用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高山松林生态系统研究进展

杜燕 包维楷

杜燕, 包维楷. 高山松林生态系统研究进展[J]. 四川林业科技, 2022, 43(5): 1−10 doi: 10.12172/202208220004
引用本文: 杜燕, 包维楷. 高山松林生态系统研究进展[J]. 四川林业科技, 2022, 43(5): 1−10 doi: 10.12172/202208220004
DU Y, BAO W K. Research progress on Pinus densata forest[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(5): 1−10 doi: 10.12172/202208220004
Citation: DU Y, BAO W K. Research progress on Pinus densata forest[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(5): 1−10 doi: 10.12172/202208220004

高山松林生态系统研究进展


doi: 10.12172/202208220004
详细信息
    作者简介:

    杜燕(1995—),女,博士研究生,duyan@cib.ac.cn

    通讯作者: baowk@cib.ac.cn
  • 基金项目:  国家科技基础性工作专项(2019FY202300); 第二次青藏高原综合考察研究(2019QZKK0301)

Research Progress on Pinus densata Forest

More Information
    Corresponding author: baowk@cib.ac.cn
  • 摘要: 高山松(Pinus densata)林是我国西南山区特有的森林类型,是西南地区重要的碳库,具有较高的生态保育价值。目前关于高山松林群落类型与结构、生态系统功能等的研究比较零散,无法为高山松林的科学保护与管理以及资源的合理开发利用提供系统的理论支撑。基于系统查阅的相关文献和著作,对高山松林群落类型与结构特征、生物量与生产力和生态系统水源涵养能力进行了综述。结果表明:(1)高山松林已知的群落类型包括6个群系9个群丛组6个群丛;(2)成熟林群落生物量为81.24~318.79 t·hm−2,其中乔木层为79.39~311.53 t·hm−2,乔木层碳密度为49.543~103.24 t·hm−2,年生产力为5.48~18.07 t·hm−2·a−1,其中乔木层为4.29~14.23 t·hm−2·a−1;(3)林冠截留率为24.32%~28.87%,苔藓层、凋落物层和土壤(0~30 cm)最大持水量分别为8.69 t·hm−2、117.27 t·hm−2和380.98 t·hm−2。同时,阐明了需要深入关注的研究内容:(1)完善群落分类系统,补全群落特征的相关认识;(2)补充空白区域以及林下植被和地下部分生物量、碳储量和生产力的数据,并探讨生物量和生产力在各地理梯度上的变化规律及其驱动因子;(3)补充调查成熟林水源涵养能力,重点关注土壤层和苔藓层的持水能力特性。
  • 表  1  高山松林群落分类

    Tab.  1  The classification of Pinus densata forest

    群系群丛组群丛文献来源
    高山松
    Pinus densata Mast.
    高山松高山松陈伟烈等, 1980[11]
    P. densata Mast.P. densata Mast.
    高山松-草本高山松-羊茅郭立群, 1982[12]
    P. densata Mast. - HerbP. densata Mast. - Festuca ovina L.
    高山松-尼泊尔大丁草罗建, 2008[13]
    P. densata Masters - Leibnitzia nepalensis (Kunze) Kitamura
    高山松-灌木高山松-矮高山栎吴征镒, 1987[14]
    P. densata Mast. - ShrubP. densata Masters - Q. monimotricha Handel-Mazzetti
    高山松-川滇高山栎四川植被协作组,1980[15]
    P. densata Masters - Q. aquifolioides Rehder & E. H. Wilson
    高山松-灌木-草本高山松-川滇高山栎-疏穗野青茅四川森林编辑委员会, 1992[16]
    P. densata Mast. - Shrub - HerbP. densata Masters - Q. aquifolioides Rehder & E. H. Wilson - Deyeuxia effusiflora Rendle
    高山松+长穗高山栎高山松+长穗高山栎-灌木-草本郭立群, 1982[12]
    P. densata Mast. + Quercus longispica (Hand.-Mazz.) A. CamusP. densata Mast. + Q. longispica (Hand.-Mazz.) A. Camus - Shrub - Herb
    高山松+川滇高山栎高山松+川滇高山栎-灌木-草本段代祥等, 2010[17]
    P. densata Mast. + Q. aquifolioides Rehder & E. H. WilsonP. densata Mast. + Q. aquifolioides Rehder & E. H. Wilson - Shrub - Herb
    高山松+大果红杉高山松+大果红杉-灌木-草本郭立群, 1982[12]
    P. densata Mast. + Larix potaninii var. australis A. Henry ex Handel-MazzettiP. densata Mast. + L. potaninii var. australis A. Henry ex Handel-Mazzetti - Shrub - Herb
    高山松+华山松高山松+华山松-灌木罗建, 2008[13]
    P. densata Mast. + P. armandii Franch.P. densata Mast. + Pinus armandii Franch. - Shrub
    高山松+山杨高山松+山杨-灌木-草本王雪, 2011[18]
    P. densata Mast. + Populus davidiana DodeP. densata Mast. + Populus davidiana Dode - Shrub - Herb
    下载: 导出CSV

    表  2  高山松林生物量密度估算模型

    Tab.  2  Biomass density estimation model of Pinus densata forest

    估算模型样本量相关系数文献来源
    B = 0.5168V + 33.237816R = 0.94Fang et al., 2001[25]
    B = 0.5272V1.079319R = 0.9978黄从德等, 2008[26]
    B = 162.21 / (1 + 3.6259e−0.0578a/R2 = 0.966徐冰等, 2010[4]
    B = 0.81V + 11.89/R2 = 0.912Qiu et al., 2020[27]
      注:B为林分生物量密度(t·hm−2),V为林分蓄积量(m3·hm−2),a为林龄(a)。
    下载: 导出CSV

    表  3  高山松林群落生物量(t·hm−2

    Tab.  3  Community biomass of Pinus densata forest

    研究区域林龄/a群落总生物量乔木层灌木层草本层凋落物文献来源
    地上部分地下部分
    西藏林芝20~10831.26~318.79//30.55~311.53///罗天祥, 1996[34]
    /101.84~210.59//////张剑等, 2008[35]
    成熟林////0.16330.33187.3437邹林红等, 2005[36]
    幼龄林/////1.491.79杨阳, 2013[37]
    中龄林/////1.757.81
    成熟林/////1.677.2
    云南香格里拉15////3.79651.6966/王利民等, 2006[38]
    /98.89~234.90//////程鹏飞等, 2011[39]
    //95.7//22.3892.2675.165岳彩荣, 2012[40]
    Yue, 2012
    40294.306264.47329.049293.5220.1050.0410.638吴兆录等, 1994[19]
    100231.495194.32436.5230.8240.1210.0350.515
    四川木里成熟林/419.661//1.490.218/杨劲夫, 2016[41]
    下载: 导出CSV

    表  4  高山松林凋落物层持水量、持水率和有效拦蓄量

    Tab.  4  Water-holding capacity, water-holding rate, and effective interception of litter layer in Pinus densata forest

    研究区域林龄/a最大持水量/(t·hm−2最大持水率/%有效拦蓄量/(t·hm−2文献来源
    未分解层半分解层未分解层半分解层未分解层半分解层
    纳帕海1034.9512.82///////陆梅等, 2011[57]
    2566.7718.5///////
    2017.178.22///////
    1922.295.8116.48129.52136.39127.2614.984.3410.64周祥等, 2011[58]
    1935.79//138.48//15.67//石小亮等, 2015[55]
    色季拉山成熟林117.2753.4563.82 /106.54156.93 /30.9447.25喻武等, 2010[59]
    下载: 导出CSV

    表  5  高山松林凋落物层持水量、吸水速率和持水率的拟合方程

    Tab.  5  Fitting equation of water-holding capacity, water absorption rate and water-holding rate of litter layer in Pinus densata forest

