用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川中丘陵区人工柏木林不同器官C、N、P、K计量特征

刘威君 陈俊华 蒋川东 刘一丁 谢川 唐艺家 罗明华 慕长龙

刘威君, 陈俊华, 蒋川东, 等. 川中丘陵区人工柏木林不同器官C、N、P、K计量特征[J]. 四川林业科技, 2023, 44(4): 43−48 doi: 10.12172/202303100001
引用本文: 刘威君, 陈俊华, 蒋川东, 等. 川中丘陵区人工柏木林不同器官C、N、P、K计量特征[J]. 四川林业科技, 2023, 44(4): 43−48 doi: 10.12172/202303100001
LIU W J, CHEN J H, JIANG C D, et al. Stoichiometric characteristics of C, N, P, K in different organs of artificial cypress plantation in hilly areas of central Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(4): 43−48 doi: 10.12172/202303100001
Citation: LIU W J, CHEN J H, JIANG C D, et al. Stoichiometric characteristics of C, N, P, K in different organs of artificial cypress plantation in hilly areas of central Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(4): 43−48 doi: 10.12172/202303100001

川中丘陵区人工柏木林不同器官C、N、P、K计量特征


doi: 10.12172/202303100001
详细信息
    作者简介:

    刘威君(1992-),男,硕士研究生,研究方向:森林生态资源与环境。E-mail:2507771642@qq.com

    通讯作者: 969826049@qq.commucl2006@aliyun.com
  • 基金项目:  世行贷款长江上游森林生态系统恢复项目科技成果推广或科研课题研究项目(510201202038776/2);四川省基本科研经费项目“川中丘陵区人工柏木林碳计量研究”(2022JBKY08);绵阳师范学院研究生创新实践基金资助(CX202338)。

Stoichiometric Characteristics of C, N, P, K in Different Organs of Artificial Cypress Plantation in Hilly Areas of Central Sichuan

More Information
    Corresponding author: 969826049@qq.commucl2006@aliyun.com.
  • 摘要: 为了解川中丘陵区人工柏木林各器官C、N、P、K的生态化学计量特征,掌握养分元素在柏木林中分配格局及各器官养分受限状况等情况,对该区域的人工柏木林叶、枝、干、皮、根等各器官进行取样,分析其含水率、C、N、P、K含量、C/N、C/P以及各元素之间的相关性,结果表明:(1)叶片中C、N、P、K含量均显著高于其他器官;C/N最高的是枝(69.25±13.09),最小的是叶(34.05±8.41)。各器官的C/P差异较大。其中叶的C/P最小(602.66±208.75)。叶的C含量与皮、枝差异不显著(P>0.05),与干、根的C含量之间差异显著(P<0.05)。叶和皮的N含量与其他器官的N含量之间差异均显著(P<0.05),干、根、枝的N含量之间差异不显著(P>0.05)。叶的P含量与其他器官之间差异显著(P<0.05),其余器官之间均差异不显著(P>0.05)。皮和叶的C/N与其他器官之间差异均显著(P<0.05),干、根、枝的C/N之间差异均不显著(P>0.05)。根的C/P与干、枝之间差异不显著(P>0.05),与皮、叶的C/P差异显著(P<0.05)。皮的C/P与叶、枝之间差异不显著(P>0.05),叶的C/P除与皮之间差异不显著外(P>0.05),与其他器官之间均差异显著(P<0.05)。(2)C含量在各器官中的变异系数均在7%以下,属弱变异;N含量除干属弱变异外,其余均属于中等变异;P含量除在叶和枝中属于中等变异外,在干、根、皮中属强变异;K含量表现的规律与P含量类似。(3)N与C呈显著正相关(P<0.05),与P、K呈极显著正相关(P<0.01),与C/P呈极显著负相关(P<0.01);C含量与K呈显著正相关(P<0.05),与C/N呈显著负相关(P<0.05);P含量与K呈极显著正相关(P<0.01),与C/P呈极显著负相关(P<0.01);K含量与C/N、C/P均呈极显著负相关(P<0.01);C/N与C/P呈极显著正相关(P<0.01)。(4)柏木林N、P含量相对紧缺,应合理增施N、P肥,或采取间伐补植桤木等豆科植物形成混交林,提高土壤能力,促进林地养分循环。
  • 图  1  不同器官生态化学计量比

