用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火干扰下的森林土壤微生物研究现状分析

佘容 杨晓燕 肖文

佘容, 杨晓燕, 肖文. 火干扰下的森林土壤微生物研究现状分析[J]. 四川林业科技, 2021, 42(3): 94−101 doi: 10.12172/202010270001
引用本文: 佘容, 杨晓燕, 肖文. 火干扰下的森林土壤微生物研究现状分析[J]. 四川林业科技, 2021, 42(3): 94−101 doi: 10.12172/202010270001
She R, Yang X Y, Xiao W. Research status on forest soil microbes under fire disturbance[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(3): 94−101 doi: 10.12172/202010270001
Citation: She R, Yang X Y, Xiao W. Research status on forest soil microbes under fire disturbance[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(3): 94−101 doi: 10.12172/202010270001

火干扰下的森林土壤微生物研究现状分析


doi: 10.12172/202010270001
详细信息
    作者简介:

    佘容(1982—),女,高级工程师,博士,sher@eastern-himalaya.cn

    通讯作者: yangxy@eastern-himalaya.cn
  • 基金项目:  第二次青藏高原综合科学考察研究(2019QZKK0402)

Research Status on Forest Soil Microbes under Fire Disturbance

More Information
    Corresponding author: yangxy@eastern-himalaya.cn
  • 摘要: 火后生态恢复是21世纪恢复生态学的重要研究内容,土壤微生物作为森林生态系统的关键组成部分,开展火干扰下土壤微生物的研究是非常有必要的。本文通过综合分析现有文献对火后森林土壤微生物的研究结果,发现不同火强度和维持时间下土壤微生物活性、群落组成变化及影响火干扰强度的主要因素是已有研究的主要内容,在火后土壤微生物群落的恢复时间、多样性变化、演替规律等问题上尚存在争论,对火干扰下的土壤微生物研究的重要性也尚未得到足够重视。未来研究应在综合应用现有微生物研究技术并继续改进创新的基础上,采用野外调查和田间模拟控制实验相结合的手段,分别从种群、群落和生态系统等多个层次上开展火干扰下的森林土壤微生物研究,解析地下与地上生态系统的相互关系,探究土壤微生物在火干扰下的变化规律和演替机制,丰富火生态学理论;确定火后土壤微生物恢复中的功能类群,分析功能类群在火后恢复过程中的作用,比较分析不同恢复方式下土壤微生物的变化规律,以指导火后生态系统的恢复实践。
  • [1] Staver A C, Botha J, Hedin L. Soils and fire jointly determine vegetation structure in an African savanna[J]. New Phytologist, 2017, 216(4): 1151−1160. doi: 10.1111/nph.14738
    [2] He T, Lamont B B. Fire as a potent mutagenic agent among plants[J]. Critical Reviews in Plant Sciences, 2018, 37(1): 1−14. doi: 10.1080/07352689.2018.1453981
    [3] Lamont B B, He T. Fire-proneness as a prerequisite for the evolution of fire-adapted traits[J]. Trends in Plant Science, 2017, 22(4): 278−288. doi: 10.1016/j.tplants.2016.11.004
    [4] Mclauchlan K K, Higuera P E, Miesel J, et al. Fire as a fundamental ecological process: research advances and frontiers[J]. Journal of Ecology, 2020, 108(5): 2047−2069. DOI: 10.1111/1365-2745.13403.
    [5] He T, Lamont B B, Pausas J G. Fire as a key driver of Earth's biodiversity[J]. Biological Reviews, 2019, 94(6): 1−28.
    [6]  Pausas J G, Ribeiro E. Fire and plant diversity at the global scale[J]. Global Ecology and Biogeography, 2017, 26(8): 889–897. DOI: 10.1111/geb.12596.
    [7] Maurin O, Davies T J, Burrows J E, et al. Savanna fire and the origins of the 'underground forests' of Africa[J]. New Phytologist, 2014, 204(1): 201−214. doi: 10.1111/nph.12936
    [8] Certini G. Fire as a soil-forming factor[J]. Ambio, 2014, 43(2): 191−195. doi: 10.1007/s13280-013-0418-2
    [9] Grau-Andrés R, Davies G M, Waldron S, et al. Increased fire severity alters initial vegetation regeneration across Calluna-dominated ecosystems[J]. Journal of Environmental Management, 2018, 231: 1004−1011. doi: 10.1016/j.jenvman.2018.10.113
    [10] Buotte P C, Levis S, Law B E, et al. Near-future forest vulnerability to drought and fire varies across the western United States[J]. Global Change Biology, 2019, 25(1): 290−303. doi: 10.1111/gcb.14490
    [11] Ockendon N, Thomas D H L, Cortina J, et al. One hundred priority questions for landscape restoration in Europe[J]. Biological Conservation, 2018, 221: 198−208. doi: 10.1016/j.biocon.2018.03.002
    [12] 朱永官,沈仁芳,贺纪正,等. 中国土壤微生物组: 进展与展望[J]. 中国农业文摘-农业工程,2018 , (3):6−12+38.
    [13] Delgado-Baquerizo M, Maestre F T, Reich P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 2016, 7(10541): 1−8.
    [14] Rolli E, Marasco R, Vigani G, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait[J]. Environmental Microbiology, 2015, 17(2): 316−331. doi: 10.1111/1462-2920.12439
    [15] Bento-Gonçalves A, Vieira A, Úbeda X, et al. Fire and soils: Key concepts and recent advances[J]. Geoderma, 2012, 191: 3−13. doi: 10.1016/j.geoderma.2012.01.004