    研究区域林龄/a拟合方程适用范围/h相关系数文献来源
    纳帕海10Q= 2.056ln(t) + 15.4100~24R= 0.981陆梅等, 2011[57]
    QL= 1.637ln(t) + 7.0740~24R= 0.960
    V= 15.102t−0.8750~24/
    VL= 6.709t−0.7960~24/
    25Q= 4.129ln(t) + 36.0330~24R= 0.997
    QL= 2.283ln(t) + 10.7200~24R= 0.972
    V= 35.360t−0.8890~24/
    VL= 10.22t−0.8080~24/
    20Q= 0.773ln(t) + 6.4960~24R= 0.983
    QL= 0.983ln(t) + 5.0670~24R= 0.977
    V= 6.389t−0.8880~24/
    VL= 4.886t−0.8320~24/
    19Q= 3.341ln(t) + 13.220~24R2= 0.964周祥等, 2011[58]
    QL= 0.698ln(t) + 3.1950~24R2= 0.963
    QF= 2.643ln(t) + 10.0300~24R2= 0.929
    V= 1.127t−0.690~24R2= 0.953
    VL= 0.300t−0.780~24R2= 0.997
    VF= 0.798t−0.630~24R2= 0.893
    色季拉山成熟林QL= 108.28ln(t) + 37.480~24R2= 0.944喻武等, 2010[59]
    QF= 209.56ln(t) + 25.6320~24R2= 0.987
    VL= 14904t0~1/12R2= 0.987
    VL= 3406.5e(−0.4004t1/12~24R2= 0.987
    VF= 27648t0~1/12R2= 0.989
    VF= 5150.7e(−0.3843t1/12~24R2= 0.989
    Q= 13.143ln(t) + 34.9520~24R= 0.9856李菊和卢杰, 2014[60]
    Y= 68.453ln(t) + 182.040~24R= 0.9856
    V= 10264t-0.1.6420~24R= 0.9914
      注:Q为总持水量(t·hm−2),QL为未分解层持水量(t·hm−2,QF为半分解层持水量(t·hm−2),V为总吸水速率(t·hm−2·h−1),VL为未分解层吸水速率(t·hm−2·h−1),VF为半分解层吸水速率(t·hm−2·h−1),Y为持水率(%),t为浸泡时间(h)。
    下载: 导出CSV

    表  6  高山松林土壤层最大持水量、持水率和拦蓄量

    Tab.  6  Water-holding capacity, water-holding rate, and water storage capacity of soil layer in Pinus densata forest

    研究区域林龄/a土层/cm持水量/t·hm−2持水率%蓄水量/t·hm−2文献来源
    最大毛管非毛管最大毛管
    巴宜区幼龄林0~1076.5362.88/101.9883.83/刘永春, 1985[61]
    10~2080.869.65/86.4974.48/
    20~3080.3673.26/76.1369.42/
    30~4074.1864.48/68.8760.04/
    40~5077.9765.53/77.3964.93/
    成熟林0~1071.2861.28/157.15135.59/
    10~2080.4367.79/93.0178.19/
    20~3078.9267.47/89.4276.41/
    30~4069.9162.1/81.3569.32/
    40~5080.4472.29/82.4574.14/
    /0~130///47.6/5980王景升等, 2005[62]
    朗县/0~20868.81792.65///59张鹏等, 2019[63]
    香格里拉250~301827.6/406.8///周祥, 2011[53]
    30~501037.4/229.2///
    190~60//637.5//610石小亮等, 2015[55]
    下载: 导出CSV
  • [1] 吴征镒. 中国植被[M]. 北京: 科学出版社, 1980: 216−217.

    Wu ZY. Vegetation of China[M]. Beijing: Science Press, 1980: 216−217.
    [2] 刘中天. 滇西北高山针叶林区高山松的发展趋势[J]. 林业资源管理,1981(1):32−34. doi: 10.13466/j.cnki.lyzygl.1981.01.008

    Liu Z T. Development Trend of <italic>Pinus densata</italic> in Northwest Alpine Coniferous Forest Region[J]. Forest Resources Management, 1981(1): 32−34. doi: 10.13466/j.cnki.lyzygl.1981.01.008
    [3] 中国科学院青藏高原综合科学考察队. 西藏森林[M]. 北京: 科学出版社, 1985: 110−116.

    Qinghai-Xizang Plateau Comprehensive Scientific Expedition of Chinese Academy of Sciences. Xizang Forests[M]. Beijing: Science Press, 1985: 110−116.
    [4] 徐冰,郭兆迪,朴世龙,等. 2000—2050年中国森林生物量碳库: 基于生物量密度与林龄关系的预测[J]. 中国科学:生命科学,2010,40(7):587−594.

    Xu B, Guo Z D, Piao S L, et al. Biomass carbon stocks in China’s forests between 2000 and 2050: a prediction based on forest biomass-age relationships[J]. Sci China Life Sci, 2010, 40(7): 587−594.
    [5] 曾伟生,唐守正,黄国胜,等. 全国立木生物量建模总体划分与样本构成研究[J]. 林业资源管理,2010(3):16−23. doi: 10.3969/j.issn.1002-6622.2010.03.005

    Zeng W S, Tang S Z, Huang G S, et al. Population classification and sample structure on modeling of single-tree biomass equations for national biomass estimation in China[J]. Forest Resources Management, 2010(3): 16−23. doi: 10.3969/j.issn.1002-6622.2010.03.005
    [6] 卢婧. 基于森林资源清查数据的乔木林碳储量估测研究[D]. 北京: 北京林业大学, 2020.

    Lu J. Estimation of Carbon Storage of Arbor Forest Based on the Forest Resource Inventory Data[D]. Beijing: Beijing Forestry University, 2020.
    [7] 唐佳,陈芝兰,方江平. 基于能值的西藏森林生态系统固碳释氧价值估算[J]. 高原农业,2018,2(5):519−525. doi: 10.19707/j.cnki.jpa.2018.05.010

    Tang J, Chen Z L, Fang J P. Estimation of carbon fixation and oxygen release in Tibet forest ecosystem based on the energy value[J]. Journal of Plateau Agriculture, 2018, 2(5): 519−525. doi: 10.19707/j.cnki.jpa.2018.05.010
    [8] 唐佳,陈芝兰,方江平. 基于能值分析的西藏森林生态系统涵养水源价值估算[J]. 高原农业,2018,2(6):654−659. doi: 10.19707/j.cnki.jpa.2018.06.014

    Tang J, Chen Z L, Fang J P. Estimation of water conservation in Tibet forest ecosystem based on the energy value[J]. Journal of Plateau Agriculture, 2018, 2(6): 654−659. doi: 10.19707/j.cnki.jpa.2018.06.014
    [9] 唐佳,陈芝兰,方江平. 基于能值分析的西藏森林生态系统保育土壤价值估算[J]. 高原农业,2019,3(1):1−8+14. doi: 10.19707/j.cnki.jpa.2019.01.001

    Tang J, Chen Z L, Fang J P. Estimation of soil conservation value of Tibet forestry ecosystem based on energy value[J]. Journal of Plateau Agriculture, 2019, 3(1): 1−8+14. doi: 10.19707/j.cnki.jpa.2019.01.001
    [10] 王国宏,方精云,郭柯,等. 《中国植被志》研编内容与规范[J]. 植物生态学报,2020,44(2):128−178. doi: 10.17521/cjpe.2019.0272

    Wang G H, Fang J Y, Guo K, et al. Contents and protocols for the classification and description of vegetation formations, alliances and associations of vegetation of China[J]. Chinese Journal of Plant Ecology, 2020, 44(2): 128−178. doi: 10.17521/cjpe.2019.0272
    [11] 陈伟烈,张经炜,王金亭,等. 西藏的松树和松林[J]. 植物学报,1980,22(2):170−176.

