过比较杉木(Cunninghamia lanceolata)半同胞家系间球果、种子及幼苗性状变化规律,以及性状间的遗传相关程度,揭示杉木种实、幼苗性状在家系水平的变异情况,并探讨通过种实和幼苗性状早期选择幼苗的可能性。以高县月江国有林场杉木第2代种子园的5个半同胞家系球果、种子、幼苗为材料,每个家系10个重复,测定球果直径、球果长度、球果质量,种子千粒重、发芽率、发芽势,苗高、地径,估算各性状之间的相关遗传力和遗传相关系数。结果表明:(1)5个家系的球果直径、球果长度和球果质量差异显著,种子千粒重和平均发芽势差异显著,家系平均发芽率均在50%左右,无显著差异,因此在播种时,无需分家系设置播种量;(2)参试家系平均苗高均在21 cm以上,其中4个家系苗高变异系数达到或接近20%,5个家系苗平均地径均在5 mm以上,家系地径变异系数均在18%以上,具有选择超级苗的潜力;(3)参试家系球果遗传力均达到0.9以上,幼苗苗高和地径遗传力分别为0.81、0.64,球果性状与幼苗性状间的相关遗传力均小于幼苗性状遗传力,同时遗传相关系数均未达到显著水平。因此,不能通过球果性状间接选择幼苗。
  • 表  1  杉木家系球果性状多重比较

    Tab.  1  Multiple comparison of cone characters in Chinese fir families

    性状
    Traits
    家系号
    Family number
    均值±标准差
    mean±standard deviation
    极小值
    Minimum
    极大值
    Maximum
    变异系数
    Variation coefficient/%
    直径
    Diameter/cm
    T882.85±0.16a2.63.15.48
    T1202.64±0.18 b2.32.86.53
    T782.26±0.18 c22.67.63
    T802.37±0.15 c22.66.12
    T3132.04±0.18 d1.72.38.83
    长度
    Length/mm
    T883.42±0.24a3.147.01
    T1203.29±0.22a2.83.66.39
    T783.01±0.33 b2.43.610.74
    T802.70±0.25 c2.239.17
    T3132.84±0.21 bc2.43.27.21
    质量
    Weight/g
    T8816.41±3.05a12.923.418.14
    T12013.16±2.27 b9.417.616.85
    T788.69±1.85 c5.91220.83
    T8010.31±1.55 c7.513.414.65
    T3139.02±1.70 c4.911.218.26
      注:同列不同小写字母表示差异显著(P<0.05)(下同)。
      Note: Different lowercase letters in the same column indicate significant differences (P<0.05) (the same below).
    下载: 导出CSV

    表  2  杉木家系种子性状多重比较

    Tab.  2  Multiple comparison of seed characters in Chinese fir families

    家系号
    Family number
    平均千粒重
    Average thousand-grain weight/g
    平均发芽率
    Average germination rate/%
    平均发芽势
    Average germination potential/%
    T8810.66±0.26a49.807.67d
    T12010.48±0.29a52.8020.50a
    T787.62±0.18b51.807.83d
    T804.6±0.16c50.6015.00b
    T3134.22±0.30c49.6011.83c
    下载: 导出CSV

    表  3  杉木家系幼苗性状比较

    Tab.  3  Comparison of offspring traits of Chinese fir families

    性状
    Traits
    家系号
    Family number
    均值±标准差
    mean±standard deviation
    极小值
    Minimum
    极大值
    Maximum
    变异系数
    Variation coefficient/%
    苗高
    Seedling height/cm
    T8821.1±5.24ab12.0033.0024.83
    T12029.28±5.96a19.0041.0020.36
    T8028.12±5.52a20.0039.0019.63
    T31322.59±3.27b17.0031.0014.48
    T7823.59±5.37b13.0040.0022.76
    地径
    ground diameter
    /mm
    T885.91±1.54b3.169.7426.06
    T1207.09±1.48a4.4210.7920.87
    T806.27±1.19ab3.778.5618.98
    T3135.72±1.09ab3.427.8519.06
    T786.37±1.43b4.029.3822.45
    下载: 导出CSV

    表  4  杉木球果及幼苗各性状间的表型相关系数和相关遗传力

    Tab.  4  Phenotypic correlation coefficients and relative heritability among traits in Chinese fir cones and seedlings

