WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 41 Issue 6
Dec.  2020
Article Contents
Turn off MathJax

Chen J H, Mou H, Xie T Z, et al. Hydrological effects of litter layer and soil layer in Cupressus funebris plantation under different thinning intensities in hilly area of central Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(6): 8−14 doi: 10.12172/202009240002
Citation: Chen J H, Mou H, Xie T Z, et al. Hydrological effects of litter layer and soil layer in Cupressus funebris plantation under different thinning intensities in hilly area of central Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(6): 8−14 doi: 10.12172/202009240002

Hydrological Effects of Litter Layer and Soil Layer in Cupressus funebris Plantation under Different Thinning Intensities in Hilly Area of Central Sichuan


doi: 10.12172/202009240002
More Information
  • Corresponding author: mucl2006@aliyun.com
  • Received Date: 2020-09-24
    Available Online: 2020-10-23
  • Publish Date: 2020-12-11
  • The suitable stand structure is beneficial for improving the ecological and economic functions of the stands. In order to provide scientific basis for sustainable management of Cupressus funebris plantation in hilly area of central Sichuan, hydrological effects of litter layer and soil layer under different thinning intensity were compared, and the optimal thinning intensity of soil and water conservation was discussed. In 2007, Cupressus funebris plantations with 35−40 year-old, canopy density ≥0.8, understory shrub coverage ≤20% and herb coverage ≤30% were selected, and three thinning intensities (I: 10%−15%, II: 16−25%, III: 26−35%) and CK (no thinning) were set by random block method. Based on the field sampling in 2019, the hydrological effect indexes such as soil bulk density, capillary porosity, total porosity, maximum water holding capacity, saturated water storage capacity and litter volume, natural moisture content, maximum water holding capacity, maximum water holding capacity, maximum retaining capacity and effective retaining capacity, as well as dynamic process simulation of litter water holding and water absorption were analyzed and caculated. The results showed that: (1) After thinning, the litter volume increased significantly. The total litter volume of thinning intensity I, II and III was 1.24, 1.78 and 2.38 times of CK, respectively. The maximum water holding capacity and effective storage capacity of thinning intensity III were 3.73 and 2.59 times of CK, respectively. Except thinning intensity II and CK, there were significant differences among other treatments (P < 0.05). (2) The variation of water holding capacity of litter layer with soaking time followed the logarithmic function W=a−b×ln(t+c), R2>0.95, and the variation of water absorption with soaking time followed the power function V=mtn, R2>0.80. (3) The soil bulk density under different thinning intensities was significantly lower than that of CK. The soil capillary porosity of thinning intensity III was the largest (35.30±2.60%) and the control was the smallest (28.19±1.29%). The maximum water holding capacity of 0−30 cm soil was the highest in thinning intensity III (105.90±2.60 mm), followed by II (103.07±3.01 mm), and the smallest was CK (84.58±1.29 mm). The saturated water storage of different thinning intensities was higher than that of CK. The 0−30 cm soil saturated water storage of thinning intensity I, II and III was 1.09, 1.21 and 1.27 times of CK, respectively. Considering the hydrological effects of soil layer and litter layer, thinning intensity III, i.e. the number of trees reserved from 1700 indv. ·hm−2 to 2100 indv·hm−2, was the best optimum thinning intensity. The hydrological performance of the three thinning intensities was better than that of CK, indicating that thinning had a positive effect for improving the hydrological performance of forest stand.
  • 加载中
  • [1] 杨玉坡. 1993. 长江上游(川江) 防护林研究[M]. 北京: 科学出版社, 143−262.
    [2] 龚固堂,牛牧,慕长龙,等. 间伐强度对柏木人工林生长及林下植物的影响[J]. 林业科学,2015,51(4):8−15.
    [3] 骆宗诗,侯波,向成华,等. 四川盆地低山丘陵区柏木低效防护林的改造[J]. 中南林业科技大学学报,2009,29(6):82−87. doi: 10.3969/j.issn.1673-923X.2009.06.009
    [4] 季荣飞,周世兴,黄从德,等. 间伐强度对柏木低效人工林灌草多样性的影响[J]. 东北林业大学学报,2015,43(5):68−74. doi: 10.3969/j.issn.1000-5382.2015.05.014
    [5] 杨育林,李贤伟,王海明,等. 抚育间伐对川中丘陵区柏木人工林生长和植物多样性的影响[J]. 山地学报,2015,33(2):199−207.
    [6] 黎燕琼, 龚固堂, 郑绍伟, 等. 2013. 低效柏木纯林不同改造措施对水土保持功能的影响[J]. 生态学报, 2013, 33(3): 0934−0943.
    [7] 陈俊华,牛牧,龚固堂,等. 川中丘陵区人工柏木纯林“带状采伐+补阔”改造研究[J]. 西南农业学报,2019,32(3):636−646.
    [8] 牛牧,陈俊华,龚固堂,等. 川中丘陵区低效防护林分“开窗补阔”改造试验研究[J]. 西北林学院学报,2015,30(1):39−45. doi: 10.3969/j.issn.1001-7461.2015.01.07
    [9] 张卫强,李召青,周平,等. 东江中上游主要森林类型凋落物的持水特性[J]. 水土保持学报,2010,24(5):130−134.
    [10] 管惠文,董希斌,张甜,等. 间伐强度对大兴安岭落叶松天然次生林水文性能的影响[J]. 南京林业大学学报(自然科学版),2018,42(6):68−76.
    [11] 温林生,邓文平,彭云等. 江西退化红壤区3种森林恢复模式的枯落物和土壤表层水文功能研究[J]. 水土保持学报,2020,34(4):158−163.
    [12] 塔莉,杨新兵,朱辰光,等. 华北土石山区森林枯落物与土壤水文效应研究[J]. 河北农业大学学报,2015,38(3):59−63.
    [13] 宣立辉,康凡,谷建才,等. 冀北地区典型林分枯落物层与土壤层的水文效应[J]. 水土保持研究,2018,25(4):86−91.
    [14] 曾建军,史正涛. 城市水源地5种森林枯落物水文效应特征[J]. 水土保持通报,2016,36(1):38−43.
    [15] 邹奕巧,孙欧文,刘海英,等. 浙江省天台县不同森林类型枯落物及土壤水文特性[J]. 水土保持通报,2020,40(3):170−174.
    [16] 张祎,李鹏,刘晓君,等. 黄土丘陵区不同植被类型枯落物持水效能研究[J]. 水土保持研究,2016,23(5):100−105.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(4)