    Chen W L, Zhang J W, Wang J T, et al. The pines and pine forests of Xizang[J]. Acta Botanica Sinica, 1980, 22(2): 170−176.
    [12] 郭立群. 滇西北地区高山松的林学特性及更新过程的研究[J]. 云南林业科技,1982(1):1−19.

    Guo L Q. A Study on the Forest Characteristics and Regeneration Process of <italic>Pinus densata</italic> in Northwest Yunnan[J]. Yunnan Forestry Science and Technology, 1982(1): 1−19.
    [13] 罗建. 色季拉山植物群落的数量分析[D]. 林芝: 西藏大学, 2008.

    Luo J. Quantitative Analysis of Plant Communities in Sejila Mountain, Xizang[D]. Linzhi: Xizang University, 2008.
    [14] 吴征镒. 云南植被[M]. 北京: 科学出版社, 1987: 470−471.

    Wu Z Y. Vegetation of Yunnan[M]. Beijing: Science Press, 1987: 470−471.
    [15] 四川植被协作组. 四川植被[M]. 成都: 四川人民出版社, 1980: 155−156.

    Collaborating Group for Vegetation of Sichuan. Vegetation of Sichuan[M]. Chengdu: Sichuan People’s Press, 1980: 155−156.
    [16] 四川森林编辑委员会. 四川森林[M]. 北京: 中国林业出版社, 1992: 435−447.

    Editorial Board of Sichuan forests. Sichuan forests[M]. Beijing: China Forestry Press, 1992: 435−447.
    [17] 段代祥, 赵南先, 吴兴. 西藏尼洋河河漫滩植被的基本类型[J]. 辽宁林业科技, 2010(1): 24−27.

    Basic Types of Vegetation in the Niyang River Floodplain in Tibet[J]. Liaoning Forestry Science and Technology. 2010(1): 24−27.
    [18] 王雪. 西藏登曲干流水电规划陆生生态评价区植被的初步研究[D]. 武汉: 华中师范大学, 2011.

    Wang X. Study on the vegetation of the Evaluation Region of Hydropower Planning Projects on Dengqu River, Tibet[D]. Wuhan: Central China Normal University, 2011.
    [19] 吴兆录,党承林,王崇云,等. 滇西北高山松林生物量的初步研究[J]. 云南大学学报(自然科学版),1994,16(3):220−224.

    Wu Z L, Dang C L, Wang C Y, et al. A preliminary study on biomass of <italic>Pinus densata</italic> forests in northwest Yunnan Province, China[J]. Journal of Yunnan University, 1994, 16(3): 220−224.
    [20] 卢杰,郭其强,郑维列,等. 藏东南高山松种群结构及动态特征[J]. 林业科学,2013,49(8):154−160. doi: 10.11707/j.1001-7488.20130822

    Lu J, Guo Q Q, Zheng W L, et al. Population structure and dynamic characteristics of <italic>Pinus densata</italic> in southeast Tibet[J]. Scientia Silvae Sinicae, 2013, 49(8): 154−160. doi: 10.11707/j.1001-7488.20130822
    [21] 王小兰,陈甲瑞,杨小林,等. 尼洋河流域高山松次生林林分因子与林龄的相关性[J]. 西北农林科技大学学报(自然科学版),2019,47(11):16−24.

    Wang X L, Chen J R, Yang X L, et al. Correlation between stand factors and stand age of <italic>Pinus densata</italic> secondary forest in the Niyang River watershed[J]. Journal of Northwest A & F University, 2019, 47(11): 16−24.
    [22] 禄树晖,潘朝晖. 藏东南高山松种群分布格局[J]. 东北林业大学学报,2008,36(11):22−24. doi: 10.3969/j.issn.1000-5382.2008.11.010

    Lu S H, Pan Z H. Distribution pattern of <italic>Pinus densata</italic> population in the southeast Tibet[J]. Journal of Northeast Forestry University, 2008, 36(11): 22−24. doi: 10.3969/j.issn.1000-5382.2008.11.010
    [23] 沈志强,卢杰,华敏,等. 西藏色季拉山高山松种群点格局分析[J]. 西北农林科技大学学报(自然科学版),2016,44(5):73−81.

    Shen Z Q, Lu J, Hua M, et al. Spatial point pattern of <italic>Pinus densata</italic> forests of Sejila Mountains in Tibet[J]. Journal of Northwest A & F University, 2016, 44(5): 73−81.
    [24] 左政,许彦红,朱霖,等. 香格里拉高山松林分直径结构分析[J]. 西南林业大学学报,2011,31(2):29−32. doi: 10.3969/j.issn.1003-7179.2011.02.007

    Zuo Z, Xu Y H, Zhu L, et al. Analysis on diameter structure of <italic>Pinus densata</italic> stands in Shangri-La County[J]. Journal of Southwest Forestry University, 2011, 31(2): 29−32. doi: 10.3969/j.issn.1003-7179.2011.02.007
    [25] Fang, J Y, Chen A P, Peng C H, et al. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998[J]. Science, 2001, 292(5525): 2320−2322. doi: 10.1126/science.1058629
    [26] 黄从德, 张健, 杨万勤, 等. 四川省及重庆地区森林植被碳储量动态. 生态学报, 2008, 28(3): 966−975.

    Huang C D, Zhang J, Yang W Q, et al. Dynamics on forest carbon stock in Sichuan Province and Chongqing City[J]. Acta Ecologica Sinica, 2008, 28(3): 966−975.
    [27] Qiu Z X, Feng Z K, Song Y N, et al. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: Predicting forest vegetation growth based on climate and the environment[J]. Journal of Cleaner Production, 2020, 252: 119715. doi: 10.1016/j.jclepro.2019.119715
    [28] 王金亮,程鹏飞,徐申,等. 基于遥感信息模型的香格里拉森林生物量估算[J]. 浙江农林大学学报,2013,30(3):325−329. doi: 10.11833/j.issn.2095-0756.2013.03.003

    Wang J L, Cheng P F, Xu S, et al. Forest biomass estimation in Shangri-La based on the remote sensing[J]. Journal of Zhejiang A& F University, 2013, 30(3): 325−329. doi: 10.11833/j.issn.2095-0756.2013.03.003
    [29] 陆驰,张加龙,王爱芸,等. 基于Landsat TM的香格里拉市高山松生物量估测重建[J]. 林业调查规划,2016,41(6):1−7. doi: 10.3969/j.issn.1671-3168.2016.06.001

    Lu C, Zhang J L, Wang A Y, et al. Rebuilding the model on the biomass estimation of <italic>Pinus densata</italic> in Shangri-la City based on Landsat TM[J]. Forest Inventory and Planning, 2016, 41(6): 1−7. doi: 10.3969/j.issn.1671-3168.2016.06.001
    [30] 陆驰,张加龙,王爱芸,等. 基于森林小班的香格里拉市高山松生物量遥感建模[J]. 西南林业大学学报(自然科学),2017,37(3):152−158.

    Lu C, Zhang J L, Wang A Y, et al. Building the model on the estimation of <italic>Pinus densata</italic>’s biomass in Shangri-La City based on forest subcompartment and remote sensing images[J]. Journal of Southwest Forestry University, 2017, 37(3): 152−158.
    [31] 谢福明,字李,舒清态. 基于优化k-NN模型的高山松地上生物量遥感估测[J]. 浙江农林大学学报,2019,36(3):515−523. doi: 10.11833/j.issn.2095-0756.2019.03.012

    Xie F M, Zi L, Shu Q T. Optimizing the k-nearest neighbors technique for estimating <italic>Pinus densata</italic> aboveground biomass based on remote sensing[J]. Journal of Zhejiang A& F University, 2019, 36(3): 515−523. doi: 10.11833/j.issn.2095-0756.2019.03.012
    [32] Zhang J L, Lu C, Xu H, et al. Estimating aboveground biomass of <italic>Pinus densata</italic>-dominated forests using Landsat time series and permanent sample plot data[J]. Journal of Forestry Research, 2019, 30(5): 1689−1706. doi: 10.1007/s11676-018-0713-7
    [33] 王冬玲,舒清态,王强,等. 基于偏最小二乘回归的高山松生物量遥感模型空间尺度效应分析[J]. 西南林业大学学报(自然科学),2020,40(4):87−93.