    性状
    Traits
    幼苗苗高
    Height of seedling
    球果直径
    Cone diameter
    球果长度
    Cone length
    球果质量
    Cone weight
    幼苗地径
    Seedling ground diameter
    幼苗苗高Height of seedling0.8134−0.03930.62−0.04930.1397
    球果直径Cone diameter−0.02780.98620.7760.9949−0.3311
    球果长度Cone length0.59660.78480.97430.77260.0443
    球果质量Cone weight−0.04370.99920.77570.9949−0.3039
    幼苗地径Seedling ground diameter0.3728−0.32790.0004−0.30130.6388
      注:对角线为是遗传力,上三角是相关遗传力,下三角是表型相关系数。
    下载: 导出CSV

    表  5  杉木球果及幼苗各性状遗传相关系数及显著性分析

    Tab.  5  Genetic correlation coefficient and significance analysis of various traits of Chinese fir cones and seedlings

    性状
    Traits
    幼苗苗高
    Height of seedling
    球果直径
    Cone diameter
    球果长度
    Cone length
    球果质量
    Cone weight
    幼苗地径
    Seedling ground diameter
    幼苗苗高Height of seedling10.64980.28770.77330.497
    球果直径Cone diameter0.333810.24460.07970.7475
    球果长度Cone length0.76540.819110.2420.6511
    球果质量Cone weight0.210.97710.822210.915
    幼苗地径Seedling ground diameter0.50360.2350.33240.07731
      注:左下角是遗传相关系数,右上角是p值。
      Note: The genetic correlation coefficient is in the lower left corner, and the p value is in the upper right corner.
    下载: 导出CSV
  • [1] 陈家琛,陈钢,戴嘉豪,等. 不同光质配比对杉木幼苗光合生理特征的影响[J]. 西南农业学报,2022:1−15.
    [2] 胡庭兴,李贤伟,杨祯禄. 四川盆地丘陵及盆周低山区杉木实生林生长特点及提高产量的途径[J]. 四川林勘设计,1998(3):44−49.
    [3] 陈国全,曹令媛,万雪琴,等. 洪雅杉木第2代改良无性系种子园家系建园材料优选初报[J]. 四川林业科技,2017,38(4):79−81.
    [4] 杨平,陈炙,黄振,等. 月江杉木2代种子园优树选择研究[J]. 四川林业科技,2016,37(3):20−24.
    [5] 四川省杉木种子园科研协作组. 四川省第二批杉木优良家系选择研究[J]. 四川林业科技,1996(3):41−45.
    [6] 胡希智. 杉木第三代种子园早期子代测定研究[D]. 四川农业大学, 2019.
    [7] 戴君惕,杨德,尹世强,等. 相关遗传力及其在育种上的应用[J]. 遗传学报,1983,10(5):375−383.
    [8] 杨素梅,李秀明,崔金丽. 旱地春小麦主要数量性状的相关遗传力及其通径分析[J]. 河北农业科学,2006,10(3):62−64.
    [9] 尹海峰,白苇,王宽,等. 食葵主要数量性状的相关遗传力及通径分析[J]. 辽宁农业科学,2017(2):23−25.
    [10] 朱丹,郑大浩,蒋基建,等. 高油玉米主要性状的遗传相关性[J]. 延边大学农学学报,2000,22(2):96−101.
    [11] 史华伟,孙黛珍,王曙光,等. 冬播春性小麦产量相关性状与抗旱性的关系研究[J]. 中国农业大学学报,2017,22(3):12−22.
    [12] 胡志明. 杂交早稻品质性状的配合力研究与遗传分析[D]. 湖南农业大学, 2004.
    [13] 吕文芳,齐秀珠,傅玉狮. 不同杉木母树球果大小与后代遗传品质的关系[J]. 林业科技通讯.,1983(5):5−7.
    [14] 程琳,陈琴,陈仕昌,等. 不同无性系杉木球果及种子质量研究[J]. 广西林业科学.,2021,50(1):1−7.
    [15] 郑新华. 杉木第3代种子园不同家系种子质量评价[J]. 亚热带农业研究,2015,11(2):95−100.
    [16] 韩璐,朱江华,欧斌,等. 5个不同世代不同类型杉木良种苗期测定比较研究[J]. 南方林业科学,2020,48(03):30−33.
    [17] 贾晨,张时林,段爱国,等. 杉木第3代种子园半同胞家系子代苗期测定与优良家系选择[J]. 四川林业科技.,2016,37(6):72−75.
    [18] You H, Zafar S, Zhang F, et al. Genetic mechanism of heterosis for rice milling and appearance quality in an elite rice hybrid[J]. The Crop Journal. 2022.
    [19] 赵慧,张正斌,徐萍. 小麦叶片水分利用效率生理性状遗传相关分析[J]. 中国农业科学.,2006(9):1796−1803.