    Fig.  1  Eco-stoichiometric ratio of different organs

    表  1  样地基本情况

    Tab.  1  Basic status of sampling sites

    样地号
    Plot NO.
    海拔
    Altitude/m
    坡向
    Aspect
    坡度
    Slope/(°)
    坡位
    Slope position
    平均胸径
    DBH/cm
    平均树高
    Height/m
    林分密度
    Density/(株.hm-2)
    郁闭度
    Crown density
    1573S25上坡11.248.2430750.72
    2547SE2022中坡10.487.7035750.80
    3637ES1526下坡12.869.7033500.75
    4546S23下坡12.4510.6227000.70
    5495E22上坡12.649.5530750.72
    6498EN3025中坡11.278.8733000.75
    下载: 导出CSV

    表  2  不同器官化学计量特征与变异系数

    Tab.  2  Stoichiometric characteristics and coefficient of variation of different organs

    参数N含量(g.kg−1C含量(g.kg−1P含量(g.kg−1K含量(g.kg−1
    最大
    Max
    最小
    Min
    变异系数
    CV(%)
    最大
    Max
    最小
    Min
    变异系数
    CV(%)
    最大
    Max
    最小
    Min
    变异系数
    CV(%)
    最大
    Max
    最小
    Min
    变异系数
    CV(%)
    8.176.339.28500.89490.210.790.790.1789.502.460.5293.81
    11.776.3220.45500.09457.202.750.880.10123.192.880.5273.84
    15.357.9720.61540.68499.742.480.820.3141.352.340.5861.01
    18.059.3415.14573.35464.966.331.040.4618.743.981.1230.07
    8.865.6315.72515.55494.001.560.370.1726.571.380.6429.05
    下载: 导出CSV