    Wang D L, Shu Q T, Wang Q, et al. The spatial scale effecton analysis on remote sensing estimation model of <italic>Pinus densata</italic> above-biomass based on partial least squares regression[J]. Journal of Southwest Forestry University, 2020, 40(4): 87−93.
    [34] 罗天祥. 中国主要森林类型生物生产力格局及其数学模型[D]. 北京: 中国科学院研究生院(国家计划委员会自然资源综合考察委员会), 1996.

    Luo T X. Patterns of Net Primary Productivity for Chinese Major Forest Types and Their Mathematical Models[D]. Beijing: Chinese Academy of Sciences (National Planning Commission Natural Resources Comprehensive Investigation Committee, 1996.
    [35] 张剑,覃家理,邓莉兰,等. 西藏雅鲁藏布江中游陆生植被调查与评价[J]. 林业资源管理,2008(4):118−123. doi: 10.3969/j.issn.1002-6622.2008.04.027

    Zhang J, Tan J L, Deng L L, et al. Investigation and assessment of the terrestrial vegetation in the middle reaches of the Yarlung Zangbo River in Tibet[J]. Forest Resources Management, 2008(4): 118−123. doi: 10.3969/j.issn.1002-6622.2008.04.027
    [36] 邹林红,周进,陈群英. 西藏林芝县高山松林下可燃物资源调查与分析[J]. 林业调查规划,2005,30(1):73−76. doi: 10.3969/j.issn.1671-3168.2005.01.020

    Zou L H, Zhou J, Chen Q Y. Investigation & analysis on combustible resources under <italic>Pinus densata</italic> forest in Nyingchi County, Tibet[J]. Forest Inventory and Planning, 2005, 30(1): 73−76. doi: 10.3969/j.issn.1671-3168.2005.01.020
    [37] 杨阳. 西藏高原主要森林类型下地被物碳储量及空间变异性研究[D]. 成都: 中国科学院水利部成都山地灾害与环境研究所, 2013.

    Yang Y. Characteristics of Carbon Stock and its Spatial of Differentiation of the Ground Cover in Tibet[D]. Chengdu: Institute of Mountain Hazard and Environment (IMHE): Chinese Academy of Sciences, 2013.
    [38] 王利民,寸玉康,陈奇伯. 滇西北高原水土保持生态修复措施的群落结构研究[J]. 水土保持研究,2006,13(3):85−87. doi: 10.3969/j.issn.1005-3409.2006.03.027

    Wang L M, Cun Y K, Chen Q B. Study on community structure during the ecological construction of soil and water conservation in plateau region in the northwest of Yunnan Province[J]. Research of Soil and Water Conservation, 2006, 13(3): 85−87. doi: 10.3969/j.issn.1005-3409.2006.03.027
    [39] 程鹏飞,王金亮,王雪梅,等. 基于样地调查的香格里拉县森林生态系统碳储量与碳密度初步研究[J]. 林业调查规划,2011,36(4):12−15. doi: 10.3969/j.issn.1671-3168.2011.04.004

    Cheng P F, Wang J L, Wang X M, et al. Carbon storage and density of four main trees in Shangri-la based on plot data[J]. Forest Inventory and Planning, 2011, 36(4): 12−15. doi: 10.3969/j.issn.1671-3168.2011.04.004
    [40] 岳彩荣. 香格里拉县森林生物量遥感估测研究[D]. 北京: 北京林业大学, 2012.

    Yue CR. Forest Biomass Estimation in Shangri-La County Based on Remote Sensing[D]. Beijing: Beijing Forestry University, 2012.
    [41] 杨劲夫. 鸡依沟水电规划建设生态影响评价研究[D]. 雅安: 四川农业大学, 2016.

    Yang J F. Study on Ecological Impact Assessment of Jiyigou Hydropower Planning and Construction[D]. Ya’an: Sichuan Agricultural University, 2016.
    [42] 何永涛,石培礼,徐玲玲. 拉萨-林芝植被样带不同群落类型的细根生物量[J]. 林业科学,2009,45(10):148−151. doi: 10.11707/j.1001-7488.20091025

    He Y T, Shi P L, Xu L L. Biomass of fine root in different community type on the Tibetan vegetation transect[J]. Scientia Silvae Sinicae, 2009, 45(10): 148−151. doi: 10.11707/j.1001-7488.20091025
    [43] 王金亮,王小花,岳彩荣,等. 滇西北香格里拉森林4个建群种的含碳率[J]. 生态环境学报,2012,21(4):613−619. doi: 10.3969/j.issn.1674-5906.2012.04.004

    Wang J L, Wang X H, Yue C R, et al. Carbon content rate in dominant species of four forest types in Shangri-la, northwest Yunnan province[J]. Ecology and Environmental Sciences, 2012, 21(4): 613−619. doi: 10.3969/j.issn.1674-5906.2012.04.004
    [44] 张坤. 森林碳汇计量和核查方法研究[D]. 北京: 北京林业大学, 2007.

    Zhang K. Researches on Estimation Method of Forest Carbon sequestration[D]. Beijing: Beijing Forestry University, 2007.
    [45] 葛立雯,潘刚,任德智,等. 西藏林芝地区森林碳储量、碳密度及其分布[J]. 应用生态学报,2013,24(2):319−325. doi: 10.13287/j.1001-9332.2013.0162

    Ge LW, Pan G, Ren D Z, et al. Forest carbon storage, carbon density, and their distribution characteristics in Linzhi area of Tibet, China[J]. Chinese Journal of Applied Ecology, 2013, 24(2): 319−325. doi: 10.13287/j.1001-9332.2013.0162
    [46] 张万林,张蓓,杨传金,等. 西藏自治区森林枯落物碳储量估算[J]. 中南林业调查规划,2013,32(4):12−15. doi: 10.3969/j.issn.1003-6075.2013.04.003

    Zhang W L, Zhang B, Yang C J, et al. Forest litter fall carbon storage estimation of Tibet[J]. Central South Forestry Inventory and Planning, 2013, 32(4): 12−15. doi: 10.3969/j.issn.1003-6075.2013.04.003
    [47] Wang J L, Wang X H, Yue C R, et al. Carbon storage estimation of main forestry ecosystems in Northwest Yunnan Province using remote sensing data[J]. Remote Sensing of the Environment:18th National Symposium on Remote Sensing of China, 2014, 9158: 91580T1−8. doi: 10.1117/12.2068473
    [48] 任德智,葛立雯,王瑞红,等. 西藏昌都地区森林植被碳储量及空间分布格局[J]. 生态学杂志,2016,35(4):903−908. doi: 10.13292/j.1000-4890.201604.001

    Ren D Z, Ge L W, Wang R H, et al. Carbon storage and spatial pattern of forest vegetation in Changdu, Tibet[J]. Chinese Journal of Ecology, 2016, 35(4): 903−908. doi: 10.13292/j.1000-4890.201604.001
    [49] 杨阳,王根绪,冉飞,等. 西藏高原主要森林类型凋落物碳储量及空间分布格局[J]. 生态学杂志,2016,35(3):559−566. doi: 10.13292/j.1000-4890.201603.018

    Yang Y, Wang G X, Ran F, et al. Litter carbon stock and spatial patterns of main forest types in Tibet[J]. Chinese Journal of Ecology, 2016, 35(3): 559−566. doi: 10.13292/j.1000-4890.201603.018
    [50] 邵波,燕腾. 四川省森林植被碳储量及碳密度估算[J]. 西南林业大学学报(自然科学),2017,37(2):179−183.