Article views(467) PDF downloads(26) Cited by()

Related
Proportional views

Hydrological Effects of Litter Layer and Soil Layer in Cupressus funebris Plantation under Different Thinning Intensities in Hilly Area of Central Sichuan

doi: 10.12172/202009240002
  • Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu 610081, China
  • Corresponding author: mucl2006@aliyun.com

Abstract: The suitable stand structure is beneficial for improving the ecological and economic functions of the stands. In order to provide scientific basis for sustainable management of Cupressus funebris plantation in hilly area of central Sichuan, hydrological effects of litter layer and soil layer under different thinning intensity were compared, and the optimal thinning intensity of soil and water conservation was discussed. In 2007, Cupressus funebris plantations with 35−40 year-old, canopy density ≥0.8, understory shrub coverage ≤20% and herb coverage ≤30% were selected, and three thinning intensities (I: 10%−15%, II: 16−25%, III: 26−35%) and CK (no thinning) were set by random block method. Based on the field sampling in 2019, the hydrological effect indexes such as soil bulk density, capillary porosity, total porosity, maximum water holding capacity, saturated water storage capacity and litter volume, natural moisture content, maximum water holding capacity, maximum water holding capacity, maximum retaining capacity and effective retaining capacity, as well as dynamic process simulation of litter water holding and water absorption were analyzed and caculated. The results showed that: (1) After thinning, the litter volume increased significantly. The total litter volume of thinning intensity I, II and III was 1.24, 1.78 and 2.38 times of CK, respectively. The maximum water holding capacity and effective storage capacity of thinning intensity III were 3.73 and 2.59 times of CK, respectively. Except thinning intensity II and CK, there were significant differences among other treatments (P < 0.05). (2) The variation of water holding capacity of litter layer with soaking time followed the logarithmic function W=a−b×ln(t+c), R2>0.95, and the variation of water absorption with soaking time followed the power function V=mtn, R2>0.80. (3) The soil bulk density under different thinning intensities was significantly lower than that of CK. The soil capillary porosity of thinning intensity III was the largest (35.30±2.60%) and the control was the smallest (28.19±1.29%). The maximum water holding capacity of 0−30 cm soil was the highest in thinning intensity III (105.90±2.60 mm), followed by II (103.07±3.01 mm), and the smallest was CK (84.58±1.29 mm). The saturated water storage of different thinning intensities was higher than that of CK. The 0−30 cm soil saturated water storage of thinning intensity I, II and III was 1.09, 1.21 and 1.27 times of CK, respectively. Considering the hydrological effects of soil layer and litter layer, thinning intensity III, i.e. the number of trees reserved from 1700 indv. ·hm−2 to 2100 indv·hm−2, was the best optimum thinning intensity. The hydrological performance of the three thinning intensities was better than that of CK, indicating that thinning had a positive effect for improving the hydrological performance of forest stand.