    表  3  含水率与化学计量比的相关性

    Tab.  3  Correlation between water content and stoichiometric ratio

    参数NCPKC/NC/P
    N10.513*0.946**0.867**−0.977**−0.768**
    C10.3950.513*−0.447*−0.328
    P10.923**−0.884**−0.801**
    K1−0.772**−0.652**
    C/N10.782**
    C/P1
      注:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。
    下载: 导出CSV
  • [1] 曾冬萍,蒋利玲,曾从盛,等. 生态化学计量学特征及其应用研究进展[J]. 生态学报,2013,33(18):5484−5492.
    [2] 霍怀成,曹秀文,刘锦乾,等. 甘南白龙江2种次生林不同器官C、N、P、K计量特征[J]. 西北林学院学报,2022,37(4):64−72.
    [3] 汪宗飞,郑粉莉. 黄土高原子午岭地区人工油松林碳氮磷生态化学计量特征[J]. 生态学报,2018,38(19):6870−6880.
    [4] 王轶浩,周建岗,符裕红. 林龄对重庆武陵山区马尾松天然次生林C、N、P生态化学计量特征的影响[J]. 生态学报,2022,42(23):9537−9547.
    [5] Niklas K J, Owens'f, lieich 1' B, Cobb L, D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. L, cology Letters, 2005, 8(6): 636-642.
    [6] 姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松(Pinus tahulaeformis)人工林植物、凋落物与土壤C, N, P化学计量特征. 生态学报, 2016, 36 (19): 6188-6197.
    [7] 何瑞. 柏木低效林林窗改造后植物一凋落物土壤的生态化学计量特征[D]. 四川农业大学, 2017.
    [8] 宋思梦. 四川盆地主要人工林生态化学计量特征及分布格局[D]. 四川农业大学, 2019.
    [9] 吴丽君,李卫忠,薛巍,等. 桤-柏带状改造对川中丘陵区柏木林土壤碳氮磷化学计量特征的影响[J]. 应用与环境生物学报,2020,26(2):425−432.
    [10] 宋思梦,周 扬,张 健. 立地和龄组对四川省柏木人工林叶生态化学计量特征的影响[J]. 植物研究,2021,41(5):760−774.
    [11] 陈俊华,牟皓,谢天资,等. 川中丘陵区人工柏木林不同间伐强度下枯落物层和土壤层的水文效应[J]. 四川林业科技,2020,41(6):8−14.
    [12] 陈俊华,杨梅,刘一丁,等. 川中丘陵区人工柏木林不同结构调整模式对比研究[J]. 四川林业科技,2022,43(6):11−17.
    [13] 赵耀,王白田,李萌,等. 晋西吕梁山区3种森林碳氮磷生态化学计量特征[J]. 应用与环境生物学报,2018,24(3):518−524.
    [14] 李婷婷,陆元昌,张显强,等. 经营的马尾松森林类型发育演替阶段量化指标研究[J]. 北京林业大学学报,2014,36(3):9−17.
    [15] 崔宁洁,刘小兵,张丹桔,等. 不同林龄马尾松(<italic>Pinus massoniana</italic>)人工林碳氮磷分配格局及化学计量特征[J]. 生态环境学报,2014,23(2):188−195.
    [16] 俞月凤,彭晚霞,宋同清,等. 喀斯特峰丛洼地不同森林类型植物和土壤C、N、P化学计量特征[J]. 应用生态学报,2014,25(4):947−954.
    [17] 刘立斌, 钟巧连, 倪健. 贵州高原型喀斯特次生林 C、N、P 生态化学计量特征与储量. 生态学报, 2019, 39(22): 8606−8614.
    [18] 李丽,胡君,于倩楠,等. 横断山区高山栎组灌木型植物C、N、P生态化学计量特征[J]. 山地学报,2018,36(6):878−888.
    [19] 李鑫,曾全超,安韶山,等. 黄土高原纸坊沟流域不同植物叶片及枯落物的生态化学计量学特征研究[J]. 环境科学,2015,36(3):1084−1091.
    [20] 邱岭军,胡欢甜,林宝平,等. 不同林龄杉木养分重吸收率及其 C: N: P化学计量特征[J]. 西北林学院学报,2017,32(4):22−27. doi: 10.3969/j.issn.1001-7461.2017.04.04
    [21] 张雨鉴, 宋娅朋, 王克勤. 滇中亚高山森林乔木层各器官生态化学计量特征[J]. 生态学杂志, 2019, 38(6): 1669−1678.
    [22] 汪宗飞, 郑粉莉. 黄土高原子午岭地区人工油松林碳氮磷生态化学计量特征. 生态学报, 2018, 38(19): 6870−6880.
  • [1] 郝浩涵, 文登学, 邓龙, 张茜, 赖长鸿, 李贤伟.  攀西地区5个油橄榄品种细根形态特征及碳氮磷化学计量特征研究 . 四川林业科技, 2024, 45(2): 33-40. doi: 10.12172/202310250001
    [2] 陈俊华, 刘威君, 蒋川东, 刘一丁, 王凯, 谢川, 唐艺家, 慕长龙.  川中丘陵区人工柏木林生物量模型及碳计量参数 . 四川林业科技, 2023, 44(6): 32-39. doi: 10.12172/202308100001