    Shao B, Yan T. Study on carbon storage and carbon density of forest in Sichuan Province[J]. Journal of Yunnan University, 2017, 37(2): 179−183.
    [51] 吴兆录,党承林,王崇云,等. 滇西北高山松林净第一性生产力的初步研究[J]. 云南大学学报(自然科学版),1994,16(3):225−229.

    Wu Z L, Dang C L, Wang C Y, et al. A preliminary study on net primary productivity of <italic>Pinus densata</italic> forests in northwest Yunnan Province, China[J]. Journal of Yunnan University, 1994, 16(3): 225−229.
    [52] 唐佳. 西藏工布自然保护区生系系统服务功能价值评价[D]. 林芝: 西藏大学, 2011.

    Tang J. Evaluation Ecosystem Services Function of Gongbu Nature Reserve in Tibet[D]. Linzhi: Tibet University, 2011.
    [53] 周祥. 云南纳帕海典型森林水文生态功能研究[D]. 北京: 北京林业大学, 2011.

    Zhou X. Research on Hydrological and Ecological Functions of Typical Forest Types in Napahai, Yunnan[D]. Beijing: Beijing Forestry University, 2011.
    [54] 五金旦增,郑维列,张昆林,等. 西藏色季拉山高山松林降雨再分配格局研究[J]. 林业资源管理,2013(6):133−136+167. doi: 10.3969/j.issn.1002-6622.2013.06.027

    WuJin D Z, Zheng W L, Zhang K L, et al. The re-distribution pattern of <italic>Pinus densata</italic> forest precipitation in Tibet Sejila Mountains[J]. Forest Resources Management, 2013(6): 133−136+167. doi: 10.3969/j.issn.1002-6622.2013.06.027
    [55] 石小亮,张颖,单永娟,等. 云南省高原典型森林植被涵养水源功能研究[J]. 长江流域资源与环境,2015,24(8):1366−1372. doi: 10.11870/cjlyzyyhj201508015

    Shi X L, Zhang Y, Shan Y J, et al. Study on water conservation function of typical forest vegetation in Yunnan Plateau[J]. Resources and Environment in the Yangtze River Basin, 2015, 24(8): 1366−1372. doi: 10.11870/cjlyzyyhj201508015
    [56] 陈甲瑞,王小兰. 色季拉山东坡不同海拔两种针叶林下苔藓层持水特性[J]. 森林与环境学报,2019,39(6):593−600.

    Chen J R, Wang X L. Water-holding capacity of bryophyte in two coniferous forests at different altitudes on the eastern slope of Mountain Shergyla[J]. Journal of Forest and Environment, 2019, 39(6): 593−600.
    [57] 陆梅,田昆,赖建东,等. 高原湿地纳帕海周边山地不同植被类型枯落物持水特性[J]. 水土保持通报,2011,31(1):28−34+52. doi: 10.13961/j.cnki.stbctb.2011.01.003

    Lu M, Tian K, Lai J D, et al. Water holding characteristics of litters of different species in mountains area of Napahai Plateau Wetland[J]. Bulletin of Soil and Water Conservation, 2011, 31(1): 28−34+52. doi: 10.13961/j.cnki.stbctb.2011.01.003
    [58] 周祥,赵一鹤,张洪江,等. 云南高原典型林分林下枯落物持水特征研究[J]. 生态环境学报,2011,20(2):248−252. doi: 10.3969/j.issn.1674-5906.2011.02.007

    Zhou X, Zhao Y H, Zhang H J, et al. Study on water-holding capacity and characteristics of forest litter in plateau region of Yunnan[J]. Ecology and Environmental Sciences, 2011, 20(2): 248−252. doi: 10.3969/j.issn.1674-5906.2011.02.007
    [59] 喻武,万丹,丁晨曦,等. 色季拉山两种典型林分枯落物持水性能[J]. 中国农学通报,2010,26(20):141−145.

    Yu W, Wan D, Ding C X, et al. Study on the water holding capacity of two typical litter layers of Mount Sejila[J]. Chinese Agricultural Science Bulletin, 2010, 26(20): 141−145.
    [60] 李菊,卢杰. 色季拉山针叶林凋落物持水特性研究[J]. 林业资源管理,2014(4):98−102. doi: 10.13466/j.cnki.lyzygl.2014.04.019

    Li J, Lu J. Water-holding characteristics of coniferous forest litter in the Sejila Mount[J]. Forest Resources Management, 2014(4): 98−102. doi: 10.13466/j.cnki.lyzygl.2014.04.019
    [61] 刘永春. 西藏林芝林区森林土壤水份及有机物质状况的定位研究[J]. 东北林学大学学报,1985,13(1):37−46.

    Liu Y C. Posting research into the situation of the moisture and organic matter of the forest in Linzhi Forest district of Tibet[J]. Journal of North-eastern Forestry College, 1985, 13(1): 37−46.
    [62] 王景升,王文波,普琼. 西藏色季拉山主要林型土壤的水文功能[J]. 东北林业大学学报,2005,33(2):48−51. doi: 10.3969/j.issn.1000-5382.2005.02.020

    Wang J S, Wang W B, Pu Q. Soil hydrological functions of the main forests on Sejila Hills in Tibet[J]. Journal of Northeast Forestry University, 2005, 33(2): 48−51. doi: 10.3969/j.issn.1000-5382.2005.02.020
    [63] 张鹏,姚甜甜,喻武,等. 雅江流域干热河谷不同植被类型对土壤可蚀性的影响[J]. 西南林业大学学报(自然科学),2019,39(4):9−17.