  • 川中丘陵区的柏木(Cupressus funebris)人工林主要是上世纪八十年代长江防护林工程中营造的桤柏混交林演化而来[1]。当前林分普遍树种单一、密度过大,导致现今林下灌草盖度较低、天然更新差、生产力低下,不能充分发挥森林的多种效益[2],急需进行林分改造。国内研究采用的方法有抚育间伐[2-5],带状皆伐+补阔[6-7],开窗补阔[8]等,均取得了较为理想的效果。针对改造后的林分水文效应,黎燕琼[6]研究了“带状皆伐+补阔”中不同带宽与对照的对比,骆宗诗[3]分析了不同间伐强度林分土壤容重、总孔隙度和最大持水量以及枯落物有效持水量的差别。但对于不同间伐强度枯落物蓄积量、持水过程未见报道。开展研究区柏木人工林分间伐试验,研究不同间伐强度林分的枯落物层、土壤层的持水性能,揭示其水文效应特征,以期为该区域人工柏木林的可持续经营、低质低效林分改造和质量精准提升提供参考依据。

1.   研究区概况
  • 研究区位于四川省盐亭县云溪镇高山村,地理位置E105°22′51″~105° 22′59″,N 31°13′29″~31°13′50″,海拔350~650 m,丘陵地貌,属中亚热带湿润季风气候区,年均气温17.3 ℃,年均降水量826 mm。该区广泛露出紫色泥页岩和砂石岩地层,易风化崩解破碎,成土过程快,土壤抗蚀力弱,土壤类型主要为紫色土。现有森林类型几乎为柏木人工纯林,林下灌草种类简单,植被盖度低[2]

2.   研究方法
  • 2007年在该区域选择立地条件基本一致,林龄35~40年,郁闭度≥0.8,林下灌木盖度≤20%,草本盖度≤30%的人工柏木纯林样地20个,每个样地大小20 m×20 m。设置4种强度,即I:10%~15%、II:16%~25%、III:26%~35%和对照CK。每种强度5个样地。间伐方法为生态疏伐,即伐掉影响目标树的竞争木和过密林木。为保证林分因子的一致性,间伐前,对各样地内的乔木进行每木检尺,计算林分的平均树高、平均胸径、林分密度和蓄积量,经F检验表明上述各因子均无显著差异。对每个样地进行间伐木选择、作标记、测量、采伐[2]。间伐后的样地基本情况见表1

    间伐强度
    Thinning
    intensity
    样地号
    Plot number
    胸径
    DBH/cm
    树高
    Height/m
    原有株数
    Number of
    original
    trees
    间伐株数
    Number of
    thinning
    trees
    保留密度
    Retention
    density
    I
    (10%~15%)
    1-110.88.2116122600
    1-211.08.3109162325
    1-310.68.1107132350
    1-411.37.9113142475
    1-59.98.5106122350
    II
    (16%~25%)
    2-112.18.3103172150
    2-210.39.2112202300
    2-311.98.9115222325
    2-410.88.699241875
    2-511.37.8104261950
    III
    (26%~35%)
    3-112.88.1106301900
    3-210.97.9121392050
    3-311.49.0111381825
    3-412.19.2107361775
    3-510.68.8110381800
    CK
    (未间伐)
    4-112.99.11082700
    4-28.48.21102750
    4-39.59.21213025
    4-48.78.81142850
    4-59.18.41122800