    [16] Castrillo G, Teixeira P J P L, Paredes S H, et al. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513−518. doi: 10.1038/nature21417
    [17] Naylor D, Coleman-Derr D. Drought stress and root-associated bacterial communities[J]. Frontiers in Plant Science, 2018, 8: 1−16.
    [18] Rodriguez P A, Rothballer M, Chowdhury S P, et al. Systems biology of plant-microbiome interactions[J]. Molecular Plant, 2019, 12(6): 804−821. doi: 10.1016/j.molp.2019.05.006
    [19] Porter T M, Hajibabaei M. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis[J]. Molecular Ecology, 2018, 27(2): 313−338. doi: 10.1111/mec.14478
    [20] Farrell H L, Barberán A, Danielson R E, et al. Disturbance is more important than seeding or grazing in determining soil microbial communities in a semi-arid grassland[J]. Restoration Ecology, 2020, 28(S4): S335−S343. DOI: 10.1111/rec.13156.
    [21] van der Bij A U, Weijters M J, Bobbink R, et al. Facilitating ecosystem assembly: Plant-soil interactions as a restoration tool[J]. Biological Conservation, 2018, 220: 272−279. doi: 10.1016/j.biocon.2018.02.010
    [22] Sadeghifar M, Agha A B A, Pourreza M. Comparing soil microbial eco-physiological and enzymatic response to fire in the semi-arid Zagros woodlands[J]. Applied Soil Ecology, 2020, 147: 103366. doi: 10.1016/j.apsoil.2019.103366
    [23] Pressler Y, Moore J C, Cotrufo M F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna[J]. Oikos, 2019, 128(3): 309−327. doi: 10.1111/oik.05738
    [24] Jian M, Berli M, Ghezzehei T A. Soil structural degradation during low-severity burns[J]. Geophysical Research Letters, 2018, 45(11): 5553−5561. doi: 10.1029/2018GL078053
    [25] Alcañiz M, Outeiro L, Francos M, et al. Effects of prescribed fires on soil properties: A review[J]. Science of the Total Environment, 2018, 613−614: 944−957. doi: 10.1016/j.scitotenv.2017.09.144
    [26] Certini G. Effects of fire on properties of forest soils: a review[J]. Oecologia, 2005, 143(1): 1−10. doi: 10.1007/s00442-004-1788-8
    [27] Sanchez-Garcia C, Oliveira B R F, Keizer J J, et al. Water repellency reduces soil CO2 efflux upon rewetting[J]. Science of the Total Environment, 2020, 708: 12.
    [28] Muñoz-Rojas M, Erickson T E, Martini D, et al. Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems[J]. Ecological Indicators, 2016, 63: 14−22. doi: 10.1016/j.ecolind.2015.11.038
    [29] 武广源. 火干扰后对森林土壤微生物生物量的影响[J]. 林业科技情报,2017,49(02):34−38, 44.
    [30] Egidi E. Fire regime, not time-since-fire, affects soil fungal community diversity and composition in temperate grasslands[J]. FEMS Microbiology Letters, 2016, 363: 1−11.
    [31] 许鹏波,屈明,薛立. 火对森林土壤的影响[J]. 生态学杂志,2013,32(6):1596−1606.
    [32] Whitman T, Whitman E, Woolet J, et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient[J]. Soil Biology and Biochemistry, 2019, 138 (D1): 107571.
    [33] 曾素平,刘发林,赵梅芳,等. 火干扰强度对亚热带四种森林类型土壤理化性质的影响[J]. 生态学报,2020,40(1):233−246.
    [34] Knelman J E, Graham E B, Trahan N A, et al. Fire severity shapes plant colonization effects on bacterial community structure, microbial biomass, and soil enzyme activity in secondary succession of a burned forest[J]. Soil Biology and Biochemistry, 2015, 90: 161−168. doi: 10.1016/j.soilbio.2015.08.004
    [35] Holden S R, Rogers B M, Treseder K K, et al. Fire severity influences the response of soil microbes to a boreal forest fire[J]. Environmental Research Letters, 2016, 11: 35004. doi: 10.1088/1748-9326/11/3/035004
    [36] Li W, Niu S, Liu X, et al. Short-term response of the soil bacterial community to differing wildfire severity in Pinus tabulaeformis stands[J]. Scientific Reports, 2019, 9(1): 1148.
    [37] 李伟克,刘晓东,牛树奎,等. 火烧对河北平泉油松林土壤微生物量的影响[J]. 北京林业大学学报,2017,39(10):70−77.
    [38] Hamman S T, Burke I C, Stromberger M E. Relationships between microbial community structure and soil environmental conditions in a recently burned system[J]. Soil Biology & Biochemistry, 2007, 39(7): 1703−1711.
