用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同种源银杏同质园幼苗生长与叶片药用成分含量比较

张孟楠 顾剑涛 邓辉洪 宋鹏

张孟楠, 顾剑涛, 邓辉洪, 等. 不同种源银杏同质园幼苗生长与叶片药用成分含量比较[J]. 四川林业科技, 2023, 44(4): 119−124 doi: 10.12172/202302130001
引用本文: 张孟楠, 顾剑涛, 邓辉洪, 等. 不同种源银杏同质园幼苗生长与叶片药用成分含量比较[J]. 四川林业科技, 2023, 44(4): 119−124 doi: 10.12172/202302130001
ZHANG M N, GU J T, DENG H H, et al. Variations of seedling growth and medicinal components contents in leaves of Ginkgo biloba from different provenances in common garden[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(4): 119−124 doi: 10.12172/202302130001
Citation: ZHANG M N, GU J T, DENG H H, et al. Variations of seedling growth and medicinal components contents in leaves of Ginkgo biloba from different provenances in common garden[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(4): 119−124 doi: 10.12172/202302130001

不同种源银杏同质园幼苗生长与叶片药用成分含量比较


doi: 10.12172/202302130001
详细信息
    作者简介:

    张孟楠(1991—),女,工程师,硕士,15123447148@163.com

    通讯作者: 270063834@qq.com
  • 基金项目:  四川省科技计划项目-叶用银杏高效培育技术推广示范(2021NZZJ0023)

Variations of Seedling Growth and Medicinal Components Contents in Leaves of Ginkgo biloba from Different Provenances in Common Garden

More Information
    Corresponding author: 270063834@qq.com
  • 摘要: 开展不同种源银杏同质园试验,揭示环境对不同种源银杏的影响,为选育药用价值高的银杏种源和品种提供依据。收集了川内4个不同种源的银杏种子,经同质园栽培后,对其幼苗生长和叶片药用成分含量进行测定分析,并对各测定结果进行相关性分析。结果显示:(1)各种源间种子横径、纵径和百粒重均极显著差异(P<0.01),且均开江最大;(2)各种源间苗高、单株叶数、单叶重和单株叶重均极显著差异(P<0.01),冠幅显著差异(P=0.02)。其中苗高、单株叶数、单株叶重、冠幅均开江最大,单叶重泸定最大;(3)各种源间叶片萜类内酯、白果内酯含量呈极显著差异(P<0.01),黄酮、银杏内酯A和银杏内酯B含量均显著差异(P=0.02,P=0.03,P=0.01)。其中黄酮含量苍溪最高,萜类内酯、白果内酯、银杏内酯A、银杏内酯B含量均泸定最高;(4)苗高与单株叶重呈极显著正相关(r=0.912);萜类内酯与白果内酯和银杏内酯B含量(r=0.928和0.962)均呈极显著正相关。不同种源的银杏同质园栽培结果表明,由于亲代长期受种源地环境的影响,子代幼苗的生长以及药用成分含量具有显著差异。
  • 图  1  不同种源银杏种子表型性状

    注:图中数值为平均值±标准误;同一行上不同小写字母表示不同种源之间有显著差异(P<0.05)下图同。Note: The values in the figure are average ± standard error; Different lowercase letters on the same line indicate that there are significant differences among different provenances (P<0.05).

    Fig.  1  Phenotypic characters of Ginkgo biloba L. seeds from different provenances

    图  2  不同种源银杏苗表型差异

    Fig.  2  Comparison of Ginkgo biloba L. seedings from different provenances

    图  3  不同种源黄酮和萜类内酯成分含量差异

    Fig.  3  Contents of flavonoids and terpene lactones were different in Ginkgo biloba L. from different provenances