    Zhang P, Yao T T, Yu W, et al. Effects of different vegetation types on soil erosivity in dry and hot valley of Yajiang River Basin[J]. Journal of Southwest Forestry University, 2019, 39(4): 9−17.
  • [1] 李岩林, 舒柳, 黄柳菁.  福州市闽江公园中不同绿量的群落热舒适度 . 四川林业科技, 2023, 44(1): 72-76. doi: 10.12172/202204110002
    [2] 李廷铃, 熊康宁, 杨珊, 张仕豪, 刘海燕.  喀斯特地区石漠化程度与林分水源涵养的相关性研究 . 四川林业科技, 2022, 43(1): 57-64. doi: 10.12172/202106040001
    [3] 冯秋红, 王毅, 刘兴良, 蔡蕾, 刘世荣, 祝玮, 孙治宇.  川西亚高山不同林龄云杉人工林林地水源涵养能力比较研究 . 四川林业科技, 2020, 41(1): 5-10. doi: 10.12172/201910290001
    [4] 胡丹阳.  南方红壤区不同管理模式下的马尾松林水沙特征与植被作用 . 四川林业科技, 2019, 40(4): 45-50. doi: 10.16779/j.cnki.1003-5508.2019.04.009
    [5] 罗晓波, 郝云庆, 熊皎, 王晓玲, 曾德刚.  雷波西宁古茶树居群分类与排序及物种多样性研究 . 四川林业科技, 2019, 40(3): 6-12. doi: 10.16779/j.cnki.1003-5508.2019.03.002
    [6] 吴桂康, 陈章铭, 杨桦, 杨伟.  云南松林松墨天牛发生规律及生物学特性 . 四川林业科技, 2019, 40(3): 82-86. doi: 10.16779/j.cnki.1003-5508.2019.03.017
    [7] 肖春莲.  立地分类与评价研究现状 . 四川林业科技, 2019, 40(1): 92-97. doi: 10.16779/j.cnki.1003-5508.2019.01.020
    [8] 冯秋红, 王毅, 李登峰, 刘兴良, 谢大军, 林小洪, 金丹, 张利, 张鑫.  不同措施对川西亚高山桦木天然次生林群落演替进程的影响及综合效益评价 . 四川林业科技, 2019, 40(5): 5-10. doi: 10.16779/j.cnki.1003-5508.2019.05.002
    [9] 马吉才, 冯杰.  岷江杂谷脑河9种典型植被群落的水源涵养能力与价值评估 . 四川林业科技, 2017, 38(2): 110-113. doi: 10.16779/j.cnki.1003-5508.2017.02.021
    [10] 王延茹, 侯广维, 彭培好, 林林, 杨世之, 周琼.  四川香椿人工林生物量与碳储量研究 . 四川林业科技, 2016, 37(4): 24-27. doi: 10.16779/j.cnki.1003-5508.2016.04.005
    [11] 冯秋红, 黄劲松, 徐峥静茹, 谢大军, 刘兴良, 潘红丽, 刘世荣.  密度调控对川西亚高山云杉人工林生物量和生物多样性的影响 . 四川林业科技, 2016, 37(3): 10-14. doi: 10.16779/j.cnki.1003-5508.2016.03.002
    [12] 舒联方, 盛晓琼, 李德文.  四川王朗自然保护区土壤水源涵养能力评价 . 四川林业科技, 2016, 37(1): 33-36. doi: 10.16779/j.cnki.1003-5508.2016.01.006
    [13] 李晓娟, 唐双国, 周材权.  机场鸟类群落与鸟击之间的关系 . 四川林业科技, 2015, 36(5): 30-36,78. doi: 10.16779/j.cnki.1003-5508.2015.05.007
    [14] 曹小军, 苏德尧, 邱月群, 张小平, 干少雄.  密度调节对绵竹林生产力水平的影响 . 四川林业科技, 2015, 36(4): 49-52. doi: 10.16779/j.cnki.1003-5508.2015.04.009
    [15] 张发会, 吴雪仙, 蔡小虎, 王琛.  川西亚高山3种不同林分类型对土壤理化性质的影响 . 四川林业科技, 2015, 36(3): 8-12. doi: 10.16779/j.cnki.1003-5508.2015.03.003
    [16] 刘兴良, 贾程, 何飞, 蔡小虎, 潘红丽, 马文宝, 冯秋红, 姬慧娟.  巴郎山川滇高山栎群落植物科组成的海拔梯度特征 . 四川林业科技, 2015, 36(2): 1-9. doi: 10.16779/j.cnki.1003-5508.2015.02.001
    [17] 张建设, 王刚, 王刚.  植物生物量研究综述 . 四川林业科技, 2014, 35(1): 44-48. doi: 10.16779/j.cnki.1003-5508.2014.01.010
    [18] 陈燕芬.  莲都区公益林植被生物量与碳储量动态变化研究 . 四川林业科技, 2014, 35(2): 66-69. doi: 10.16779/j.cnki.1003-5508.2014.02.016
    [19] 田雨, 周晓波, 周燕, 潘红丽, 谢强.  茂县大沟流域典型植被群落的水源涵养能力 . 四川林业科技, 2014, 35(1): 14-17. doi: 10.16779/j.cnki.1003-5508.2014.01.003
    [20] 郭小军, 赖元长, 先开炳.  洪雅退耕还林地苦竹生物量与碳储量研究 . 四川林业科技, 2013, 34(1): 11-16. doi: 10.16779/j.cnki.1003-5508.2013.01.003
  • 加载中
  • 表(6)
    计量
    • 文章访问数:  370
    • HTML全文浏览量:  140
    • PDF下载量:  70
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-22
    • 网络出版日期:  2022-09-16
    • 刊出日期:  2022-10-26

    高山松林生态系统研究进展

    doi: 10.12172/202208220004
      作者简介:

      杜燕(1995—),女,博士研究生,duyan@cib.ac.cn

      通讯作者: baowk@cib.ac.cn
    基金项目:  国家科技基础性工作专项(2019FY202300); 第二次青藏高原综合考察研究(2019QZKK0301)

    摘要: 高山松(Pinus densata)林是我国西南山区特有的森林类型,是西南地区重要的碳库,具有较高的生态保育价值。目前关于高山松林群落类型与结构、生态系统功能等的研究比较零散,无法为高山松林的科学保护与管理以及资源的合理开发利用提供系统的理论支撑。基于系统查阅的相关文献和著作,对高山松林群落类型与结构特征、生物量与生产力和生态系统水源涵养能力进行了综述。结果表明:(1)高山松林已知的群落类型包括6个群系9个群丛组6个群丛;(2)成熟林群落生物量为81.24~318.79 t·hm−2,其中乔木层为79.39~311.53 t·hm−2,乔木层碳密度为49.543~103.24 t·hm−2,年生产力为5.48~18.07 t·hm−2·a−1,其中乔木层为4.29~14.23 t·hm−2·a−1;(3)林冠截留率为24.32%~28.87%,苔藓层、凋落物层和土壤(0~30 cm)最大持水量分别为8.69 t·hm−2、117.27 t·hm−2和380.98 t·hm−2。同时,阐明了需要深入关注的研究内容:(1)完善群落分类系统,补全群落特征的相关认识;(2)补充空白区域以及林下植被和地下部分生物量、碳储量和生产力的数据,并探讨生物量和生产力在各地理梯度上的变化规律及其驱动因子;(3)补充调查成熟林水源涵养能力,重点关注土壤层和苔藓层的持水能力特性。

    English Abstract

    • 高山松(Pinus densata Mast.)林是我国西南山区特有的森林类型,分布范围大致为北纬28°~33°,东经93°~104°,东起四川岷江流域,西迄西藏朗县,北起四川道孚,南至云南永胜,在川西地区分布海拔为2 000~3 800 m,在滇西北为3 000~3 400 m,藏东南为2 600~3 500 m[1-3]。根据第六次全国森林资源清查(1999~2003年)数据,高山松林面积为180.47 × 104 hm2 [4],其蓄积量、生物量密度和碳密度在中国森林类型中均处于较高水平[5-6],是西南地区重要的碳库,在固碳释氧、固土保肥、水源涵养等方面发挥着重要作用[7-9],具有较高的生态保育价值。

      系统认识高山松林的群落类型与结构、生态系统服务功能等是非常有必要的,对于高山松林的科学保护与管理以及资源的合理开发利用具有重要的理论价值。系统查阅了1980~2020年发表的高山松林相关文献资料,包括文献58篇,专著5本。综述如下方面的研究现状:(1)高山松林群落类型与特征;(2)群落生物量与生产力;(3)生态系统水源涵养能力;并进一步梳理出当前需要聚焦的方向,为高山松林的深入研究提供基础。

      • 以《中国植被志》研编内容与规范[10]为群落分类标准,对已有资料进行梳理,将高山松林划分为6个群系9个群丛组6个群丛(见表1)。除上述群落类型外,高山松还可与丽江云杉(Picea likiangensis (Franch.) E. Pritzel)、川西云杉(Picea likiangensis var. rubescens Rehder & E. H. Wilson)、白桦(Betula platyphylla Suk.)、帽斗栎(Quercus guajavifolia H. Léveillé)等形成混交林,灌木层优势种还包括云南杜鹃(Rhododendron yunnanense Franch.)、大白杜鹃(R. decorum Franch.)、腋花杜鹃(R. racemosum Franch.)、圆锥山蚂蟥(Desmodium elegans Candolle)等,草本层优势种还包括秦岭槲蕨(Drynaria baronii Diels)、金茅(Eulalia speciosa (Debeaux) Kuntze)等[1, 14-16, 19]