    [39] Campbell C D, Cameron C M, Bastias B A, et al. Long term repeated burning in a wet sclerophyll forest reduces fungal and bacterial biomass and responses to carbon substrates[J]. Soil Biology and Biochemistry, 2008, 40(9): 2246−2252. doi: 10.1016/j.soilbio.2008.04.020
    [40] Brown S P, Callaham M A, Oliver A K, et al. Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem[J]. FEMS Microbiology Ecology, 2013, 86(3): 557−566. doi: 10.1111/1574-6941.12181
    [41] Oliver A K, Callaham M A, Jumpponen A. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem[J]. Forest Ecology and Management, 2015, 345: 1−9. doi: 10.1016/j.foreco.2015.02.020
    [42] Girona-García A, Badía-Villas D, Martí-Dalmau C, et al. Effects of prescribed fire for pasture management on soil organic matter and biological properties: A 1-year study case in the Central Pyrenees[J]. Science of the Total Environment, 2018, 618: 1079−1087.
    [43] Gao Y, Dong S, Wang C, et al. Effect of thermal intensity and initial moisture content on heat and moisture transfer in unsaturated soil[J]. Sustainable Cities and Society, 2020, 55 (30): 102069. doi: 10.1016/j.scs.2020.102069
    [44] 杨玉盛,李振问. 林火与土壤肥力[J]. 世界林业研究,1993(3):35−42.
    [45] Tripathi B M, Stegen J C, Kim M, et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria[J]. The International Society for Microbial Ecology Journal, 2018, 12(4): 1072−1083.
    [46] Cho H, Tripathi B M, Moroenyane I, et al. Soil pH rather than elevation determines bacterial phylogenetic community assembly on Mt. Norikura[J]. FEMS Microbiology Ecology, 2019, 95(3): 1−10.
    [47] Ferreira R V, Serpa D, Cerqueira M A, et al. Short-time phosphorus losses by overland flow in burnt pine and eucalypt plantations in north-central Portugal: A study at micro-plot scale[J]. Science of the Total Environment, 2016, 551−552: 631−639. doi: 10.1016/j.scitotenv.2016.02.036
    [48] Fultz L M, Moore-Kucera J, Dathe J, et al. Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: Two case studies in the semi-arid Southwest[J]. Applied Soil Ecology, 2016, 99: 118−128. doi: 10.1016/j.apsoil.2015.10.023
    [49] Köster K, Berninger F, Heinonsalo J, et al. The long-term impact of low-intensity surface fires on litter decomposition and enzyme activities in boreal coniferous forests[J]. International Journal of Wildland Fire, 2015, 25 (2): 213−223. DOI: 10.1071/WF14217.
    [50] Salo K, Domisch T, Kouki J. Forest wildfire and 12 years of post-disturbance succession of saprotrophic macrofungi (Basidiomycota, Ascomycota)[J]. Forest Ecology and Management, 2019, 451: 117454. doi: 10.1016/j.foreco.2019.117454
    [51] Xiang X, Shi Y, Yang J, et al. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest[J]. Scientific Reports, 2014, 4(3829): 1−8.
    [52] Fernández-García V, Miesel J, Baeza M J, et al. Wildfire effects on soil properties in fire-prone pine ecosystems: Indicators of burn severity legacy over the medium term after fire[J]. Applied Soil Ecology, 2019, 135: 147−156. doi: 10.1016/j.apsoil.2018.12.002
    [53] Prendergast-Miller M T, de Menezes A B, Macdonald L M, et al. Wildfire impact: Natural experiment reveals differential short-term changes in soil microbial communities[J]. Soil Biology and Biochemistry, 2017, 109: 1−13. doi: 10.1016/j.soilbio.2017.01.027
    [54] Jasinge N U, Huynh T, Lawrie A C. Changes in orchid populations and endophytic fungi with rainfall and prescribed burning in Pterostylis revoluta in Victoria, Australia[J]. Annals of Botany, 2018, 121 (2): 321−334. doi: 10.1093/aob/mcx164
    [55] Sorensen J W, Shade A. Dormancy dynamics and dispersal contribute to soil microbiome resilience[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375: 20190255.
    [56] 贺纪正,王军涛. 土壤微生物群落构建理论与时空演变特征[J]. 生态学报,2015,35(20):6575−6583.
    [57] Fuhrman J A. Microbial community structure and its functional implications[J]. Nature, 2009, 459(7244): 193−199. doi: 10.1038/nature08058