    图  4  银杏各性状间相关性分析

    注:*、**分别表示差异显著水平为0.05和0.01。GW.百粒重;D.地径;MH.苗高;LW.单株叶重;FG.总黄酮苷;BBD.白果内酯;GL-A.银杏内酯A;GL-B.银杏内酯B;GL-C.银杏内酯C;TL.萜类内酯Note: * and * * indicate that the level of significant difference is 0.05 and 0.01 respectively. GW: 100-seed weight; D: Ground diameter; MH: Seedling height; LW: Leaf weight per plant; FG: Total flavone glycoside; BBD: Bilobalide; Gl-A: Ginkgolide A; Gl-B: Ginkgolide B; Gl-C: Ginkgolide C; TL: Terpenoid lactone

    Fig.  4  Correlation analysis of various characters of Ginkgo biloba L.

    表  1  银杏种子种源收集地概况

    Tab.  1  General situation of Ginkgo biloba seed provenance collection sites

    种源采集地经度纬度海拔/m年均温
    /℃
    年降雨量/mm
    QCS青川105°21′32°26′99813.71027.2
    CXS苍溪106°04′31°49′44116.71046.7
    LDS泸定102°13′29°57′124716.5664.4
    MCS开江107°59′31°02′48116.81237.4
    下载: 导出CSV
  • [1] 曾献,龚玉子,王焕皎. 银杏叶的药理作用[J]. 湖南林业科技,2008,35(1):6−8. doi: 10.3969/j.issn.1003-5710.2008.01.003
    [2] 管玉民,王健. 气候、季节、树龄对银杏叶中总黄酮含量的影响[J]. 中成药,2000,22(5):368. doi: 10.3969/j.issn.1001-1528.2000.05.021
    [3] 张晓娟,赵正栋,张辰露,等. 复合酶预处理法对银杏叶总黄酮和总内酯提取率的影响[J]. 中成药,2018,40(8):1848−1851. doi: 10.3969/j.issn.1001-1528.2018.08.039
    [4] 邓辉洪,曹浒,徐雪娇,等. 不同栽植密度对叶用银杏生长量及叶产量的影响[J]. 四川林业科技,2021,42(01):102−108. doi: 10.12172/202007280001
    [5] 赵正栋. 银杏内酯 B及其衍生物制备和对诱导型SH-SY5Y 细胞活力影响研究[D]. 汉中: 陕西理工大学, 2019.
    [6] MaS W, Liu X Y, Xun Q R, et al. Neuroprotective effect of ginkgolide K against H2O2- induced PC12 Cell cytotoxicity by ameliorating mitochondrial dysfunction and oxidative stress[J]. Biol Pharmn Bull, 2014, 37(2): 217−225. doi: 10.1248/bpb.b13-00378
    [7] Liu X Y, Zhao G X, Yan Y, et al. Ginkgolide B reduces atherogenesis and vascular inflammation in ApoE-/- mice[J]. PLoS One, 2012, 7(5): e36237. doi: 10.1371/journal.pone.0036237
    [8] Ghosh S, DungdungS R, Choudhury S T, et al. Miochondria protection with ginkgolide B-loaded polymeric nanocapsules prevents diethylnitro-samine-induced hepatocarcinoma in rats[J]. Nanomedicine (Lond), 2014, 9(3): 441−456. doi: 10.2217/nnm.13.56
    [9] 冯自立,赵正栋,孙 茜,等. 正交实验优化酶解预处理提取银杏叶黄酮和内酯的工艺[J]. 应用化工,2019,48(5):1119−1121. doi: 10.3969/j.issn.1671-3206.2019.05.031
    [10] 余新建,刘育文,高丽丽,等. 银杏内酯在心血管方面的应用研究探讨[J]. 中国医药导报,2008,5(9):172−173. doi: 10.3969/j.issn.1673-7210.2008.09.126
    [11] 江美芳,张艳欣,王丹丹,等. 不同产地苗圃银杏叶的质量表征与土壤因子关联性[J]. 中成药,2022,44(06):1875−1881. doi: 10.3969/j.issn.1001-1528.2022.06.027