    [20] 代凤贵. 不同杉木母树及球果对后代遗传品质影响的研究[J]. 武夷科学,2007,23:65−68.
  • [1] 赵永树, 张世超, 杨澜, 谢佳鑫, 刘明, 杨汉波, 辜云杰, 彭建, 刘闵豪.  基于SSR标记的四川楠木种源(家系)遗传多样性分析 . 四川林业科技, 2024, 45(): 1-8. doi: 10.12172/202401030001
    [2] 陈国全, 朱元伟, 张小国, 罗红, 李俊, 杨昌通, 朱鹏.  四川杉木2代种子园半同胞子代测定林生长性状的遗传变异分析 . 四川林业科技, 2024, 45(1): 66-74. doi: 10.12172/202305110001
    [3] 胡超, 于静.  基于MaxEnt和GIS预测四川省杉木良种在湖北省同一适宜引种生态区 . 四川林业科技, 2022, 43(3): 85-93. doi: 10.12172/202108130002
    [4] 包小梅, 华朝晖, 叶金俊, 王海蓉, 齐明, 何贵平.  杉木高世代育种群体和一代群体遗传基础的比较研究及早期初选 . 四川林业科技, 2022, 43(1): 24-30. doi: 10.12172/202104080001
    [5] 孟庆银.  土壤有机碳全氮与杉木幼苗生长相关性研究 . 四川林业科技, 2022, 43(5): 73-78. doi: 10.12172/202112020002
    [6] 李佳蔓, 鲁佳霖, 何春菊, 曹昆彬, 陈炙, 黄振.  梓叶槭半同胞家系苗期生长性状遗传分析 . 四川林业科技, 2021, 42(4): 68-72. doi: 10.12172/202012050002
    [7] 黄振, 李强, 李玉华, 李佳蔓, 陈炙, 杨勇智, 慕长龙.  杉木小孢子发育特征及其在杂交育种中的应用 . 四川林业科技, 2021, 42(4): 1-4. doi: 10.12172/202012290003
    [8] 孟庆银.  2年生指数施肥杉木实生容器苗试验林测定分析 . 四川林业科技, 2021, 42(5): 133-136. doi: 10.12172/202102100001
    [9] 卢军, 程一伦, 陈炙, 黄振, 李佳蔓, 杨汉波.  桤木种源家系生长性状遗传变异及选择 . 四川林业科技, 2021, 42(3): 69-73. doi: 10.12172/202010190004
    [10] 袁莲珍, 杨斌, 刘际梅, 史富强.  外源植物激素对杉木种子萌发及苗木生长的影响 . 四川林业科技, 2020, 41(6): 75-79. doi: 10.12172/202006220001
    [11] 陈小中, 张临萍, 陈炙, 刘欢欢, 黄振, 李佳蔓, 杨汉波.  大花序桉优树家系苗期性状的遗传变异 . 四川林业科技, 2020, 41(2): 8-14. doi: 10.12172/201912120001
    [12] 王戈, 唐源盛, 杨汉波, 辜云杰, 殷国兰.  桢楠优良种源/家系苗期评价和选择研究 . 四川林业科技, 2019, 40(3): 63-66. doi: 10.16779/j.cnki.1003-5508.2019.03.012
    [13] 鲜伟, 吴开志, 陈保军, 陈国全.  四川杉木第二代无系种子园洪雅半同胞子代测定林生长分析 . 四川林业科技, 2018, 39(4): 45-48. doi: 10.16779/j.cnki.1003-5508.2018.04.011
    [14] 王伟平, 李绍才, 孙海龙, 缪宁, 马瑞, 陶文静, 杨皓.  杉木和柳杉人工林的土壤理化性质对比 . 四川林业科技, 2018, 39(5): 68-73. doi: 10.16779/j.cnki.1003-5508.2018.05.016
    [15] 尚彬.  缓释肥对杉木容器育苗生长的影响 . 四川林业科技, 2017, 38(3): 93-94,119. doi: 10.16779/j.cnki.1003-5508.2017.03.020
    [16] 陈国全, 曹令媛, 万雪琴, 钟毅.  洪雅杉木第2代改良无性系种子园家系建园材料优选初报 . 四川林业科技, 2017, 38(4): 79-81. doi: 10.16779/j.cnki.1003-5508.2017.04.016
    [17] 杨平, 陈炙, 黄振, 李玉华, 黄正芬.  月江杉木2代种子园优树选择研究 . 四川林业科技, 2016, 37(3): 20-24. doi: 10.16779/j.cnki.1003-5508.2016.03.004
    [18] 刘海鹰, 万雪琴, 刘均利, 杨晓蓉.  杉木优良无性系组培繁育技术研究 . 四川林业科技, 2016, 37(5): 1-6. doi: 10.16779/j.cnki.1003-5508.2016.05.001
    [19] 贾晨, 张时林, 段爱国, 罗建勋, 刘芙蓉, 杨马进.  杉木第3代种子园半同胞家系子代苗期测定与优良家系选择 . 四川林业科技, 2016, 37(6): 72-75. doi: 10.16779/j.cnki.1003-5508.2016.06.015
    [20] 李真子, 徐玉梅, 袁莲珍, 孔琼荣.  N、P、K对杉木幼苗生长量的影响 . 四川林业科技, 2015, 36(2): 95-97. doi: 10.16779/j.cnki.1003-5508.2015.02.021
  • 加载中
  • 计量
    • 文章访问数:  335
    • HTML全文浏览量:  96
    • PDF下载量:  13
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-11-09
    • 网络出版日期:  2023-03-06
    • 刊出日期:  2023-06-25