    [58] Joseph S J, Hugenholtz P, Sangwan P, et al. Laboratory cultivation of widespread and previously uncultured soil bacteria[J]. Applied and environmental microbiology, 2003, 69(12): 7210−7215. doi: 10.1128/AEM.69.12.7210-7215.2003
    [59] Zhang F, Zhou X-J, Monkai J, et al. Two new species of nematode-trapping fungi (Dactylellina, Orbiliaceae) from burned forest in Yunnan, China[J]. Mycosphere, 2020, 452(1): 65−74.
    [60] 范喜杰,张欣,张发,等. 一株自发产生孢子捕食器的捕食线虫真菌——Dactylellina parvicolla WZ27[J]. 菌物学报,2018,37:305−313.
    [61] Wainwright C E, Staples T L, Charles L S, et al. Links between community ecology theory and ecological restoration are on the rise[J]. Journal of Applied Ecology, 2018, 55(2): 570−581. doi: 10.1111/1365-2664.12975
    [62] Zhou J, Ning D. Stochastic community assembly: Does it matter in microbial ecology?[J]. Microbiology and Molecular Biology Reviews, 2017, 81: 1−32.
    [63] 褚海燕,冯毛毛,柳旭,等. 土壤微生物生物地理学: 国内进展与国际前沿[J]. 土壤学报,2020,57:515−529.
    [64] Hart S C, DeLuca T H, Newman G S, et al. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils[J]. Forest Ecology and Management, 2005, 220(1−3): 166−184. doi: 10.1016/j.foreco.2005.08.012
    [65] Ferrenberg S, O'Neill S P, Knelman J E, et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance[J]. The International Society for Microbial Ecology Journal, 2013, 7(6): 1102−1111.
    [66] Bastias B A, Anderson I C, Rangel-Castro J I, et al. Influence of repeated prescribed burning on incorporation of13C from cellulose by forest soil fungi as determined by RNA stable isotope probing[J]. Soil Biology and Biochemistry, 2009, 41 (3): 467−472. doi: 10.1016/j.soilbio.2008.11.018
    [67] Trook P, Helm A. Ecological theory provides strong support for habitat restoration[J]. Biological Conservation, 2017, 206: 85−91. doi: 10.1016/j.biocon.2016.12.024
    [68] Wang X, Li G H, Zou C G, et al. Bacteria can mobilize nematode-trapping fungi to kill nematodes[J]. Nature Communications, 2014, 5(5776): 1−9.
    [69] Kastman E K, Kamelamela N, Norville J W, et al. Biotic interactions shape the ecological distributions of staphylococcus species[J]. mBio, 2016, 7(5): e01157−16. DOI: 10.1128/mBio.01157-16.
    [70] Pérez-Izquierdo L, Zabal-Aguirre M, González-Martínez S C, et al. Plant intraspecific variation modulates nutrient cycling through its below ground rhizospheric microbiome[J]. Journal of Ecology, 2019, 107(4): 1594−1605. doi: 10.1111/1365-2745.13202
    [71] Guo Y, Liu X, Tsolmon B, et al. The influence of transplanted trees on soil microbial diversity in coal mine subsidence areas in the Loess Plateau of China[J]. Global Ecology and Conservation, 2020, 21: e00877. doi: 10.1016/j.gecco.2019.e00877
    [72] Bueno-Pallero F Á, Blanco-Pérez R, Dionísio L, et al. Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and entomopathogenic fungi can modulate belowground insect pest control[J]. Journal of Invertebrate Pathology, 2018, 154: 85−94. doi: 10.1016/j.jip.2018.04.004
    [73] Mhatre P H, Karthik C, Kadirvelu K, et al. Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control[J]. Biocatalysis and Agricultural Biotechnology, 2019, 17: 119−128. doi: 10.1016/j.bcab.2018.11.009
    [74] Jing X, Sanders N J, Shi Y, et al. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate[J]. Nature Communications, 2015, 6(8159): 1−8. DOI: 10.1038/ncomms9159.
    [75] Goberna M, Navarro-Cano J A, Verdú M. Opposing phylogenetic diversity gradients of plant and soil bacterial communities[J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1825): 20153003. doi: 10.1098/rspb.2015.3003
    [76] Pérez-Valera E, Verdú M, Navarro-Cano J A, et al. Resilience to fire of phylogenetic diversity across biological domains[J]. Molecular Ecology, 2018, 27(13): 2896−2908. doi: 10.1111/mec.14729
    [77] Herren C M, McMahon K D. Keystone taxa predict compositional change in microbial communities[J]. Environmental Microbiology, 2018, 20(6): 2207−2217. doi: 10.1111/1462-2920.14257