    Table 1.  General information of sampling plots after thinning

  • 2019年(即间伐后12年),对样地进行调查。在每个样地内,沿顺坡方向“S”形设置取样点。枯落物蓄积量采用“全体收获法”,测定凋落物层厚度,称重,取样,带回实验室将枝条、叶、果实分开拣出,分别取样称重,烘干(65 ℃)至恒重后再称重,以干物质重推算1 hm2凋落物蓄积量。采用浸泡法测定枯落物持水性能,在水体中放入烘干的枯落物并浸泡0.5 h、1 h、2 h、4 h、6 h、8 h、10 h、12 h、14 h、16 h、18 h、20 h、22 h、24 h后记录湿重。计算自然含水率、最大持水量、最大持水率、最大拦蓄量、有效拦蓄量[9]等5项指标。同时在每个样点上用容积为100 cm3环刀在土壤剖面取0~30 cm的原状土,同时用铝盒取土样,测定土壤含水量。采用“环刀法”测定土壤的物理性质,包括土壤容重、毛管孔隙度、总孔隙度、最大吸持贮水量、饱和贮水量等5项反映土壤持水性能的指标[10]

  • 运用Microsoft Excel 2007进行数据录入、基本计算;在SPSS 20.0里面进行单因素方差分析(One-way ANOVA)和多重比较(显著水平P<0.05),非线性拟合、作图均使用OriginPro 2018。枯落物的自然含水率、最大持水量、最大持水率、最大拦蓄量、有效拦蓄量,土壤容重、毛管孔隙度、总孔隙度、最大吸持贮水量、饱和贮水量的计算公式参考文献[11]。

3.   结果与分析
  • 不同间伐强度下枯落物蓄积量见图1。可以看出,枝、叶、总枯落物量均遵从这样的规律,即按枯落物量多少排列为III>II>I>CK,而果实枯落物中,以I最多(0.59 t·hm−2),其次是CK(0.35 t·hm−2),最少的是III(26~35%),每hm2的量仅有0.19 t。间伐强度为I、II、III的枝、叶、总枯落物蓄积量分别是CK的1.24倍、1.80倍、3.30倍,1.08倍、2.11倍、2.56倍和1.24倍、1.78倍、2.38倍。

    Figure 1.  Litter volume

    方差分析和多重比较(LSD)表明,不同间伐强度枝枯落物蓄积量,除I与CK差异不显著外(P>0.05),其余处理间均差异显著(P<0.05);叶枯落物蓄积量中,间伐强度I与对照差异不显著(P>0.05),间伐强度II与III差异不显著(P>0.05)。其余处理间差异显著(P<0.05);果实枯落物蓄积量中,间伐强度I与所有处理均表现为差异显著(P<0.05),间伐强度II与III和CK差异均不显著(P>0.05),而间伐强度III与CK差异显著(P<0.05);总枯落物蓄积量的规律与此类似。

  • 不同间伐强度枯落物层持水性能指标见表2。可以看出,除最大持水率外,枯落物自然含水率、最大持水量、最大拦蓄量、有效拦蓄量按由大到小均表现为III>II>I>CK。间伐强度III的最大持水量为7.45±1.17 t·hm−2,有效拦蓄量为11.75±1.35 t·hm−2,分别约为CK的3.73倍和2.59倍。方差分析和多重比较(LSD)表明,自然含水率除III与其余强度差异显著外(P<0.05),其余处理间均差异不显著(P>0.05)。最大持水量、最大持水率、最大拦蓄量、有效拦蓄量的规律一致,即除In与对照间差异不显著外(P>0.05),其余处理间差异显著(P<0.05)。

    间伐强度
    Thinning intensity
    自然含水率
    Natural moisture content/%
    最大持水量
    Maximum water holding capacity/(t.hm−2)
    最大持水
    Maximum water holding capacity/%
    最大拦蓄量
    Maximum storage capacity/(t.hm−2)
    有效拦蓄
    Effective storage capacity/(t.hm−2)
    I16.85±1.93B2.70±0.80C122.30±9.31C5.78±0.74C4.57±0.64C
    II17.22±1.48B4.62±0.90B147.52±16.56B7.79±1.06B7.66±0.77B
    III18.04±2.04A7.45±1.17A177.11±16.84A12.23±0.83A11.75±1.35A
    CK16.08±1.80B2.20±0.55 C125.35±10.14C5.33±0.69C4.53±0.74C