    [12] 戴悦. 不同地域苗圃银杏叶的质量特征与环境因素相关性分析研究[D]. 上海中医药大学, 2020. DOI: 10.27320/d.cnki.gszyu.2020.000215.
    [13] 吴雅琼,国靖,周琦,等. 不同产地银杏黄酮及相关活性物质含量变异分析[J]. 南京林业大学学报(自然科学版),2019,43(03):183−188. doi: 10.3969/j.issn.1000-2006.201803004
    [14] 杨伟丽,马媛媛. 甘肃不同产地及不同季节银杏叶中总黄酮苷的含量测定[J]. 甘肃医药,2013,32(3):169−171. doi: 10.15975/j.Cnki.Gsyy.2013.03.009
    [15] 王国霞,曹福亮,汪贵斌,等. 不同地区银杏花粉黄酮和内酯含量的差异性[J]. 南京林业大学学报(自然科学版),2007(03):34−38. doi: 10.3969/j.issn.1000-2006.2007.03.007
    [16] 杨舒婷, 李静慧, 陈露茜, 等. 遗传变异对玄参的生长及化学多样性的影响: 基于同质园实验[C]//. 第十届全国药用植物及植物药学术研讨会论文摘要集. , 2011: 146.
    [17] 开江县地方志办公室. 开江年鉴[M]. 北京: 中国文史出版社, 2016.
    [18] Turcotte M M, Levine J M. Phenotypic plasticity and species coexistence. [J]Trends in Ecology & Evolution, 2016, 31(10): 803-813.
    [19] Sandner T M, Matthies D. Inbreeding limits responses to environmental stress in Silene rulgaris. [J]Environmental and Experimental Botany, 2018, 147: 86-94.
    [20] Humphrey PT, GlossA D, FrazierJ, Nelson - Ditrich A C, Faries S, Whiteman N K. Heritable plant phenotypes track light and herbivory levels at fine spatial scales. [J]Oecologia, 2018, 187(2): 427-445.
    [21] Givnish TJ, Vermeij GJ . Sizes and shapes of liane leaves. [J]Am Nat110, 1976, 743-778.
    [22] 国颖. 气候变化背景下银杏分布预测及表型性状的环境响应机制研究[D]. 南京林业大学, 2021. DOI: 10.27242/d.cnki.gnjlu.2021.000033.
    [23] Groot M P, Kubisch A, Ouborg N J, Pagel J, Schmid K J, Vergeer P, Lampei C. Transgenerational ffects of mild heat in Arabidopsis thaliana show strong genotype specificity that is explained by climate at origin. New Phytologist, 2017, 215(3): 1221-1234. .
    [24] PENUELAS J, LLUSIA J. Effects of carbon dioxide, water supply, and seasonally on terpene content and emission by Ros-marinus officials[J]. Jourmal of Chemical Ecology, 1997, 23(4): 979−993. doi: 10.1023/b:joec.0000006383.29650.d7
    [25] 杨慧萍,高睿. 银杏药用成分及药理作用研究进展[J]. 动物医学进展,2017,38(08):96−99. doi: 10.16437/j.cnki.1007-5038.2017.08.021
    [26] 谢宝东, 影响银杏叶有效成分黄酮、内酯含量相关因素的研究[D]. 山东农业大学, 2002.
    [27] 张成军,郭佳秋,陈国祥,等. 高温和干旱对银杏光合作用、叶片中黄酮苷和萜类内酯含量的影响[J]. 农村生态环境,2005(03):11−15.
    [28] 吴婵娟. 温度和水分对银杏生长及次生代谢的影响[J]. 山西林业科技,2021,50(03):30−32. doi: 10.3969/j.issn.1007-726X.2021.03.010
    [29] 刘芙蓉,杨马进,罗建勋,等. 四川不同种源银杏种子表型性状与叶片黄酮含量的比较研究[J]. 湖南林业科技,2020,47(03):26−31. doi: 10.3969/j.issn.1003-5710.2020.03.004
  • [1] 黄月琪, 廖晨阳, 冯可心, 吴芬, 周波.  以国家植物园为核心的中国特色植物园体系的建构 . 四川林业科技, 2024, 45(2): 1-8. doi: 10.12172/202304060003