    [3] 陈晓梅, 李小林, 丁婷, 赵桃娟, 陈炙, 黄振.  三个美国紫薇品种在川中丘陵区的花期观测与花粉萌发特性比较 . 四川林业科技, 2022, 43(5): 27-33. doi: 10.12172/202111190001
    [4] 陈俊华, 杨梅, 刘一丁, 蒋川东, 李羽洁, 龚固堂, 廖清贵.  川中丘陵区人工柏木林不同结构调整模式对比研究 . 四川林业科技, 2022, 43(6): 11-17. doi: 10.12172/202206010003
    [5] 鲜婷, 董廷发, 邓东周, 潘红丽, 刁元彬, 刘玉平.  不同植被恢复方式对九寨沟震后土壤碳氮化学计量特征的影响 . 四川林业科技, 2021, 42(1): 11-15. doi: 10.12172/202011080001
    [6] 黄昆, 曹秀文, 刘锦乾, 张涛, 王飞, 黄旭东.  白龙江辽东栎不同器官C、N、P生态化学计量特征 . 四川林业科技, 2021, 42(4): 55-60. doi: 10.12172/202011270001
    [7] 陈俊华, 张鑫, 谢天资, 龚固堂, 王琛, 慕长龙.  川中丘陵区人工柏木林不同间伐强度效果评价 . 四川林业科技, 2021, 42(6): 11-20. doi: 10.12172/202108100001
    [8] 杜阳平, 严贤春, 罗建勋, 刘芙蓉, 王海峰.  川中丘陵区山桐子人工林生长和结实特性研究 . 四川林业科技, 2020, 41(2): 15-21. doi: 10.12172/201912080001
    [9] 陈俊华, 牟皓, 谢天资, 别鹏飞, 慕长龙.  川中丘陵区人工柏木林不同间伐强度下枯落物层和土壤层的水文效应 . 四川林业科技, 2020, 41(6): 8-14. doi: 10.12172/202009240002
    [10] 赵润, 陈俊华, 牛牧, 别鹏飞, 慕长龙.  间伐对川中丘陵区人工柏木林下天然更新的影响 . 四川林业科技, 2019, 40(2): 9-13. doi: 10.16779/j.cnki.1003-5508.2019.02.003
    [11] 吴四新, 徐惠, 吴宗兴, 彭晓曦, 吴玉丹, 熊量, 杨柳璐.  川中丘陵区蓬溪青花椒套种试验研究 . 四川林业科技, 2018, 39(5): 64-67. doi: 10.16779/j.cnki.1003-5508.2018.05.015
    [12] 别鹏飞, 斯顺江, 周大松, 陈俊华, 赵润, 慕长龙.  带状改造对川中丘陵区柏木人工林林下植物多样性的影响 . 四川林业科技, 2018, 39(6): 1-6. doi: 10.16779/j.cnki.1003-5508.2018.06.001
    [13] 罗慧, 钟文才, 赵振华, 金银春, 陈善波, 王莎.  不同核桃砧木在川中丘陵区的品种特性及嫁接亲和性 . 四川林业科技, 2017, 34(6): 27-30. doi: 10.16779/j.cnki.1003-5508.2017.06.007
    [14] 金银春, 谢奎, 陈善波, 宋小军, 罗慧, 王丽华.  川中丘陵区核桃低产低效原因及对策分析 . 四川林业科技, 2017, 38(5): 79-83. doi: 10.16779/j.cnki.1003-5508.2017.05.019
    [15] 王峰, 李仁洪, 周立江, 杨天兴.  川中丘陵柏木林抚育改造技术与应用示范 . 四川林业科技, 2017, 38(3): 105-110. doi: 10.16779/j.cnki.1003-5508.2017.03.025
    [16] 胥平, 慕乘, 龚固堂, 朱志芳, 黎燕琼, 吴雪仙, 郑绍伟, 慕长龙.  川中丘陵区人工柏木林健康评价 . 四川林业科技, 2016, 37(2): 4-11. doi: 10.16779/j.cnki.1003-5508.2016.02.002
    [17] 张宗学, 鲁时燕, 牛牧, 陈俊华, 龚固堂, 朱志芳, 黎燕琼, 郑绍伟, 慕长龙.  川中丘陵区优良适宜树种选择 . 四川林业科技, 2014, 35(5): 17-22. doi: 10.16779/j.cnki.1003-5508.2014.05.005
    [18] 唐小智, 孙泽平, 兰立达, 李兴红, 蒲永波, 李德文.  炼山对华西雨屏区杉木林采伐迹地土壤理化特征的影响 . 四川林业科技, 2013, 34(5): 29-36. doi: 10.16779/j.cnki.1003-5508.2013.05.007
    [19] 王丽, 闵安民, 蔡小虎, 何飞, 王宇, 杨昌旭, 何建设.  钙质紫色土区不同利用方式对土壤养分的影响 . 四川林业科技, 2013, 34(1): 37-40. doi: 10.16779/j.cnki.1003-5508.2013.01.008
    [20] 刘宗成, 周晓波, 黎燕琼, 龚固堂, 陈俊华, 郑绍伟, 吴雪仙, 朱志芳, 慕长龙.  川中丘陵区人工柏木林灌草生物多样性研究 . 四川林业科技, 2013, 34(3): 5-10. doi: 10.16779/j.cnki.1003-5508.2013.03.002
  • 加载中
  • 图(1) / 表(3)
    计量
    • 文章访问数:  244
    • HTML全文浏览量:  79
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-03-10
    • 网络出版日期:  2023-05-30
    • 刊出日期:  2023-08-30