    [78] Widder S, Allen R J, Pfeiffer T, et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics[J]. ISME Journal, 2016, 10 (11): 2557−2568. doi: 10.1038/ismej.2016.45
    [79] Shade A, Peter H, Allison S D, et al. Fundamentals of microbial community resistance and resilience[J]. Frontiers in Microbiology, 2012 , 21 (3): 803-810.
    [80] Guerra A, Reis L K, Borges F L G, et al. Ecological restoration in Brazilian biomes: Identifying advances and gaps[J]. Forest Ecology and Management, 2020, 458: 117802.
    [81] Gellie N J C, Mills J G, Breed M F, et al. Revegetation rewilds the soil bacterial microbiome of an old field Running[J]. Molecular Ecology, 2017, 26 (11): 2895−2904. doi: 10.1111/mec.14081
    [82] Bonner M T L, Allen D E, Brackin R, et al. Tropical rainforest restoration plantations are slow to restore the soil biological and organic carbon characteristics of old growth rainforest[J]. Microbial Ecology, 2020, 79: 432−442. doi: 10.1007/s00248-019-01414-7
    [83] Aguirre-Monroy A M, Santana-Martínez J C, Dussán J. Lysinibacillus sphaericus as a nutrient enhancer during fire-impacted soil replantation[J]. Applied and Environmental Soil Science, 2019, (3): 1−8. DOI: 10.1155/2019/3075153.
    [84] Deng J, Bai X, Zhou Y, et al. Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area[J]. Science of the Total Environment, 2020, 704: 135243. doi: 10.1016/j.scitotenv.2019.135243
    [85] Harris J. Soil microbial communities and restoration ecology: Facilitators or followers?[J]. Science, 2009, 325(5940): 573−574. doi: 10.1126/science.1172975
  • [1] 王金芳, 胡明形.  森林生态系统调节服务研究进展—基于Web of Science分析 . 四川林业科技, 2024, 45(1): 1-12. doi: 10.12172/202305230002
    [2] 廖汇, 时卉, 周皖榕, 任春阳.  基于CiteSpace的社会生态系统脆弱性研究 . 四川林业科技, 2023, 44(1): 1-9. doi: 10.12172/202204230001
    [3] 李小永, 田小琴.  岩溶生态系统退化与土壤有机碳贮量 . 四川林业科技, 2023, 44(4): 82-87. doi: 10.12172/202210120001
    [4] 代富强, 李青, 张霞, 刘浩.  基于CiteSpace的城市生态系统服务研究知识图谱分析 . 四川林业科技, 2022, 43(1): 102-108. doi: 10.12172/202104040001
    [5] 杜燕, 包维楷.  高山松林生态系统研究进展 . 四川林业科技, 2022, 43(5): 1-10. doi: 10.12172/202208220004
    [6] 孙艳芝, 张同升.  生态系统服务社会价值研究综述 . 四川林业科技, 2020, 41(3): 143-152. doi: 10.12172/202002170001
    [7] 郭毅, 杨志松, 范馨月.  生物多样性与生态系统功能关系研究进展 . 四川林业科技, 2020, 41(3): 137-142. doi: 10.12172/202003240001
    [8] 薛沛沛, 齐代华, 陈道静, 孟祥江.  马尾松林改造成香樟林过程中生态系统服务功能评估 . 四川林业科技, 2019, 40(1): 30-34. doi: 10.16779/j.cnki.1003-5508.2019.01.006
    [9] 杨蕾, 邹玉和, 杨靖宇, 余凌帆, 陈德朝, 鄢武先.  沼泽湿地生态系统氮素循环研究综述 . 四川林业科技, 2019, 40(2): 99-104. doi: 10.16779/j.cnki.1003-5508.2019.02.022
    [10] 吴桂康, 吴贤明, 张芳, 马方涛, 陈章铭.  西昌市大箐梁子华山松球蚜生物生态学特性研究 . 四川林业科技, 2019, 40(5): 56-59. doi: 10.16779/j.cnki.1003-5508.2019.05.011
    [11] 李悦, 郭虎, 程武学.  基于景观生态学的荥经县土地利用类型动态及驱动力分析 . 四川林业科技, 2017, 38(1): 32-36,50. doi: 10.16779/j.cnki.1003-5508.2017.01.007
    [12] 何方永.  光雾山彩叶林旅游生态系统服务功能价值评估 . 四川林业科技, 2016, 37(4): 47-51. doi: 10.16779/j.cnki.1003-5508.2016.04.010
    [13] 王勇, 周国强, 贾廷彬, 何兴炳, 胡炎彬.  佯黄竹生物学生态学特性研究 . 四川林业科技, 2016, 37(6): 94-96. doi: 10.16779/j.cnki.1003-5508.2016.06.021
    [14] 马军.  山西省天保区森林生态系统服务功能价值评估 . 四川林业科技, 2015, 36(6): 81-84. doi: 10.16779/j.cnki.1003-5508.2015.06.015
    [15] 薛兰兰, 袁兴中, 王轶浩, 何邦亮, 刘访兵.  重庆湿地生态系统服务功能值评价与分析 . 四川林业科技, 2015, 36(5): 7-10,15. doi: 10.16779/j.cnki.1003-5508.2015.05.002
    [16] 张红, 张涛, 邓东周, 庄文化.  土壤与竹子生态学效应的相关性研究进展 . 四川林业科技, 2015, 36(1): 17-22. doi: 10.16779/j.cnki.1003-5508.2015.01.004
    [17] 谷海燕, 李策宏.  中国特有植物四福花的生物生态学特征初步研究 . 四川林业科技, 2015, 36(3): 112-114,74. doi: 10.16779/j.cnki.1003-5508.2015.03.025
    [18] 靳伟, 倪天珍, 杨婷婷.  四川省草地生态系统碳储量估算 . 四川林业科技, 2014, 35(5): 8-12. doi: 10.16779/j.cnki.1003-5508.2014.05.003
    [19] 任君芳, 赵晓燕, 侯全芬.  我国草原生态系统鼢鼠防治研究概况 . 四川林业科技, 2013, 34(4): 59-61. doi: 10.16779/j.cnki.1003-5508.2013.04.016
    [20] 吕铭志, 周泽江, 盛连喜, 张立.  青藏高原东缘湿地生态系统生物量差异 . 四川林业科技, 2013, 34(6): 22-26. doi: 10.16779/j.cnki.1003-5508.2013.06.006
  • 加载中
  • 计量
    • 文章访问数:  678
    • HTML全文浏览量:  297
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-10-21
    • 网络出版日期:  2021-03-16
    • 刊出日期:  2021-06-25