    [2] 税雅鑫, 苟德斌, 李西, 江明艳, 李晓玲, 孙凌霞.  立竹密度调控对雷竹林下黄精生长及药用价值的影响 . 四川林业科技, 2023, 44(1): 59-64. doi: 10.12172/202204120002
    [3] 黄雪梅, 黄怡, 贾泽旭, 陈德朝.  气候变化背景下药用植物牡丹的潜在适生区分析 . 四川林业科技, 2023, 44(6): 23-31. doi: 10.12172/202302050001
    [4] 陈政, 龚霞, 李佩洪, 吴银明, 温铿, 曾攀, 唐伟.  花椒园不同控草方式的比较 . 四川林业科技, 2021, 42(3): 89-93. doi: 10.12172/202010140001
    [5] 邓辉洪, 曹浒, 徐雪娇, 宋鹏, 张孟楠, 唐秀, 魏方波, 陈小莉.  不同栽植密度对叶用银杏生长量及叶产量的影响 . 四川林业科技, 2021, 42(1): 102-108. doi: 10.12172/202007280001
    [6] 孙曾丽, 徐玉成, 薄育新, 李金武.  ‘邳县2号’银杏硬枝扦插育苗技术研究 . 四川林业科技, 2021, 42(5): 128-132. doi: 10.12172/202107100003
    [7] 王戈, 唐源盛, 喻晓钢, 刘志武, 郑雄, 付康红, 沈德力, 辜云杰.  四川九顶山自然保护区药用植物资源及多样性特征分析 . 四川林业科技, 2020, 41(2): 58-63. doi: 10.12172/201912190001
    [8] 彭建, 吴俊, 肖兴翠, 杨滨豪, 李金武, 王泽亮, 辜云杰.  米仓山南麓野生药用植物资源及其多样性分析 . 四川林业科技, 2020, 41(4): 110-116. doi: 10.12172/202005060001
    [9] 胡娉婷, 严贤春, 罗建勋, 刘芙蓉, 杜阳平.  四川银杏叶片表型差异研究 . 四川林业科技, 2020, 41(3): 64-70. doi: 10.12172/202001140002
    [10] 刘玉彬, 兰庆.  银杏大蚕蛾的生物学特性及防治措施 . 四川林业科技, 2019, 40(6): 101-104. doi: 10.16779/j.cnki.1003-5508.2019.06.019
    [11] 杨世龙, 马小芳.  银杏叶中银杏内酯的制备与检测研究进展 . 四川林业科技, 2018, 39(6): 25-30. doi: 10.16779/j.cnki.1003-5508.2018.06.005
    [12] 陈国全, 曹令媛, 万雪琴, 钟毅.  洪雅杉木第2代改良无性系种子园家系建园材料优选初报 . 四川林业科技, 2017, 38(4): 79-81. doi: 10.16779/j.cnki.1003-5508.2017.04.016
    [13] 陈松河, 张万旗, 黄全能, 包宇航, 张洪英.  厦门园博园在城市区域房地产经济中的地位和作用 . 四川林业科技, 2016, 37(1): 107-110. doi: 10.16779/j.cnki.1003-5508.2016.01.024
    [14] 陈红卫, 胡彦, 赵波, 周密, 徐蓉芳, 左智力, 林顺秀, 王强.  通过解说实施动物园公众教育的研究 . 四川林业科技, 2016, 37(5): 84-88. doi: 10.16779/j.cnki.1003-5508.2016.05.020
    [15] 廖韵, 董奎, 付静静, 曹钦, 王韵, 廖邦洪.  都江堰市银杏物候时序特征的数码相机监测与分析 . 四川林业科技, 2016, 37(3): 54-61. doi: 10.16779/j.cnki.1003-5508.2016.03.010
    [16] 张懿琳, 高洁, 罗建勋.  现代林业观光园规划设计初探——以南部林博园为例 . 四川林业科技, 2015, 36(4): 128-131. doi: 10.16779/j.cnki.1003-5508.2015.04.028
    [17] 陈松河, 黄全能, 包宇航, 张洪英.  园博园在城市区域旅游经济中的地位和作用——以厦门园博苑为例 . 四川林业科技, 2014, 35(1): 99-101. doi: 10.16779/j.cnki.1003-5508.2014.01.026
    [18] 谷海燕.  药用植物华重楼的资源现状及其繁育研究进展 . 四川林业科技, 2014, 35(4): 56-59. doi: 10.16779/j.cnki.1003-5508.2014.04.013
    [19] 杨玲, 陈红卫, 李峰.  成都动物园游客量与开展保护教育项目关系初探 . 四川林业科技, 2013, 34(4): 47-49,17. doi: 10.16779/j.cnki.1003-5508.2013.04.013
    [20] 舒翔, 范川, 李平, 黄复兴, 杨森磊.  多个老鹰茶无性系内含物成分分析 . 四川林业科技, 2013, 34(1): 70-72,75. doi: 10.16779/j.cnki.1003-5508.2013.01.017
  • 加载中
  • 图(4) / 表(1)
    计量
    • 文章访问数:  402
    • HTML全文浏览量:  116
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-02-13
    • 网络出版日期:  2023-02-22
    • 刊出日期:  2023-08-30