    川中丘陵区人工柏木林不同器官C、N、P、K计量特征

    doi: 10.12172/202303100001
      作者简介:

      刘威君(1992-),男,硕士研究生,研究方向:森林生态资源与环境。E-mail:2507771642@qq.com

      通讯作者: 969826049@qq.commucl2006@aliyun.com
    基金项目:  世行贷款长江上游森林生态系统恢复项目科技成果推广或科研课题研究项目(510201202038776/2);四川省基本科研经费项目“川中丘陵区人工柏木林碳计量研究”(2022JBKY08);绵阳师范学院研究生创新实践基金资助(CX202338)。

    摘要: 为了解川中丘陵区人工柏木林各器官C、N、P、K的生态化学计量特征,掌握养分元素在柏木林中分配格局及各器官养分受限状况等情况,对该区域的人工柏木林叶、枝、干、皮、根等各器官进行取样,分析其含水率、C、N、P、K含量、C/N、C/P以及各元素之间的相关性,结果表明:(1)叶片中C、N、P、K含量均显著高于其他器官;C/N最高的是枝(69.25±13.09),最小的是叶(34.05±8.41)。各器官的C/P差异较大。其中叶的C/P最小(602.66±208.75)。叶的C含量与皮、枝差异不显著(P>0.05),与干、根的C含量之间差异显著(P<0.05)。叶和皮的N含量与其他器官的N含量之间差异均显著(P<0.05),干、根、枝的N含量之间差异不显著(P>0.05)。叶的P含量与其他器官之间差异显著(P<0.05),其余器官之间均差异不显著(P>0.05)。皮和叶的C/N与其他器官之间差异均显著(P<0.05),干、根、枝的C/N之间差异均不显著(P>0.05)。根的C/P与干、枝之间差异不显著(P>0.05),与皮、叶的C/P差异显著(P<0.05)。皮的C/P与叶、枝之间差异不显著(P>0.05),叶的C/P除与皮之间差异不显著外(P>0.05),与其他器官之间均差异显著(P<0.05)。(2)C含量在各器官中的变异系数均在7%以下,属弱变异;N含量除干属弱变异外,其余均属于中等变异;P含量除在叶和枝中属于中等变异外,在干、根、皮中属强变异;K含量表现的规律与P含量类似。(3)N与C呈显著正相关(P<0.05),与P、K呈极显著正相关(P<0.01),与C/P呈极显著负相关(P<0.01);C含量与K呈显著正相关(P<0.05),与C/N呈显著负相关(P<0.05);P含量与K呈极显著正相关(P<0.01),与C/P呈极显著负相关(P<0.01);K含量与C/N、C/P均呈极显著负相关(P<0.01);C/N与C/P呈极显著正相关(P<0.01)。(4)柏木林N、P含量相对紧缺,应合理增施N、P肥,或采取间伐补植桤木等豆科植物形成混交林,提高土壤能力,促进林地养分循环。