    杉木家系种实与幼苗性状变异及相关遗传力分析

    doi: 10.12172/202211090002
      作者简介:

      黄振(1984—),男,博士,hz7210@126.com

      通讯作者: mucl2006@aliyun.com
    基金项目:  世界银行贷款长江流域上游森林生态系统恢复项目(2019-510000-02-01-400761);四川省科技计划(2021YFYZ0032)

    摘要: 通过比较杉木(Cunninghamia lanceolata)半同胞家系间球果、种子及幼苗性状变化规律,以及性状间的遗传相关程度,揭示杉木种实、幼苗性状在家系水平的变异情况,并探讨通过种实和幼苗性状早期选择幼苗的可能性。以高县月江国有林场杉木第2代种子园的5个半同胞家系球果、种子、幼苗为材料,每个家系10个重复,测定球果直径、球果长度、球果质量,种子千粒重、发芽率、发芽势,苗高、地径,估算各性状之间的相关遗传力和遗传相关系数。结果表明:(1)5个家系的球果直径、球果长度和球果质量差异显著,种子千粒重和平均发芽势差异显著,家系平均发芽率均在50%左右,无显著差异,因此在播种时,无需分家系设置播种量;(2)参试家系平均苗高均在21 cm以上,其中4个家系苗高变异系数达到或接近20%,5个家系苗平均地径均在5 mm以上,家系地径变异系数均在18%以上,具有选择超级苗的潜力;(3)参试家系球果遗传力均达到0.9以上,幼苗苗高和地径遗传力分别为0.81、0.64,球果性状与幼苗性状间的相关遗传力均小于幼苗性状遗传力,同时遗传相关系数均未达到显著水平。因此,不能通过球果性状间接选择幼苗。

    English Abstract

    • 杉木(Cunninghamia lanceolata)是我国特有的用材林树种,是南方地区栽培历史最为悠久、经济价值高的用材林树种[1],四川是杉木的西部主产区,主要分布在盆周山地和川中丘陵区[2],是速丰林工程建设的主要树种,也是筑牢长江上游生态屏障和建设国家储备林的重要树种,因此,发掘杉木优良种质,开发早期鉴定技术,对四川林业高质量发展具有重要作用。杉木人工林高质量发展的基础是选用良种壮苗,在杉木遗传改良工作中,四川已经建成出多个种子园并投入使用,前人的研究主要集中在杉木种子园选优、建园材料选择、自由授粉子代测定分析等方面[3-6]。较少涉及球果、种子和苗期特征等材料性状间遗传关系。相关遗传力是两个性状的遗传协方差与两性状表现型标准差乘积之比,能将性状表型值、基因型值、遗传力和相关系数联系起来[7]。由于相关遗传力矩阵在比较目标性状与辅助性状的遗传力与遗传相关时直观、简便,使分析更有效可靠。研究表明,当目标性状与辅助性状的相关遗传力的绝对值大于目标性状遗传力时,可以用辅助性状来间接选择目标性状[7-10]。以四川省高县月江国有林场杉木第2代种子园中5个自由授粉家系为研究对象,研究了球果、种子和苗期性状的遗传变异情况和相关遗传力,以期为杉木半同胞子代的早期鉴定提供依据。