    Table 2.  Water holding capacity of the litter layer under different thinning intensities

  • 不同处理枯落物层的持水量动态变化过程见图2。从图2可知,不同处理枯落物的持水量随浸泡时间的变化趋势基本相似。在浸泡实验开始的前6 h内,持水量迅速增加,此时枯落物的持水量已经达到最大水持水量的83.76%~91.25%。在浸泡10 h后,枯落物持水量缓慢增加,到14 h时基本达到饱和。持水速度最快的是间伐强度III,其次是I,最慢的是CK。经在OriginPro 2018中进行回归分析,不同处理枯落物的动态持水量与浸泡时间的关系满足对数函数,表达式为:W=a−b×ln(t+c)。其中,W为枯落物实时持水量,t为浸泡时间(h),ab均为常数参数。不同处理枯落物的持水量与浸泡时间的函数模型见表3。从拟合的相关系数RR值均在0.95以上)和F检查值来看,效果非常理想。

    Figure 2.  Dynamic process of water holding capacity of the litter layer

    间伐强度Thinning intensity关系式EquationR2FF value概率>FProbability>F
    IW=0.7399+0.1037*ln(t+0.0497)0.95976 698.80720
    IIW=0.7243+0.1175*ln(t+0.0836)0.99739 962.30220
    IIIW=0.8750+0.9000*ln(t+0.1878)0.984322 825.1578 0
    CKW=0.6658+0.1277*ln(t+0.1331)0.97738 109.38320

    Table 3.  Relationship between water holding amount and soaking time of the litter layer

  • 根据时间间隔的持水增量来计算不同间伐强度枯落物层单位时间的吸水速率。动态趋势如图3所示。浸泡开始,枯落物迅速吸水。在前0.5 h内,吸水速率在1.81 t·hm−2·h−1~2.45 t·hm−2·h−1。由于枯落物成分和储量的不同,不同间伐强度枯落物的吸水速率有差异,但变化趋势基本一致。在浸泡开始2 h内吸水速率较高,随着时间的延长,吸水速率逐渐降低,到12 h后的吸水速率趋近于0。根据OriginPro 2018拟合枯落物的吸水速率动态过程,可以看出,基本呈幂函数曲线。其表示式为V=mtn。式中,V为枯落物吸水速率(t·hm−2·h−1),mn为参数(常数)。不同处理枯落物的吸水速率与浸泡时间的函数模型见表4。从拟合的相关系数RR值均在0.80以上)和F检查值来看,效果还是比较理想的。

    Figure 3.  Dynamic process of water absorbing rate of the litter layer

    间伐强度Thinning intensity关系式EquationR2FF value概率>FProbability >F
    I(10%~15%)V=1.15449t−0.98230.9692303.33626.9656E-10
    II(16%~25%)V=1.3741t−1.01530.896687.88567.1618E-7
    III(26%~35%)V=1.6982t−1.06850.802142.54172.8417E-5
    CKV=1.0010t−0.98540.9876747.10953.5444E-12

    Table 4.  Relationship between water-holding amount and soaking time of the litter layer

  • 从不同间伐强度土壤容重的数值来看(见图4),按由小到大排列为III(1.41 g·cm−3)<II(1.43 g·cm−3)<I(1.51 g·cm−3)<CK(1.64 g·cm−3)。不同间伐的土壤容重均明显低于对照(未间伐)。方差分析和多重比较(LSD)表明,不同间伐强度与对照间差异显著(P<0.05),但3种间伐强度之间差异不显著(P>0.05)。

    Figure 4.  Soil bulk density under different thinning intensities

  • 土壤孔隙度是反映土壤物理性质的重要指标,土壤中的水、养分、空气都储存在土壤的孔隙中,尤以毛管孔隙度最为重要。土壤中的有效水多储存在毛管孔隙之中。毛管孔隙度越大,土壤中储存的有效水含量就越高,这样能为植物生长提供更多的水分[9]。不同间伐强度的土壤毛管孔隙度以强度III为最大(为35.30±2.60%),最小为CK(28.19±1.29%)(见图5)。无论是毛管孔隙度和总孔隙度,按大小排列均为III>II>I>CK。方差分析和多重比较(LSD)表明,强度为I除与CK差异不显著外(P>0.05),其余差异显著(P<0.05)。强度为III和II的均与CK和I间差异显著(P<0.05),但二者之间差异不显著(P>0.05)。