    火干扰下的森林土壤微生物研究现状分析

    doi: 10.12172/202010270001
      作者简介:

      佘容(1982—),女,高级工程师,博士,sher@eastern-himalaya.cn

      通讯作者: yangxy@eastern-himalaya.cn
    基金项目:  第二次青藏高原综合科学考察研究(2019QZKK0402)

    摘要: 火后生态恢复是21世纪恢复生态学的重要研究内容,土壤微生物作为森林生态系统的关键组成部分,开展火干扰下土壤微生物的研究是非常有必要的。本文通过综合分析现有文献对火后森林土壤微生物的研究结果,发现不同火强度和维持时间下土壤微生物活性、群落组成变化及影响火干扰强度的主要因素是已有研究的主要内容,在火后土壤微生物群落的恢复时间、多样性变化、演替规律等问题上尚存在争论,对火干扰下的土壤微生物研究的重要性也尚未得到足够重视。未来研究应在综合应用现有微生物研究技术并继续改进创新的基础上,采用野外调查和田间模拟控制实验相结合的手段,分别从种群、群落和生态系统等多个层次上开展火干扰下的森林土壤微生物研究,解析地下与地上生态系统的相互关系,探究土壤微生物在火干扰下的变化规律和演替机制,丰富火生态学理论;确定火后土壤微生物恢复中的功能类群,分析功能类群在火后恢复过程中的作用,比较分析不同恢复方式下土壤微生物的变化规律,以指导火后生态系统的恢复实践。

    English Abstract

    • 火是地球上一种常见的现象,在地球生命演化进程中扮演着非常重要的角色,塑造着万物生灵[1-3],在生态系统的演替过程中发挥着重要的作用[4],是生物多样性产生的关键驱动力[5-8]。同时,火也是一种剧烈的环境干扰因素,对生态系统的影响十分显著,尤其是在全球变暖和人类活动加剧的当下,火灾发生的强度和频率将进一步增加[9, 10],火对地球生态系统的影响及火后生态恢复将成为21世纪生态学的重要研究内容之一[11]

      微生物是地球上出现最早的生命,栖息在几乎所有人类可以想象的环境中。土壤中蕴藏着地球上最多样化的微生物资源,是地球关键元素循环的引擎,联系着大气圈、水圈、岩石圈和生物圈的物质和能量交流,并对土壤结构的形成与维护以及植物健康生长均起着重要作用[12, 13]。同时,土壤微生物还在植被恢复、生境重建和土壤的稳定性等方面发挥着非常重要而独特的作用[14, 15]。可见,土壤微生物是生态系统的关键组成部分,它的扰动和恢复过程都会直接影响到地表植被和其他生态过程[16-18]。近年来,随着分子生物技术和分析方法的迅猛发展[19],生态学中长期被忽视的土壤微生物逐渐得到重视,其在生态系统恢复中的重要性也逐渐得到认可[20, 21]。因此,本文基于相关研究文献,分析火干扰下的土壤微生物研究现状,探求未来火干扰下森林土壤微生物研究需要关注的方向,以此助力二十一世纪的火生态学研究及生态系统修复实践。

      • 目前,关于火对土壤微生物影响的研究主要是从火后土壤的总生物量、生物量碳、生物量氮、土壤呼吸、土壤酶活等指标变化的角度入手,探究火对土壤微生物的影响。近年来,随着分子生物技术和分析方法的迅猛发展,人们逐渐开始对土壤微生物群落结构的火干扰影响作用进行了研究。总体上,火干扰过程对土壤微生物的作用主要有直接影响和间接影响两个方面。一方面,在火干扰过程中,土壤表面温度可以从50 ℃达到1 500 ℃,而土壤微生物对热比较敏感,火烧能直接导致土壤微生物的死伤,使得土壤表层微生物的数量及代谢活性大大降低[22],且难以在短时间内恢复[23];另一方面,火烧改变了地面植被和土壤理化性质[24],火烧产生的灰烬逐渐渗透也会对土壤理化性质产生显著影响[25-28],从而间接影响土壤微生物,导致其生物量和群落结构发生改变。