      • 研究家系号为:T88、T120、T78、T80、T313。均为四川省“十三五”科技计划——突破性林木育种材料与方法创新项目选育出的优良家系。杉木家系来源于高县月江杉木第2代种子园,种子园位于四川省高县东北角的胜天镇境内,地貌属低山浅丘地形,海拔436 m~552 m,坡度10°~30°。属于中亚热带季风湿润气候,年平均气温16.5℃,年降水量1214 mm,土壤主要由砖红色砂岩发育而成的山地黄壤和少量酸性紫色土构成,土层厚度60 cm~80 cm,深厚、疏松、肥力中等,pH值4.60~5.05,土壤质地为粘性,立地指数10~12。

      • 2020年11月,采集各家系发育正常、无病虫害球果,每个家系随机选50个球果,5个球果为1个重复,共10个重复。用游标卡尺测定球果直径、球果长度,天平测球果质量。

        测量后,相同重复的球果放在同一网袋中干燥出种。按照GB2772-1999《林木种子检验规程》标准测定每组重复的千粒重、发芽率及发芽势。

      • 2021年2月下旬采用基质段点播法育苗。每个重复地把种子点播到椰糠和0 mm~10 mm泥炭土等比例混合的轻基质无纺布育苗袋中,育苗袋规格为直径4 cm、高8 cm。

      • 2021年11月底,用游标卡尺测量地径,米尺测量苗高。每个重复随机测量10株苗,每个家系共测100株苗。

      • 以性状的重复平均数为单位,使用SPSS22.0对各性状进行单因素方差分析,DPS 16.05估算遗传力、相关遗传力、遗传相关系数和表型相关系数[9, 10]

      • 杉木球果直径方差分析结果发现家系之间存在显著性差异,多重比较表明,5个家系球果的直径可分为四个级别,直径最大的为T88,其次为T120,再次为T78和T80,平均直径最小的为T313。T313最大的球果直径与T120最小的球果直径相当(见表1)。

        表 1  杉木家系球果性状多重比较

        Table 1.  Multiple comparison of cone characters in Chinese fir families

        性状
        Traits
        家系号
        Family number
        均值±标准差
        mean±standard deviation
        极小值
        Minimum
        极大值
        Maximum
        变异系数
        Variation coefficient/%
        直径
        Diameter/cm
        T882.85±0.16a2.63.15.48
        T1202.64±0.18 b2.32.86.53
        T782.26±0.18 c22.67.63
        T802.37±0.15 c22.66.12
        T3132.04±0.18 d1.72.38.83
        长度
        Length/mm
        T883.42±0.24a3.147.01
        T1203.29±0.22a2.83.66.39
        T783.01±0.33 b2.43.610.74
        T802.70±0.25 c2.239.17
        T3132.84±0.21 bc2.43.27.21
        质量
        Weight/g
        T8816.41±3.05a12.923.418.14
        T12013.16±2.27 b9.417.616.85
        T788.69±1.85 c5.91220.83
        T8010.31±1.55 c7.513.414.65
        T3139.02±1.70 c4.911.218.26
          注:同列不同小写字母表示差异显著(P<0.05)(下同)。
          Note: Different lowercase letters in the same column indicate significant differences (P<0.05) (the same below).