        表 1  高山松林群落分类

        Table 1.  The classification of Pinus densata forest

        群系群丛组群丛文献来源
        高山松
        Pinus densata Mast.
        高山松高山松陈伟烈等, 1980[11]
        P. densata Mast.P. densata Mast.
        高山松-草本高山松-羊茅郭立群, 1982[12]
        P. densata Mast. - HerbP. densata Mast. - Festuca ovina L.
        高山松-尼泊尔大丁草罗建, 2008[13]
        P. densata Masters - Leibnitzia nepalensis (Kunze) Kitamura
        高山松-灌木高山松-矮高山栎吴征镒, 1987[14]
        P. densata Mast. - ShrubP. densata Masters - Q. monimotricha Handel-Mazzetti
        高山松-川滇高山栎四川植被协作组,1980[15]
        P. densata Masters - Q. aquifolioides Rehder & E. H. Wilson
        高山松-灌木-草本高山松-川滇高山栎-疏穗野青茅四川森林编辑委员会, 1992[16]
        P. densata Mast. - Shrub - HerbP. densata Masters - Q. aquifolioides Rehder & E. H. Wilson - Deyeuxia effusiflora Rendle
        高山松+长穗高山栎高山松+长穗高山栎-灌木-草本郭立群, 1982[12]
        P. densata Mast. + Quercus longispica (Hand.-Mazz.) A. CamusP. densata Mast. + Q. longispica (Hand.-Mazz.) A. Camus - Shrub - Herb
        高山松+川滇高山栎高山松+川滇高山栎-灌木-草本段代祥等, 2010[17]
        P. densata Mast. + Q. aquifolioides Rehder & E. H. WilsonP. densata Mast. + Q. aquifolioides Rehder & E. H. Wilson - Shrub - Herb
        高山松+大果红杉高山松+大果红杉-灌木-草本郭立群, 1982[12]
        P. densata Mast. + Larix potaninii var. australis A. Henry ex Handel-MazzettiP. densata Mast. + L. potaninii var. australis A. Henry ex Handel-Mazzetti - Shrub - Herb
        高山松+华山松高山松+华山松-灌木罗建, 2008[13]
        P. densata Mast. + P. armandii Franch.P. densata Mast. + Pinus armandii Franch. - Shrub
        高山松+山杨高山松+山杨-灌木-草本王雪, 2011[18]
        P. densata Mast. + Populus davidiana DodeP. densata Mast. + Populus davidiana Dode - Shrub - Herb
      • 少量研究对群落优势种高山松的胸径、高度和冠幅结构进行了分析。卢杰等[20]对林芝八一镇高山松种群调查发现,其径级结构、高度结构和冠幅结构均呈反“J”形,为增长型种群。在林芝地区高山松天然次生林中,幼龄林的胸径分布呈偏左的近似正态分布,随着林龄的增加,偏度和峰度均变小,中龄林为中间高两边低的近似正态分布[21]。对西藏林芝地区高山松种群格局的分析结果表明,其在幼苗-幼树-立木的发育过程中,空间格局由集群分布转变为随机或均匀分布[22-23]。左政等[24]对香格里拉的高山松林直径结构分析发现,其林分直径结构以迈耶负指数分布函数的拟合效果最好。

      • 在林分水平上,少量研究以蓄积量或林龄为自变量,建立了高山松林乔木层生物量回归模型(见表2);还有多个研究以香格里拉地区的高山松林为研究对象,构建了高山松林地上生物量遥感估测模型[28-33],但精度较低,均不超过80%。对高山松林群落生物量已有调查数据进行收集(见表3),结果表明,高山松成熟林群落生物量为81.24~318.79 t·hm−2,其中乔木层为79.39~311.53 t·hm−2,灌木层为0.105~1.49 t·hm−2,草本层为0.035~0.3318 t·hm−2,凋落物层为0.515~90.84 t·hm−2。群落细根生物量的研究仅1个,何永涛等[42]测定了林芝八一镇高山松林0~50 cm土层中细根生物量,为431.2 g·m−2,其中活细根生物量为326.1 g·m−2,死细根为105.1 g·m−2;在垂直分布上,69.6%的活细根生物量集中在0~10 cm,而40~50 cm土层内无细根分布。

        表 2  高山松林生物量密度估算模型

        Table 2.  Biomass density estimation model of Pinus densata forest

        估算模型样本量相关系数文献来源
        B = 0.5168V + 33.237816R = 0.94Fang et al., 2001[25]
        B = 0.5272V1.079319R = 0.9978黄从德等, 2008[26]
        B = 162.21 / (1 + 3.6259e−0.0578a/R2 = 0.966徐冰等, 2010[4]
        B = 0.81V + 11.89/R2 = 0.912Qiu et al., 2020[27]
          注:B为林分生物量密度(t·hm−2),V为林分蓄积量(m3·hm−2),a为林龄(a)。

        表 3  高山松林群落生物量(t·hm−2

        Table 3.  Community biomass of Pinus densata forest

        研究区域林龄/a群落总生物量乔木层灌木层草本层凋落物文献来源
        地上部分地下部分
        西藏林芝20~10831.26~318.79//30.55~311.53///罗天祥, 1996[34]
        /101.84~210.59//////张剑等, 2008[35]
        成熟林////0.16330.33187.3437邹林红等, 2005[36]
        幼龄林/////1.491.79杨阳, 2013[37]
        中龄林/////1.757.81
        成熟林/////1.677.2
        云南香格里拉15////3.79651.6966/王利民等, 2006[38]
        /98.89~234.90//////程鹏飞等, 2011[39]
        //95.7//22.3892.2675.165岳彩荣, 2012[40]
        Yue, 2012
        40294.306264.47329.049293.5220.1050.0410.638吴兆录等, 1994[19]
        100231.495194.32436.5230.8240.1210.0350.515
        四川木里成熟林/419.661//1.490.218/杨劲夫, 2016[41]

        对高山松林碳储量的研究包括树种含碳率和群落碳密度两个方面。王金亮等[43]测定了香格里拉高山松林不同林龄不同器官的含碳率,树种平均含碳率为51.31%,与张坤[44]基于1978—1994年期间关于中国生物量的文献和全国第三次森林资源清查(1984—1988年)数据的计算结果接近,为50.09%。杨阳[37]测定了林芝地区不同林龄高山松林的草本和凋落物含碳量,幼龄林、中龄林和成熟林草本地上含碳量分别为441.44 g·kg−1,412.84 g·kg−1和433.30 g·kg−1;草本地下含碳量分别为389.12 g·kg−1,370.54 g·kg−1和393.12 g·kg−1;凋落物含碳率分别为500.90 g·kg−1,507.35 g·kg−1和480.37 g·kg−1。对高山松林群落碳储量已有调查数据进行收集,结果表明,高山松林乔木层碳密度为49.543~103.24 t·hm−2,灌木层碳密度为10.964 t·hm−2,草本层碳密度为0.868 t·hm−2,凋落物碳密度为1.43~18.68 t·hm−2,土壤层(0~100 cm)碳密度为216.274 t·hm−2 [39, 45-50]

      • 高山松林生产力的相关研究很少,仅3篇。吴兆录等[51]建立了高山松林乔木器官净第一性生产力的优化回归模型,对香格里拉吉迪林场林龄40年和100年的高山松林生产力进行了估算,结果分别为12.192 t·hm−2·a−1和10.013 t·hm-2·a−1,其中乔木层分别为12.160 t·hm−2·a−1和9.980 t·hm−2·a−1,主要分配在叶和树干中;灌木层分别为0.018 t·hm−2·a−1和0.021 t·hm−2·a−1,草本层分别为0.014 t·hm−2·a−1和0.012 t·hm−2·a−1。唐佳[52]估算出工布自然保护区高山松林年生产力为9.85 t·hm−2·a−1。基于四川、云南和西藏17个样地数据,高山松成熟林全林和乔木层生产力分别为5.48~18.07 t·hm−2·a−1和4.29~14.23 t·hm−2·a-1;在地理分布格局上,包括高山松林在内的温性松林生物生产力随纬度的增加而递减,随经度的增加而递增;而在水热分布格局上,呈现一种双曲面的递增函数,随降水量的增加呈自然对数递增,随温度的增加呈线性递增,随温暖指数和潜在增散量的增加也呈递增趋势[34]

      • 高山松林林冠截留量仅在色季拉山和纳帕海开展过研究,结果表明高山松林林冠截留率为24.32%~28.87%,且林冠截留量与降雨量间以幂函数拟合效果最好[53-55]