    不同种源银杏同质园幼苗生长与叶片药用成分含量比较

    doi: 10.12172/202302130001
      作者简介:

      张孟楠(1991—),女,工程师,硕士,15123447148@163.com

      通讯作者: 270063834@qq.com
    基金项目:  四川省科技计划项目-叶用银杏高效培育技术推广示范(2021NZZJ0023)

    摘要: 开展不同种源银杏同质园试验,揭示环境对不同种源银杏的影响,为选育药用价值高的银杏种源和品种提供依据。收集了川内4个不同种源的银杏种子,经同质园栽培后,对其幼苗生长和叶片药用成分含量进行测定分析,并对各测定结果进行相关性分析。结果显示:(1)各种源间种子横径、纵径和百粒重均极显著差异(P<0.01),且均开江最大;(2)各种源间苗高、单株叶数、单叶重和单株叶重均极显著差异(P<0.01),冠幅显著差异(P=0.02)。其中苗高、单株叶数、单株叶重、冠幅均开江最大,单叶重泸定最大;(3)各种源间叶片萜类内酯、白果内酯含量呈极显著差异(P<0.01),黄酮、银杏内酯A和银杏内酯B含量均显著差异(P=0.02,P=0.03,P=0.01)。其中黄酮含量苍溪最高,萜类内酯、白果内酯、银杏内酯A、银杏内酯B含量均泸定最高;(4)苗高与单株叶重呈极显著正相关(r=0.912);萜类内酯与白果内酯和银杏内酯B含量(r=0.928和0.962)均呈极显著正相关。不同种源的银杏同质园栽培结果表明,由于亲代长期受种源地环境的影响,子代幼苗的生长以及药用成分含量具有显著差异。

    English Abstract

    • 银杏(Ginkgo biloba L.)是中国特有的珍贵孑遗植物,具有很高的经济价值和药用价值。银杏叶片主要含黄酮类和萜类内酯类等药用成分,对心血管、神经系统均具有较强的药理活性[1-2],其中银杏萜类内酯主要包括银杏内酯A、银杏内酯B、银杏内酯C和白果内酯[3],具有抗氧化、抗炎、抗血小板聚集、保护神经等药理活性[4-9],其中银杏内酯B是在自然界中迄今为止发现的活性最强的血小板活化因子拮抗剂[10]