        杉木球果长度方差分析结果发现家系之间存在显著性差异,多重比较表明(见表1),5个家系球果的长度以3 cm为标准,可分为大中小三个级别,长度最大的为T88和T120,其次为T78,T80和T313为球果平均长度最小两个家系。

        杉木球果质量方差分析结果发现家系之间存在显著性差异,多重比较可将5个家系分为3个级别(见表1),杉木球果质量最大的为T88,其次为T120,从极值看,各家系球果质量均表现出1倍的差距。

      • 5个家系种子的千粒重、发芽率和发芽势等性状见表2。5个家系种子平均发芽势为7.67%~20.50%,方差分析结果表明家系间有显著性差异,多重比较结果发现T120的平均发芽势显著高于其他家系,T80次于T120,T88和T78的平均发芽势最低,说明家系间在发芽整齐度上差异较大。结合表1,可发现发芽整齐度与球果大小间无强关联。

        表 2  杉木家系种子性状多重比较

        Table 2.  Multiple comparison of seed characters in Chinese fir families

        家系号
        Family number
        平均千粒重
        Average thousand-grain weight/g
        平均发芽率
        Average germination rate/%
        平均发芽势
        Average germination potential/%
        T8810.66±0.26a49.807.67d
        T12010.48±0.29a52.8020.50a
        T787.62±0.18b51.807.83d
        T804.6±0.16c50.6015.00b
        T3134.22±0.30c49.6011.83c

        而5个家系种子平均发芽率均在50%上下,且相互之间无显著性差异,说明最终出苗量没有差异,因此各家系的场圃播种量一致即可,无需按家系单独配置。

      • 5个杉木家系苗期测定见表3,各家系子代苗高均在20 cm以上,其中T120和T80的平均苗高达到了一级苗的要求(苗高≥24 cm),T78平均苗高接近一级苗的标准。

        表 3  杉木家系幼苗性状比较

        Table 3.  Comparison of offspring traits of Chinese fir families

        性状
        Traits
        家系号
        Family number
        均值±标准差
        mean±standard deviation
        极小值
        Minimum
        极大值
        Maximum
        变异系数
        Variation coefficient/%
        苗高
        Seedling height/cm
        T8821.1±5.24ab12.0033.0024.83
        T12029.28±5.96a19.0041.0020.36
        T8028.12±5.52a20.0039.0019.63
        T31322.59±3.27b17.0031.0014.48
        T7823.59±5.37b13.0040.0022.76
        地径
        ground diameter
        /mm
        T885.91±1.54b3.169.7426.06
        T1207.09±1.48a4.4210.7920.87
        T806.27±1.19ab3.778.5618.98
        T3135.72±1.09ab3.427.8519.06
        T786.37±1.43b4.029.3822.45

        各家系子代苗地径均值均达到了一级苗的标准(地径≥4 mm),其中T120和T78的最小值均达标,说明这两个家系子代的地径指标全部达标,其中,T120子代单株最大地径达到10.79 mm,T78和T88子代单株最大均超过了9 mm。

        3个家系的苗高变异系数达到或接近20%、3个家系地径变异系数超过了20%,表明家系内苗高和地径性状变异丰富。

      • 球果与幼苗性状遗传力、相关遗传力和表型相关系数结果见表4,球果与球果性状的遗传力均达到0.9以上,幼苗苗高遗传力为0.8134,性状受到强烈的遗传控制,能够稳定的遗传给子代,而幼苗地径遗传力相对较低,为0.6388,能较为稳定的遗传给子代。

        表 4  杉木球果及幼苗各性状间的表型相关系数和相关遗传力

        Table 4.  Phenotypic correlation coefficients and relative heritability among traits in Chinese fir cones and seedlings

        性状
        Traits
        幼苗苗高
        Height of seedling
        球果直径
        Cone diameter
        球果长度
        Cone length
        球果质量
        Cone weight
        幼苗地径
        Seedling ground diameter
        幼苗苗高Height of seedling0.8134−0.03930.62−0.04930.1397
        球果直径Cone diameter−0.02780.98620.7760.9949−0.3311
        球果长度Cone length0.59660.78480.97430.77260.0443
        球果质量Cone weight−0.04370.99920.77570.9949−0.3039
        幼苗地径Seedling ground diameter0.3728−0.32790.0004−0.30130.6388
          注:对角线为是遗传力,上三角是相关遗传力,下三角是表型相关系数。

        相关遗传力代表了性状间相互间接选择的效率,根据戴君惕等[7]的方法,A性状选择B性状的效率为两性状相关遗传力与B性状遗传力之比。从表4可知,球果性状的相关遗传力较高,如球果质量与球果直径相关遗传力等于球果质量遗传力,因此当两相关性状选择强度相等时,通过球果直径对球果质量的间接选择相对效率为100%,与直接选择效率一致。