      • 火对土壤微生物的干扰作用主要受到火烧强度、火烧持续时间、回火间隔、植被类型、凋落物积累量、土壤深度和降雨量等因素影响,从而导致研究结论因火烧迹地的不同而存在差异[29, 30]。火烧强度是火干扰作用的最主要影响因子,不同的火烧强度产生的温度差别很大[31],因而其对土壤微生物的影响也存在显著差异[32, 33]。研究认为,随着火烧强度的增加,微生物生物量会显著下降,尤其是重度火烧会使土壤微生物生物量明显减少[34, 35],而轻、中度火烧对土壤微生物生物量的影响不显著[36]。但有的研究却发现,土壤微生物生物量的减少程度与火烧强度无相关性,无论何种强度火烧均能使土壤微生物生物量减少[37]。不同火烧强度对土壤微生物群落和多样性的影响程度也存在差异,重度火烧能够明显改变松树林土壤的真菌和细菌的群落结构,尤其是真菌的多样性和丰富度会随着火烧强度的增加而下降[32],而Hamman(2007)等的研究发现高强度与低强度火干扰后土壤微生物群落结构差异微小[38]。回火间隔是指受到反复火干扰生境中两次火烧之间的间隔时间,因为间隔时间长短不同,土壤微生物恢复程度不同,从而导致土壤微生物在多次火烧中的变化也不同。生物量方面,2年一次的反复火烧所导致的微生物生物量降低幅度较每4年一次的大[39];群落结构方面,3年一次的反复火烧会改变土壤真菌群落,而6年一次的则能允许生态系统重新设置到与未火烧区域相似的状态[40, 41]。此外,土壤深度、降雨量、火烧前的植被类型等也会影响火对土壤微生物的作用强度。土壤对热传导有削减作用,火干扰对土壤微生物的直接作用主要在土壤表层(0~5 cm),随着土壤深度的增加,影响急剧降低[42],但是,这种削减作用又会受到土壤湿度的影响,随着湿度增加,土壤对热传导的削减作用减弱[43]。火烧能直接快速的将有机物转化为无机物,在降雨过程中,土壤pH会增加0.5~1个单位。降雨量会影响土壤pH变化的持续时间,降雨量少的地方可持续数年、数十年,而降雨量丰富的地区由于火后地面裸露,盐基大量淋失,火后pH值的增加仅能维持几个月至1年[44],而pH与土壤微生物群落密切相关[45, 46],同时,火后降雨形成的地表径流将在短期内导致生态系统中磷的流失[47],也能引起土壤微生物的变化。

      • 火后土壤微生物恢复的研究主要关注于自然恢复状态下土壤微生物的恢复节律,但已有研究的结论并不一致:1)生物量方面,有的研究认为火烧增加了土壤营养从而导致土壤微生物生物量在火后的急剧增加[48];而大多的研究则认为,火干扰对土壤微生物生物量的作用是负向的,且作用时间可以持续3~13年[22];Köster (2016)等的研究显示,火烧迹地土壤微生物生物量甚至需要几十年的时间才能恢复[49];2)群落结构方面,土壤微生物群落结构受火干扰后在早期变化明显,后期会逐渐恢复,但不同研究中群落结构的恢复节律不一致,尤其是野火和计划火烧的恢复节奏差异很大[50, 51]。研究结论存在差异的原因主要来自火本身的多样性,即不同火灾的火烧强度和火烧持续时间是不同的,造成的影响自然不同,而多数的研究结论都是来自某一特定火烧迹地,这必然导致不同的研究结论。另一方面,火后土壤微生物的变化还受到火烧地立地条件的影响,如火烧前的植被及其壤质、火烧地的地形、所处气候区域等[28, 52, 53]

      • 森林火干扰主要分野火干扰和计划火烧干扰两种类型。相对于计划火烧,野火的发生是不确定的,导致野火研究中难以获得火烧前的背景数据,且由于野火发生过程中火行为的多变性,导致无法对野火的火烧强度及持续时间进行直接测量,更缺少对土壤温度及其他土壤属性变化的实时监测,也无法对影响火干扰作用的因素进行单因子作用解析与比较。所以未来研究应该在基于野外火烧迹地研究结果的基础上增加野外控制试验,其优势:一是可以在实验中通过热电偶等对火强度进行实时测量,并对持续时间及土壤温度的变化等理化性质进行连续监测,这样就可以建立火强度、持续时间与火对土壤微生物扰动程度的定量化关系[24, 54];二是野外控制实验可以尽量还原火干扰中及火后自然环境对土壤微生物的影响,尤其是自然环境下种质资源自由扩散对群落重构的影响[55],这对进行火后土壤微生物群落演替的理论研究是十分重要的;三是控制实验可以剖析火因子,如温度、灰烬等的单独作用与协同作用,研究结果将进一步支撑火干扰影响作用模型的建立。

      • 鉴于微生物群落结构的复杂性和传统培养方法的局限性,目前在土壤微生物研究中,研究人员日益依赖基因组测序技术,忽视了传统的培养方法在微生物研究中的重要性。虽然基因测序技术有着巨大的潜力并且获得了很多开拓性的成果,但是该方法毕竟是基于基因序列推导的结果,难以对其进行实证性的验证。此外,测序技术本身也存在关于“种”的定义问题,而这是利用测序技术对微生物群落物种组成进行测度的基础[56]。另外,基于分子生物学技术的功能研究,如转录组学和蛋白质组学,此类方法一方面费用高昂,另一方面,即使是定义明确的物种,如大肠杆菌,在亲缘关系密切的生物群体中,不同成员的基因组也可能存在很大差异,因此,即使通过系统发育标记找到物种也并不一定意味着有其特定的基因与之相伴[57]。因此,未来还有待加强微生物培养法的改进与创新,如根据基因组测序结果设计培养基配方、原位培养等,并加强其在微生物群落功能研究中的应用,以验证、补充宏基因组的数据[58]。同时,只有在种群明确的情况下,才能开展基于种群到群落的火适应机制、功能相关性、火后恢复生态学等研究。另外,鉴于火对生物多样性的促进作用,借助培养法开展研究还有利于发现微生物新种[59, 60]