    English Abstract

    • 生态化学计量学是研究多重元素化学平衡的一门科学,内稳性理论和生长速率理论是生态化学计量学存在的重要基础[1-2]。C(碳)、N(氮)、P(磷)、K(钾)是地球生物圈的生命基本组成元素,尤其是C、N、P作为生态系统最基本的组成元素和植物必需的营养元素,在生物地球化学循环和维持生态系统结构及功能稳定性方面发挥着极其重要的作用[3-4]。研究植物的C、N、P、K化学计量特征,特别是C、N、P含量及C/N、C/P的关系,不但可以了解它们的生长发育过程、群落结构、多样性以及功能等,还能反映它们对环境变化的适应能力[5],有利于研究全球气候变化和国家“双碳”目标下植物的固碳增汇机制[6]。人工柏木林(Cupressus funebris)是川中丘陵区的主要森林类型,在维护该区域生态安全,发挥保持水土、涵养水源以及森林的固碳增汇等生态服务功能方面起着十分重要的作用。对于该区域人工柏木林的生态化学计量,国内专家主要从植物叶片、土壤和枯落物中的C、N、P含量进行了研究[7-10],系统研究柏木各器官的C、N、P、K含量及其比率关系尚未见报道。本文以川中丘陵区人工中龄柏木林作为研究对象,测定不同器官的生态化学计量指标,分析C、N、P、K 含量和比率分布格局,以期揭示该地区植物的生理特征,为人工柏木林质量和固碳增汇能力提升提供理论依据。

      • 研究区位于四川盆地中部的金堂县、简阳市,地处亚热带湿润季风气候区,四季分明,降雨主要集中在每年的5~10月。年均雨量1000 mm 以上,年均气温17℃ ,日照数1 300 h~1 400 h,无霜期 300 d 以上。土壤类型以紫色土和老冲积黄壤为主,少部分为姜石黄壤和灰白砂土。现存植被主要是20世纪 70~80 年代长江防护林建设工程营建的人工柏木纯林和由人工桤柏混交林演变而来的柏木纯林。另有少量松柏混交(Pine-Cypress)、栎柏混交(Oak-Cypress)次生林[11-12]

      • 2021年9—10月,在四川盆地中部的金堂县、简阳市设置 20 m×20 m 的标准样地6个。记录标准地的经纬度、郁闭度、海拔、土壤类型、坡度、坡向、坡位、土层厚、枯落物厚等因子。样地基本情况详见表1

        表 1  样地基本情况

        Table 1.  Basic status of sampling sites

        样地号
        Plot NO.
        海拔
        Altitude/m
        坡向
        Aspect
        坡度
        Slope/(°)
        坡位
        Slope position
        平均胸径
        DBH/cm
        平均树高
        Height/m
        林分密度
        Density/(株.hm-2)
        郁闭度
        Crown density
        1573S25上坡11.248.2430750.72
        2547SE2022中坡10.487.7035750.80
        3637ES1526下坡12.869.7033500.75
        4546S23下坡12.4510.6227000.70
        5495E22上坡12.649.5530750.72
        6498EN3025中坡11.278.8733000.75
      • (1)样地调查

        乔木调查:每木检尺,测定并记录树种名称、树高、胸径、冠幅等因子;

        灌木调查:种名、高度、盖度、株(丛)数等因子;

        草本调查:种名、高度、盖度等因子。

        (2)样品采集

        主要采集乔木的干、枝、叶、皮和根, 其中干和皮分别从树干基部、胸径和梢头 3 个部位进行取样, 枝带皮从粗枝到小枝按比例取样, 叶亦分别从不同部位取样, 根带皮从粗根到小根按比例分别取样。采集的样品野外称鲜质量, 并取样, 标记好带回实验室进行实验测定及实验分析。

      • 将带回实验室的植物各器官样品置于85℃烘箱烘干至恒重,用粉碎机粉碎后过100目筛,密封以测N、P、K、C等元素。N含量采用凯氏定氮法测定,P含量采用硫酸-高氯酸消煮作目锑抗分光光度法测定,K含量采用硫酸-双氧水消煮-火焰光度法测定,C含量采用重铬酸钾习壳酸氧化法测定[2,13]

      • 运用WPS 进行数据录入、基本计算;在 SPSS 20.0 里面进行单因素方差分析(Oneway ANOVA)和多重比较(LSD,显著水平 P<0.05),作图使用 OriginPro 2018[11]