      目前,关于银杏黄酮和萜类内酯含量在不同品种、不同区域和不同环境间的差异性研究较多[11-15]。已有研究表明,黄酮和萜类内酯含量受遗传、立地条件和环境因子等多方面因素的影响,不同种源间其含量也存在一定差异[13,14]。而这些差异究竟是受遗传的影响还是环境因素长期综合作用所致,尚不明确。同质园试验是近几年用来研究遗传和环境因素对植物初生生长和次生代谢的影响的一种直接有效的方法[16],而同质园条件下银杏不同种源幼苗生长及药用成分含量差异方面的研究未见报道。因此,以4个不同种源地泸定(LDS)、青川(QCS)、苍溪(CXS)和开江(MCS)银杏种子为试验材料,进行同质园栽培,分析银杏对环境的适应性,研究同质园条件下银杏药用成分含量的差异,探讨遗传和环境长期作用对这些差异性的影响,为高效选育叶片药用含量高的种源和品种等提供依据。

      • 自2017年以来,通过对四川银杏种资源调查和叶用银杏产业发展的调研,在前期对银杏叶片黄酮含量的研究基础上,于2020年10月在泸定、青川、苍溪和开江四个区域(见表1),分别选取15株长势旺盛,无明显病虫害,结实量大的银杏雌株收集种子混匀,2020月12份进行同质园种植栽培,2021年8月对其一年生苗表型性状和叶片药用成分进行测定。

        表 1  银杏种子种源收集地概况

        Table 1.  General situation of Ginkgo biloba seed provenance collection sites

        种源采集地经度纬度海拔/m年均温
        /℃
        年降雨量/mm
        QCS青川105°21′32°26′99813.71027.2
        CXS苍溪106°04′31°49′44116.71046.7
        LDS泸定102°13′29°57′124716.5664.4
        MCS开江107°59′31°02′48116.81237.4
      • 不同种源采用相同的种植技术,均采用人工点播种植方式,其株行距为30 cm×10 cm。每个种源种植三个小区,小区面积为6 m×9 m,小区采用随机区组排列,小区间设保护行。

      • 种子横径、纵径、侧径采用电子游标卡尺测定,精确到小数点后2位,每个种源各测定种子数量50粒,重复3次。百粒重选用电子天平测定,精确到小数点后2位,随机选取100粒种子,重复3次。

        采取等距抽样法每个小区抽取30株,每个种源三个小区共计90株。分别测定各样株的地径、株高、冠幅、单株叶片数量,随机摘取银杏苗上、中、下部位不同方向的叶片50片,测量其平均质量以及计算出单株叶重。

        总黄酮醇苷和萜类内酯含量测定参照2020版《中国药典》一部银杏叶含量测定,高效液相色谱法(通则0512)测定,计算公式为:

        总黄酮醇苷含量=(槲皮素含量+山柰酚含量+异鼠李素含量)×2.51,

        含萜类内酯=银杏内酯A含量+银杏内酯B含量+银杏内酯C含量+白果内酯含量

        其计算结果精确到小数点后2位,重复3次。

      • 利用Excel对银杏表型性状、叶片总黄酮醇苷和萜类内酯类含量进行整理分析及相关计算,采用SPSS 27软件进行多重比较和方差分析。

      • 不同种源银杏种子表型性状结果表明,除侧径(F侧径=2.602,P=0.124)外,不同种源间种子表型性状均存在极显著差异(F横径=70.041,P<0.01;F纵径=214.937,P<0.01;F百粒重=94.167,P<0.01)(见图1)。种源间种子百粒重平均值为206.17 g,LDS最低(148.96 g),显著低于其他种源,MCS最高(276.34 g),同时MCS种子横径和纵径均显著高于其他种源,分别为26.34 mm,17.90 mm,QCS种子纵径显著低于其他种源(15.34 mm)。