      • 从目前已经发表的国内外文献来看,对火干扰下森林土壤微生物的研究尚未得到学界的足够重视。与此相对应的是,有限的研究也已经发现火对土壤微生物的影响较大,因此,从火视角开展土壤微生物的研究不仅可能极大促进一些生态学核心问题的突破,也是恢复生态学不可或缺的重要组成部分,同时也有助于火后生态系统恢复实践。

      • 群落构建机制是生态学研究的核心内容,也是恢复生态理论研究的重要方向[61],但微生物群落构建机制的研究远远滞后于动植物,已有研究对确定性过程与随机性过程在微生物群落构建中的相对贡献也尚不清楚[62, 63]。各种生境中复杂的微生物种群和庞大的生物量使微生物群落的时空动态监测变得的非常困难,尤其是微生物群落微小的变化难以被检测到。因此,要了解清楚确定性过程与随机性过程在微生物群落构建过程中的作用,需要在自然环境下,对微生物群落尤其是受干扰后种群数量急剧减少的微生物群落的重构过程进行长期监测,才能确定随机性和确定性过程在微生物群落构建中的相对重要性或者在不同群群落构建时期的作用。已有研究表明,火的干扰会显著降低土壤微生物生物量,改变土壤微生物群落结构,产生很多生态位空斑,甚至重启土壤微生物群落构建[64-66],这个过程可能会持续较长时间[23]。因此,从火视角开展火后土壤微生物群落变化的长期监测,将有可能解析确定性与随机性过程在微生物群落构建中的相对作用,尤其是随机性群落装配过程在微生物群落构建中的作用,极大推进土壤微生物的群落构建机制研究。同时,随着人们对生物群落演替和聚集机制研究的推进,生态学理论在生态恢复实践活动中的指导作用越来越受到关注[67],加强火后群落构建机制研究,也有利于更好的指导火后生态系统的恢复实践。

      • 不同土壤微生物类群间相互竞争、协同共存[68, 69],在土壤生态系统中发挥着不同的功能,而目前火干扰下的土壤微生物研究大多只针对一类微生物,未来研究需整体比较评估不同类别土壤微生物对火干扰的响应及其在火后的群落组成和生态功能的变化,发掘在火后恢复过程中的关键功能群及关键物种。另外,生态系统的各个部分紧密联系又相互影响,尤其是土壤微生物,既与地上植被相互作用[70, 71],也与土壤动物相互关联[72, 73],而成功的生态系统恢复必将是建立在生态系统食物链中多个营养水平上生物群落的协同恢复基础之上的。因此,火干扰下土壤微生物的研究必须考虑与其他生物类群的相互关系,通过跨越营养、生理和系统发育水平范围的研究,方有可能全面理解和预测火干扰下土壤微生物的演变及影响因素[21, 74-76]

      • 研究表明,在火的干扰下土壤微生物群落会发生明显变化,但这种变化与土壤生态系统恢复的关系如何?是哪些类群在土壤恢复的不同阶段发挥生态学功能以及是什么样的功能[77],目前是还不清楚的,而这对于生态系统整体恢复的理论突破和实践都至关重要。近年来,随着分子生物学技术和分析方法的发展,火干扰下的土壤微生物研究日渐增多,但是目前的研究主要针对微生物总量或物种组成方面的变化研究,对功能的影响以及受干扰后的响应变化研究是相对缺乏的,而这正是所有研究的最终目的[78]。另一方面,微生物群落中存在功能冗余,面对干扰,群落结构的变化与功能的变化可能是不一致的[79]。因此,在对群落结构变化进行研究的同时,必须加强火后不同阶段土壤微生物群落功能的研究,同时重点关注在生态系统物质能量循环中发挥重要作用的功能类群以利于恢复实践的开展,达到有效、快速实现火后土壤生态系统恢复的目的。此外,微生物宏观生态研究领域也应当充分应用蛋白质组学、代谢组学、基因芯片技术等功能研究手段及分析方法,如共生网络分析等服务于微生物群落功能的研究。

      • 随着火灾发生频率和强度的增加,火后恢复必将逐渐纳入生态系统恢复实践中,但当前人类干预下的生态恢复主要关注地上植被和动物的恢复[80],对于土壤,尤其土壤微生物的恢复研究主要从植被恢复后土壤微生物会产生的变化角度进行了少量的探索[81, 82],而在火后人工恢复过程中考虑利用土壤微生物为工具进行的研究则仅见于Aguirre-Monroy等的关于农田生态系统营养物质恢复的研究报道[83],而以土壤微生物为目的的森林火烧迹地人工恢复研究和实践活动目前还是空白。研究表明,土壤微生物对不同的管理措施的响应是非常迅速的,而不同的植被恢复对土壤微生物的影响不同[84]。另外,最新的研究表明,即使植被恢复,土壤微生物活性和群落组成也没有恢复[82],而土壤,作为生物系统的重要组成部分,其功能发挥的主角—微生物的修复是保证生态恢复效果持续且能抵抗干扰的最有效、经济的途径[85]。因此,未来的恢复生态学研究有必要在对火后土壤微生物恢复相关功能群研究的基础上,进一步开展功能微生物的人为介入方法研究,以帮助土壤微生物群落的快速恢复,最终实现土壤生态系统的整体恢复,从而支撑火后森林生态系统系统的快速恢复。

    参考文献 (85)

    目录

      /

      返回文章
      返回