      • 不同器官化学计量特征的变异系数相差较大(见表2)。柏木叶片中N、C、P、K含量均高于其他器官,其含量分别在9.34~18.05 g.kg−1、464.96~573.35 g.kg−1、0.46~1.04 g.kg−1、1.12~3.98 g.kg−1。干的N含量较小,在6.33~8.17 g.kg−1,干和根的C含量较小,分别在490.21~500.89 g.kg−1和457.20~500.09 g.kg−1。枝的P和K含量均最小,分别在0.17~0.37 g.kg−1和1.12~3.98 g.kg−1。从变异系数来看[2],C含量在各器官中的变异系数均在7%以下,属弱变异;N含量除干属弱变异外,其余均属于中等变异;P含量除在叶和枝中属于中等变异外,在干、根、皮中属强变异;K含量表现的规律与P含量类似。

        表 2  不同器官化学计量特征与变异系数

        Table 2.  Stoichiometric characteristics and coefficient of variation of different organs

        参数N含量(g.kg−1C含量(g.kg−1P含量(g.kg−1K含量(g.kg−1
        最大
        Max
        最小
        Min
        变异系数
        CV(%)
        最大
        Max
        最小
        Min
        变异系数
        CV(%)
        最大
        Max
        最小
        Min
        变异系数
        CV(%)
        最大
        Max
        最小
        Min
        变异系数
        CV(%)
        8.176.339.28500.89490.210.790.790.1789.502.460.5293.81
        11.776.3220.45500.09457.202.750.880.10123.192.880.5273.84
        15.357.9720.61540.68499.742.480.820.3141.352.340.5861.01
        18.059.3415.14573.35464.966.331.040.4618.743.981.1230.07
        8.865.6315.72515.55494.001.560.370.1726.571.380.6429.05
      • 柏木干、根、皮、叶、枝4种元素C、N、P、K的含量及C/N、C/P见图1。不同器官的C含量在491.264~518.996 g.kg−1之间。最高的是叶(518.996±32.791 g.kg−1),最低的是根(491.264±13.527 g.kg−1)各器官C含量按大小排列为叶>皮>枝>干>根。方差分析和多重比较(LSD)表明,叶的C含量与皮、枝差异不显著(P>0.05),与干、根的C含量之间差异显著(P<0.05),干的C含量与根、皮、枝的C含量之间差异不显著(P>0.05),与皮和叶之间差异显著(P<0.05)。各器官的N含量以叶中最高(15.761±2.508 g.kg−1),最低的是干(7.421±0.702 g.kg−1)。按大小排列为叶>皮>根>枝>干。方差分析和多重比较(LSD)表明,叶和皮的N含量与其他器官的N含量之间差异均显著(P<0.05),干、根、枝的N含量之间差异不显著(P>0.05)。各器官的P元素含量以叶占绝对优势,分别为干、根、皮、枝的3.20倍、2.87倍、2.18倍、3.35倍,且除叶的P含量与其他器官之间差异显著外(P<0.05),其余器官之间均差异不显著(P>0.05),各器官的K元素含量表现出类似规律。C/N最高的是枝(69.25±13.09),最小的是叶(34.05±8.41)。方差分析和多重比较表明,皮和叶的C/N与其他器官之间差异均显著(P<0.05),干、根、枝的C/N之间差异均不显著(P>0.05)。各器官的C/P差异较大。其中叶的C/P最小(602.66±208.75),分别为干、根、皮、枝的27.63%、21.97%、46.24%、30.74%。方差分析和多重比较表明,根的C/P与干、枝之间差异不显著(P>0.05),与皮、叶的C/P差异显著(P<0.05)。皮的C/P与叶、枝之间差异不显著(P>0.05),叶的C/P除与皮之间差异不显著外(P>0.05),与其他器官之间均差异显著(P<0.05)。