        图  1  不同种源银杏种子表型性状

        Figure 1.  Phenotypic characters of Ginkgo biloba L. seeds from different provenances

        不同种源银杏幼苗生长结果表明,除地径(F地径=0.92,P>0.05)外,不同种源间幼苗生长存在显著差异(F苗高=12.79,P<0.01;F冠幅=3.73,P=0.02;F单株叶数=10.401,P<0.01;F单叶重=6.91,P<0.01;F单株叶重=8.084,P=0.01)(见图2)。MCS和LDS的苗高分别为28.45 cm和 25.56 cm,显著高于QCS和CXS;冠幅平均值为15.37 cm,LDS和MCS显著高于QCS,CXS与各种源间差异不显著;单叶重各种源的平均值为3.99 g、单株叶数各种源的平均值为9.93片、单株叶重各种源的平均值为44.58 g,均表现为LDS和MCS显著高于QCS和CXS,单叶重LDS最大4.91 g,单株叶数和单株叶重MCS最大为28.45 cm,12.6片。

        图  2  不同种源银杏苗表型差异

        Figure 2.  Comparison of Ginkgo biloba L. seedings from different provenances

      • 对不同种源地的银杏叶片黄酮和萜类内酯成分含量测定,结果表明:除银杏内酯C(F银杏内酯C=0.970,P=0.453)外,各种源间黄酮和萜类内酯含量存在显著差异(F黄酮=13.518,P=0.02;F总萜类内酯=31.751,P<0.01;F白果内酯=23.641,P<0.01;F银杏内酯A=11.190,P=0.03;F银杏内酯B=19.347,P=0.01;)。由图3可知,各种源黄酮平均含量为1.89%,最低的QCS种源为1.57%,显著低于其他3个种源,而其他3个种源间并无显著差异,最高的CXS为2.04 %;各种源萜类内酯平均含量为1.00%,含量最高LDS为1.14%,显著高于其他种源,含量最低的MCS为0.86%,显著低于其他种源,QCS和CXS间无显著差异;

        图  3  不同种源黄酮和萜类内酯成分含量差异

        Figure 3.  Contents of flavonoids and terpene lactones were different in Ginkgo biloba L. from different provenances

        各种源白果内酯平均含量为0.32%,最高的LDS为0.38%,显著高于其他3个种源,其他3个种源间无显著差异;CXS和LDS的银杏内酯A含量均为0.10%,显著高于QCS和MCS,而QCS和MCS间无显著差异;各种源银杏内酯B平均含量为0.41%,最高的LDS为0.47%,显著高于其他种源,最低的MCS为0.35%,显著低于其他种源,QCS和CXS间无显著差异;银杏内酯C含量各种源间无明显差异,各种源含量表现为LDS>QCS>MCS>CXS。

      • 不同种源的种子及幼苗生长和叶片药用成分含量与种源地环境相关性分析结果(见图4)表明:苗高与单株叶重呈极显著正相关(0.912);百粒重与白果内酯、银杏内酯B、萜类内酯均显著负相关,相关系数分别为(−0.867)、(−0.803)和(−0.849);萜类内酯与白果内酯、银杏内酯A和银杏内酯B均呈极显著正相关,相关系数分别为(0.928)、(0.756)和(0.962);白果内酯与银杏内酯A和银杏内酯B呈显著正相关,相关系数分别为(0.615)和(0.849);银杏内酯A与银杏内酯B呈显著正相关(0.763)。总的来说幼苗生长特征与叶片药用成分含量间的相关性不高。

        图  4  银杏各性状间相关性分析

        Figure 4.  Correlation analysis of various characters of Ginkgo biloba L.