        而幼苗性状与其他性状的相关遗传力较低。各性状与幼苗苗高的相关遗传力依次为:球果质量>幼苗地径>球果直径>球果长度,各性状与幼苗地径的相关遗传力依次为:幼苗高度>球果长度>球果质量>球果直径。由此可知,幼苗苗高和地径等2个性状与球果性状的相关遗传力均小于幼苗2个性状的遗传力,因此,通过球果性状对幼苗性状进行间接选择的效果不明显。

        表5结果显示,幼苗苗高和幼苗地径为中度相关,幼苗苗高和球果长度为高度相关,球果性状之间为高度相关,但p值均>0.05,说明性状间的遗传相关系数均未达到显著水平,也验证了相关遗传力的结论,说明性状间基本未受到相同基因的遗传控制。

        表 5  杉木球果及幼苗各性状遗传相关系数及显著性分析

        Table 5.  Genetic correlation coefficient and significance analysis of various traits of Chinese fir cones and seedlings

        性状
        Traits
        幼苗苗高
        Height of seedling
        球果直径
        Cone diameter
        球果长度
        Cone length
        球果质量
        Cone weight
        幼苗地径
        Seedling ground diameter
        幼苗苗高Height of seedling10.64980.28770.77330.497
        球果直径Cone diameter0.333810.24460.07970.7475
        球果长度Cone length0.76540.819110.2420.6511
        球果质量Cone weight0.210.97710.822210.915
        幼苗地径Seedling ground diameter0.50360.2350.33240.07731
          注:左下角是遗传相关系数,右上角是p值。
          Note: The genetic correlation coefficient is in the lower left corner, and the p value is in the upper right corner.
      • 农作物数量性状遗传变异常用遗传相关系数和相关遗传力,以期根据农作物的某些性状表型值对产量性状进行间接选择,在小麦[11]、水稻[12]、向日葵[9]上取得了较好的应用效果。而遗传相关系数和相关遗传力在杉木育种上应用得较少。本研究对杉木球果性状、种子千粒重和萌发性状、幼苗性状进行了分析比较的同时,计算了杉木球果性状和苗期性状间的遗传相关系数和相关遗传力,明晰两类性状间的相关性大小,鉴定球果性状是否可用于杉木苗期鉴定。

        研究表明,参试家系的3个球果性状均存在显著差异,参试家系的球果可分为3个级别,与吕文芳[13]、程琳[14]等对福建和广西杉木球果性状的分类研究结果一致。种子的千粒重、发芽势存在显著性差异,说明家系间出苗的整齐度差异大,但平均发芽率无显著性差异,均为50%左右,高于广西2代杉木种子园[14]、低于福建3代杉木种子园的平均发芽率[15]。家系幼苗苗高均在21cm以上,其中T120和T80平均苗高>24 cm,5个家系苗高变异系数14.48%~24.83%;地径均值均>4 mm,5个家系地径变异系数18.98%~26.76%,变异系数高于韩璐等对不同杉木世代种子园良种的研究[16]。相关数据表明参试优良半同胞家系性状平均表现好,从中筛选表现特别优良的超级苗是可行的,为下一步开发优良无性系奠定了基础。

        球果性状的遗传力和幼苗苗高遗传力高,性状受到强烈的遗传控制,能够稳定的遗传给子代,但幼苗地径遗传力相对较低,能较为稳定的遗传给子代,地径遗传力低于杉木种子撒播苗的地径遗传力[17],推测原因与本研究采用基质段点播的方式有关。

        相关遗传力分析在玉米[10]、水稻[18]、小麦[19]等农作物上用于生长性状与产量、产量与籽粒品质QTL区间互作、叶片与生理性状等研究。杉木育种研究相对要少,常用方差分析、线性相关等,如吕文芳[13]和代凤贵[20]等对球果及其5年生幼林生长量进行了方差分析,发现果型大小与树高、地径生长量的差异均不显著,程琳等[14]采用相关分析未发现球果质量与种子性状之间存在中度以上正相关。本研究分别从相关遗传力和遗传相关的角度剖析了球果与幼苗性状之间的关系,发现球果与幼苗性状之间的相关遗传力均小于幼苗性状的遗传力,因此,通过球果性状间接选择的效率比直接选择效率低;两类性状间遗传相关系数均未达到显著水平,说明性状间基本未受到相同基因的遗传控制,故不能采用球果性状对苗期性状进行预测。即本研究从遗传相关的角度验证了前人采用其他数理统计方法的结论。

    参考文献 (20)

    目录

      /

      返回文章
      返回