        图  1  不同器官生态化学计量比

        Figure 1.  Eco-stoichiometric ratio of different organs

      • 通过各器官的N含量、C含量、P含量、K含量、C/N、C/P的相关性分析表明(表3):N与C呈显著正相关(P<0.05),与P、K呈极显著正相关(P<0.01),与C/N、C/P均呈极显著负相关(P<0.01);C含量与K呈显著正相关(P<0.05),与C/N呈显著负相关(P<0.05),与P含量和C/P均没有相关性(P>0.05);P含量与K呈极显著正相关(P<0.01),与C/N、C/P均呈极显著负相关(P<0.01);K含量与C/N、C/P均呈极显著负相关(P<0.01);C/N与C/P呈极显著正相关(P<0.01)。

        表 3  含水率与化学计量比的相关性

        Table 3.  Correlation between water content and stoichiometric ratio

        参数NCPKC/NC/P
        N10.513*0.946**0.867**−0.977**−0.768**
        C10.3950.513*−0.447*−0.328
        P10.923**−0.884**−0.801**
        K1−0.772**−0.652**
        C/N10.782**
        C/P1
          注:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。
      • 作为植物体内重要的生命元素,N、C、P、K4种元素的含量反映了植物在一定生存环境下,吸收和储存养分的能力[14-15]。尤其是C元素,它反映的是植物积累有机物质的能力[16]。本研究中,柏木叶片C含量变化在464.96 g.kg−1—573.35 g.kg−1之间,平均值为518.996 g.kg−1,与相关研究—我国植物叶片C含量范围在423.8—530.0 g.kg−1基本符合或略高于此标准,明显高于全球陆生植物叶片平均C含量的标准(464 g.kg−1[17]。与同区域相比,明显低于何瑞[7]在德阳市旌阳区柏木叶片的C含量(599.81±4.88 g.kg−1)。这可能是因为后者是改造后补植了香椿、银木等阔叶林的缘故。柏木各器官C含量由大到小排列为叶>皮>枝>干>根。这与李丽等[18]、霍怀成等[2]的研究结果一致。根C含量最低,这是因为根主要进行水分和无机盐的交换,养分储存较少[2]

        N、P元素是陆地生态系统植物生长的最重要和主要的限制元素。本研究中,柏木叶的N含量平均值为15.76 g.kg−1,低于中国陆地植物叶片平均值(20.50 g.kg−1[17],但明显高于宋思梦的研究结论(9.39 g.kg−1[10];柏木叶的P含量平均值为0.92 g.kg−1,远低于我国的平均值[17],与宋思梦的研究结论接近[10]。N和P元素在紫色土区相对紧缺,应合理增施N肥、P肥,或采取间伐补植桤木等豆科植物形成混交林,提高土壤能力,促进林地养分循环[7,10,12]

        在植物的耐旱、耐寒能力中,K元素起着十分重要的作用,K元素还是许多酶的活化剂,在植物竞争中起着重要的作用[19]。本研究中,K含量在根中最高,按由高到低排列为根>叶>干>皮>枝,与霍怀成等[2]的研究结果基本一致。C/N、C/P反映单位养分吸收所合成有机物的量[2]。本研究中C/N最高的是枝,其次是干,最低的是叶;C/P最高的是根,其次是干,最低的是叶。C/N、C/P在各器官中排列规律与霍怀成等[2]的研究结果基本一致。其中C/N平均略小于霍怀成的研究结果,但C/P除叶片外,远高于霍怀成[2]的研究结果,说明川中丘陵区人工柏木林对C的利用效率较强[20]。各器官C/N、C/P均以叶片中含量最低,与国内有关专家的研究结果一致[2,21]

        C、N、P、K及其比之间的相关性分析可以揭示森林生态系统中不同组分各生态化学计量指标变量之间的协调关系,便于对C、N、P、K 在植物各器官之间的转换及耦合过程做出合理解释[22]。本研究中,P与C/P、N与C/N均呈显著负相关,且最小值均出现在叶片中,这与霍怀成[2]的研究结论是一致的。这与叶片是同化器官,N、P含量相对比其他器官高,C含量在各器官之间的差异相对较小的原因有关[2]

    参考文献 (22)

    目录

      /

      返回文章
      返回