    Figure 5.  Soil porosity under different thinning intensities

  • 土壤的持水能力是反应土壤水文性能和森林涵养水源能力的重要指标[9]。土壤的持水能力越强说明土壤中可以贮存更多的水分,截留降水,水土保持功能越强。不同处理0~30 cm土壤的最大吸持水量最多的是间伐强度III(105.90±2.60 mm),其次是II(103.07±3.01 mm),最小是CK(84.58±1.29 mm)(见图6)。不同间伐强度的饱和贮水量均高于CK。间伐强度I、II和III土壤0~30 cm饱和贮水量分别是CK的1.09倍、1.21倍和1.27倍。方差分析和多重比较(LSD)表明,最大吸持水量和饱和贮水量规律一致,即CK、强度为I与II、III的差异显著(P<0.05),I与CK间差异不显著(P>0.05),II与III间差异不显著(P>0.05)。

    Figure 6.  Soil water holding capacity under different thinning intensities

4.   讨论
  • 作为森林生态系统中涵养水源的重要活动层,土壤层和枯落物层起着防止土壤侵蚀、拦蓄地表径流的作用[10]。枯落物蓄积量的多少直接影响其持水能力。枯落物蓄积量的多少又受树种组成、林分结构、林分生长情况和枯落物分解难易的影响[12]。本研究中,以III(26%~35%)的枯落物蓄积量最多,是对照的2.38倍。间伐后,增大了林木间的空隙,改善了光照,使得林下灌木、草本的盖度增加;同时,一些喜阳的先锋阔叶树种也会进入,导致枯落物层变厚、蓄积量增加。枯落物层依靠其疏松多孔和表面积较大的特质,首先是截留降水,然后将截留的降水向土壤下渗。本研究中,枯落物的最大持水量以III(26%~35%)最大,几乎是对照的3.4倍,最大拦蓄量为对照的2.29倍。有专家研究认为,枯落物的最大拦蓄量和最大持水量并不能代表枯落物在降雨时的实际拦蓄效果[13]。因此,一般用有效拦蓄率和有效拦蓄量来进一步衡量枯落物的拦蓄效果[11]。本研究中,不同间伐强度的有效拦蓄量范围为4.53~11.75 t·hm−2,是枯落物干物质量的2.44~2.80倍,这与骆宗诗等[3]的研究结论基本一致,略高于曾建军等[14]、管惠文等[10]的研究结果。一般认为,枯落物层持水量随浸泡时间的变化遵循对数函数,吸水量随浸泡时间的变化遵循幂函数[11-12,14-15]。针对枯落物层持水量随浸泡时间的变化规律,大多数专家拟合的关系为W=a+b×ln(t)的形式。本研究略有不同,拟合结果为W=a−b×ln(t+c)形式,从R2(>0.95)和F检验值来看,拟合效果很好。吸水量随浸泡时间的变化规律拟合结果与国内专家的基本一致。从拟合的效果来看,除III(26~35%)的R2为0.8021外,其余均大于0.89,尤其是对照(CK)的R2高达0.9876,拟合结果还是比较满意的。

    森林水文性能重要参数之一是土壤储存水分的能力,通过土壤的物理性质和持水力特性体现[16]。本研究中,不同间伐强度的土壤容重在1.41~1.64 g·cm−3之间,略高于骆宗诗[3]等在本区域的研究结论。从土壤孔隙度来看,除I(10~15%)外,其余两种间伐强度的土壤毛管孔隙度、总孔隙度均显著高于对照(P<0.05),总孔隙度在40.50~48.31%之间,略高于骆宗诗[3]在该区域的研究结论,与黎燕琼[6]的研究结论相近。

    间伐12年后,与对照相比,林分的枯落物蓄积量增加,水文性能增强;土壤容重减小,毛管孔隙度、总孔隙度增大,最大吸持贮水量和饱和贮水量增大。说明改造效果比较明显。3种间伐强度下的林分水文性能均优于对照样地,说明间伐对林地水文性能的提高具有积极作用。综合分析土壤层和枯落物层的水文效应,间伐强度为 20~35%,即保留株数为1700株·hm−2~2100株·hm−2的为适宜强度。

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return