      • 植物的表型可塑性被认为是植物发生生物进化和适应环境的基本条件,在植物适应生境中有着重要的作用[18-20]。在本研究中不同种源银杏种子的表型性状有显著的差异,说明银杏种子在不同环境中表型有较大的可塑性。

        有研究表明植物经过环境的长期干扰后,其生长环境对子代生长和次生代谢物的表达具有强烈的影响[21]。在不同的生长环境中银杏的生长有明显的差异,因为银杏具有较强的适应环境变化的能力[22],而本研究中不同种源银杏在相同环境条件下幼苗生长性状除冠幅和地径外其他均呈显著差异,这些差异可能是亲代受种源地环境的影响导致子代幼苗部分生长存在遗传变异。Groot等的研究表明,子代性状差异变化依赖于亲本生存环境[23]。虽然各种源银杏地径和冠幅相差较多,但各种源间并不存在显著差异,这可能是不同种源银杏幼苗地径和冠幅遗传变异较小,随着银杏苗龄的增长其地径和冠幅可能会逐渐出现显著差异。

        植物为适应环境,经过长期的进化与环境相互作用产生了次生代谢物,植物的次生代谢产物的积累有助于抵御环境的胁迫[24],银杏的次生代谢物中黄酮类和萜类内酯类是银杏叶发挥独特药理作用的主要化学成分[25]。有研究表明不同地区银杏的黄酮和萜类内酯含量与经纬度、年均温、年降水量、无霜期、年均日照时数等气候因子的相关性均不显著,认为这种差异极有可能是由单株自身的遗传特性决定的[1315]。也有研究表明温度、水分、光照等环境条件对黄酮和萜类内酯含量积累有着重要影响[26-28]。在本研究中,不同种源银杏在相同环境条件下黄酮和萜类内酯含量也呈显著性差异。这可能与不同银杏种源地的气候和土壤环境有关,在不同环境的长期影响下遗传物质发生了一定的改变,这与刘芙蓉等对四川不同种源银杏叶片黄酮含量的研究结果相似,银杏在适宜的环境条件下遗传物质有利于黄酮类化合物的积累[29]。不同种源银杏萜类内酯中银杏内酯A、银杏内酯B和白果内酯含量均呈显著差异,只有银杏内酯C含量差异不显著,可能控制银杏内酯C含量的遗传物质在不同地理环境条件下影响较小。结果表明,不同种源的银杏在黄酮和萜类内酯类含量差异可能是亲代受环境的影响导致子代黄酮和萜类内酯的遗传物质存在变异。由于不清楚黄酮和萜类内酯的差异有多大程度上是由遗传物质主导的,有多大程度是因为抵御环境胁迫代谢物积累导致的差异,以及这些差异性在相同环境条件下能否继续保持相关性状,需进一步观察研究。

      • 本研究中通过各性状间的相关性比较,发现幼苗生长特征与药用成分含量间的相关性不高,证明银杏一年生苗表型性状不能对药用优良种源进行间接选择。同时本研究发现银杏内酯C含量与其他内酯间和总萜类内酯无显著相关关系,而其他内酯间以及与总萜类内酯间均显著正相关,表明在萜类内酯的提取和利用时,银杏内酯A、银杏内酯B和白果内酯含量在提取过程中可以相互参考。苗高与单株叶产量呈极显著正相关,说明苗高对叶产量大小具有参考性,但是相关系数不能完全说明苗高对叶产量的重要性,因为叶产量性状的表现是由叶大小、单叶重量和数量等一系列因子共同作用的结果。

        综上所述,本研究将4个不同种源的银杏种子,经同质园栽培后,子代幼苗的生长性状以及药用成分含量具有显著差异。发现这种差异是银杏在经过环境的长期干扰后,其生长环境对子代生长特性的表达产生了影响,并认为这些差异可传递到子代是因为不同种源地环境的影响导致遗传物质发生改变主导的。通过相关性分析发现幼苗生长特征与药用成分含量间的相关性不高。而不同种源地环境因子对子代的表现性状有什么样的相关性和银杏的这些差异性在消除不同种源地环境影响后是否能继续保持相关性状,有待继续观察研究。

    参考文献 (29)

    目录

      /

      返回文章
      返回