      • 高山松林林下苔藓层持水特性研究仅1例,陈甲瑞和王小兰[56]对色季拉山东坡高山松林的调查发现,林下苔藓层平均厚度为1.13 cm,生物量为1.02 t·hm−2,自然含水量为1.83 t·hm−2,最大持水量为8.69 t·hm−2;浸水实验表明,苔藓在前0.25 h内吸水速率最大,可达654.279 g·kg−1·h−1,随后迅速下降,2 h后下降速度减缓,8 h后吸水速率基本稳定并趋向于零,吸水速率与浸泡时间呈幂函数关系。

      • 已有研究对色季拉山成熟林以及纳帕海幼龄林和中龄林凋落物层持水能力和吸水特性进行了测定(见表4表5),结果表明高山松成熟林凋落物层最大持水量为117.27 t·hm−2;浸水实验发现,在第5 min时吸水速率最大,可达6210 g·kg−1·h−1,随后迅速下降,8~10 h后吸水量基本达到最大值,吸水速率与浸泡时间呈幂函数关系[59]

        表 4  高山松林凋落物层持水量、持水率和有效拦蓄量

        Table 4.  Water-holding capacity, water-holding rate, and effective interception of litter layer in Pinus densata forest

        研究区域林龄/a最大持水量/(t·hm−2最大持水率/%有效拦蓄量/(t·hm−2文献来源
        未分解层半分解层未分解层半分解层未分解层半分解层
        纳帕海1034.9512.82///////陆梅等, 2011[57]
        2566.7718.5///////
        2017.178.22///////
        1922.295.8116.48129.52136.39127.2614.984.3410.64周祥等, 2011[58]
        1935.79//138.48//15.67//石小亮等, 2015[55]
        色季拉山成熟林117.2753.4563.82 /106.54156.93 /30.9447.25喻武等, 2010[59]

        表 5  高山松林凋落物层持水量、吸水速率和持水率的拟合方程

        Table 5.  Fitting equation of water-holding capacity, water absorption rate and water-holding rate of litter layer in Pinus densata forest

        研究区域林龄/a拟合方程适用范围/h相关系数文献来源
        纳帕海10Q= 2.056ln(t) + 15.4100~24R= 0.981陆梅等, 2011[57]
        QL= 1.637ln(t) + 7.0740~24R= 0.960
        V= 15.102t−0.8750~24/
        VL= 6.709t−0.7960~24/
        25Q= 4.129ln(t) + 36.0330~24R= 0.997
        QL= 2.283ln(t) + 10.7200~24R= 0.972
        V= 35.360t−0.8890~24/
        VL= 10.22t−0.8080~24/
        20Q= 0.773ln(t) + 6.4960~24R= 0.983
        QL= 0.983ln(t) + 5.0670~24R= 0.977
        V= 6.389t−0.8880~24/
        VL= 4.886t−0.8320~24/
        19Q= 3.341ln(t) + 13.220~24R2= 0.964周祥等, 2011[58]
        QL= 0.698ln(t) + 3.1950~24R2= 0.963
        QF= 2.643ln(t) + 10.0300~24R2= 0.929
        V= 1.127t−0.690~24R2= 0.953
        VL= 0.300t−0.780~24R2= 0.997
        VF= 0.798t−0.630~24R2= 0.893
        色季拉山成熟林QL= 108.28ln(t) + 37.480~24R2= 0.944喻武等, 2010[59]
        QF= 209.56ln(t) + 25.6320~24R2= 0.987
        VL= 14904t0~1/12R2= 0.987
        VL= 3406.5e(−0.4004t1/12~24R2= 0.987
        VF= 27648t0~1/12R2= 0.989
        VF= 5150.7e(−0.3843t1/12~24R2= 0.989
        Q= 13.143ln(t) + 34.9520~24R= 0.9856李菊和卢杰, 2014[60]
        Y= 68.453ln(t) + 182.040~24R= 0.9856
        V= 10264t-0.1.6420~24R= 0.9914
          注:Q为总持水量(t·hm−2),QL为未分解层持水量(t·hm−2,QF为半分解层持水量(t·hm−2),V为总吸水速率(t·hm−2·h−1),VL为未分解层吸水速率(t·hm−2·h−1),VF为半分解层吸水速率(t·hm−2·h−1),Y为持水率(%),t为浸泡时间(h)。
      • 土壤层持水特性的研究集中在林芝地区和纳帕海(见表6),结果表明高山松成熟林0~30 cm土层的土壤最大持水量为380.98 t·hm−2 [61]

        表 6  高山松林土壤层最大持水量、持水率和拦蓄量

        Table 6.  Water-holding capacity, water-holding rate, and water storage capacity of soil layer in Pinus densata forest

        研究区域林龄/a土层/cm持水量/t·hm−2持水率%蓄水量/t·hm−2文献来源
        最大毛管非毛管最大毛管
        巴宜区幼龄林0~1076.5362.88/101.9883.83/刘永春, 1985[61]
        10~2080.869.65/86.4974.48/
        20~3080.3673.26/76.1369.42/
        30~4074.1864.48/68.8760.04/
        40~5077.9765.53/77.3964.93/
        成熟林0~1071.2861.28/157.15135.59/
        10~2080.4367.79/93.0178.19/
        20~3078.9267.47/89.4276.41/
        30~4069.9162.1/81.3569.32/
        40~5080.4472.29/82.4574.14/
        /0~130///47.6/5980王景升等, 2005[62]
        朗县/0~20868.81792.65///59张鹏等, 2019[63]
        香格里拉250~301827.6/406.8///周祥, 2011[53]
        30~501037.4/229.2///
        190~60//637.5//610石小亮等, 2015[55]
      • 样方调查数据是认识群落类型和结构的基础资料,现有调查资料多形成于上世纪50—70年代,近期的调查集中在林芝市、香格里拉县等高山松林集中分布区;调查对象主要针对高山松纯林,对混交林的关注较少;研究空白点较多,基础数据严重缺乏。在群落类型的划分上,当前研究多基于群落外貌对群落类型进行划分,仅罗建[13]采用了数量分类方法,分类和命名标准不统一,无法形成完整的高山松林群落分类系统。在物种组成方面,已有研究仅列出各层片主要组成物种,缺乏对物种科属统计、生活型和地理区系成分特征的分析。在群落结构上,仅在胸径结构方面有少量研究,垂直结构[20]仅见1个报道。因此,当前对高山松林群落类型、生境条件、物种组成、群落结构等的认识是不全面的,后续需要对高山松林开展野外调查,明确其分布范围和地理分布格局,形成完整的群落分类系统,补全群落特征的相关认识。

      • 森林生物量、碳储量和生产力是研究森林生态系统结构和功能的重要基础数据,目前针对高山松林生物量、碳储量和生产力的研究集中在乔木层,且调查数据集中在林芝地区和香格里拉市,目前仅有1个研究[19]对高山松林各层片的生物量数据均进行了测算。针对高山松林这一群落类型的生物量和生产力空间分布格局和影响因素未见报道。因此,后续应对生物量数据缺失的区域开展补充调查,重点关注林下植被和地下部分的生物量测定;阐明高山松林生物量和生产力在各地理梯度上的变化规律及其驱动因子。

      • 涵养水源是森林生态系统的重要功能之一,当前高山松林水源涵养的研究集中在林芝地区和香格里拉市;研究对象以幼龄林和中龄林居多,成熟林水源涵养能力的数据严重缺乏;层次上以林冠层、凋落物层和土壤层的调查为主,苔藓层相关研究仅1例[56],已有研究对土壤层的调查深度标准不一。因此,后续应对成熟林水源涵养能力开展补充调查,重点关注土壤层和苔藓层的持水能力特性。

    参考文献 (63)

    目录

      /

      返回文章
      返回