用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MaxEnt和GIS预测四川省杉木良种在湖北省同一适宜引种生态区

胡超 于静

胡超, 于静. 基于MaxEnt和GIS预测四川省杉木良种在湖北省同一适宜引种生态区[J]. 四川林业科技, 2022, 43(3): 85−93 doi: 10.12172/202108130002
引用本文: 胡超, 于静. 基于MaxEnt和GIS预测四川省杉木良种在湖北省同一适宜引种生态区[J]. 四川林业科技, 2022, 43(3): 85−93 doi: 10.12172/202108130002
HU C, YU J. Prediction of the identical ecological distributions for planting the superior varieties of Cunninghamia lanceolata in Hubei Province introduced from Sichuan Province based on MaxEnt model and ArcGIS analysis[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(3): 85−93 doi: 10.12172/202108130002
Citation: HU C, YU J. Prediction of the identical ecological distributions for planting the superior varieties of Cunninghamia lanceolata in Hubei Province introduced from Sichuan Province based on MaxEnt model and ArcGIS analysis[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(3): 85−93 doi: 10.12172/202108130002

基于MaxEnt和GIS预测四川省杉木良种在湖北省同一适宜引种生态区


doi: 10.12172/202108130002
详细信息
    作者简介:

    胡超(1985—),男,工程师,硕士,377163772@qq.com

    通讯作者: 185680003@qq.com

Prediction of the Identical Ecological Distributions for Planting the Superior Varieties of Cunninghamia lanceolata in Hubei Province Introduced from Sichuan Province Based on MaxEnt Model and ArcGIS Analysis

More Information
    Corresponding author: 185680003@qq.com
  • 摘要: 通过运用MaxEnt模型和地理信息系统(ArcGIS)软件进行建模,对四川省盆周山区杉木良种在湖北省同一适宜引种生态区进行预测,同时分析确定影响该杉木良种生长的主导气候因子。结果表明:MaxEnt模型对该杉木良种同一适宜引种生态区的预测精度高,模型预测的训练样本和测试样本AUC均值大于0.8。四川省盆周山区杉木产区的杉木良种在湖北省的低适生区面积为5204295 hm2,主要分布在:鄂中的随县、东宝区、掇刀区、沙洋县、荆州区、沙市区、江陵县、松滋市、公安县和石首市;鄂西的宜昌市、恩施市、襄阳市、十堰市和神农架。太阳辐射日均值和≥10℃积温是影响四川省盆周山区杉木良种适生区分布的主导气候因子。
  • 图  1  四川省盆周山区杉木产区采样点分布示意图

    Fig.  1  Distribution of sampling points in Cunninghamia lanceolata production areas of the mountainous region surrounding Sichuan basin

    图  2  初始模型的ROC曲线分析及AUC值

    Fig.  2  ROC curve analysis and AUC value for the initial model

    图  3  刀切法的环境因子变量重要性分析

    Fig.  3  Importance analysis of the environmental factors variables in the Jackknife method

    图  4  重建模型的ROC曲线分析及AUC值

    Fig.  4  ROC curve analysis and AUC value of the reconstruction model

    图  5  四川省盆周山区杉木良种在湖北省同一适宜引种生态区分布图

    Fig.  5  Distribution of the identical suitable introduction ecological distribution of superior Cunninghamia lanceolata varieties in Hubei province introduced from the mountainous regions surrounding Sichuan basin

    图  6  太阳辐射日均值(Bio2)反馈曲线

    Fig.  6  Daily average solar radiation (Bio2) feedback curve

    图  7  ≥10℃积温(Bio12)反馈曲线

    Fig.  7  Accumulated temperature ≥10℃ (Bio12) feedback curve

    表  1  四川省盆周山区杉木产区审定杉木良种

    Tab.  1  Approved superior Cunninghamia lanceolata varieties selected form Cunninghamia lanceolata production area in the mountainous regions surrounding Sichuan basin

    良种名称Name of superior varieties
    良种编号
    Number of superior varieties
    选育单位
    Breeding unit
    适宜栽培范围
    Suitable cultivation range
    洪雅杉木第一代无性系种子园川S-CSO(1)-CLA-002-2010四川省洪雅林场四川省盆周山区
    洪雅杉木第一代改良无性系种子园川S-CSO(1.5)-CLA-003-2010四川省洪雅林场四川省盆周山区
    筠连杉木第一代改良无性系种子园川S-CSO(1.5)-CLA-004-2010筠连县林木种子园四川省盆周山区
    高县杉木第一代改良无性系种子园川S-CSO(1.5)-CLA-006-2010高县月江森林经营所四川省盆周山区
    沐川杉木第一代无性系种子园川S-CSO(1)-CLA-001-2011沐川县森林经营所四川省盆周山区
    下载: 导出CSV

    表  2  四川省盆周山区杉木良种在湖北省同一适宜引种生态区环境因子

    Tab.  2  Environmental factors of the identical suitable introduction ecological distribution of the superior Cunninghamia lanceolata varieties in Hubei province introduced from the mountainous region surrounding Sichuan basin

    环境因子变量
    Environmental factor variable
    代码
    Code
    来源
    Sources of data
    累年年日照时数Bio1中国气象科学数据共享服务网
    太阳辐射日均值Bio2国家青藏高原科学数据中心
    累年年平均气温Bio3中国气象科学数据共享服务网
    累年年极端最低气温Bio4中国气象科学数据共享服务网
    累年年极端最高气温Bio5中国气象科学数据共享服务网
    累年最寒冷月(1月)平均气温Bio6中国气象科学数据共享服务网
    累年最热月(7月)平均气温Bio7中国气象科学数据共享服务网
    累年年日最低气温≤0.0℃平均日数日Bio8中国气象科学数据共享服务网
    累年年日最高气温≥35.0℃平均日数日Bio9中国气象科学数据共享服务网
    累年年平均气温日较差Bio10中国气象科学数据共享服务网
    ≥0℃积温(经DEM校正)Bio11中国科学院资源环境科学数据中心
    ≥10℃积温(经DEM校正)Bio12中国科学院资源环境科学数据中心
    累年年平均 5cm 地温Bio13中国气象科学数据共享服务网
    累年平均年降水量Bio14中国气象科学数据共享服务网
    累年年最多降水量Bio15中国气象科学数据共享服务网
    累年年最少降水量Bio16中国气象科学数据共享服务网
    累年月最长连续无降水日数Bio17中国气象科学数据共享服务网
    累年月最长连续降水日数Bio18中国气象科学数据共享服务网
    累年月最长连续降水量Bio19中国气象科学数据共享服务网
    累年年最大日降水量Bio20中国气象科学数据共享服务网
    累年年平均相对湿度Bio21中国气象科学数据共享服务网
    湿润指数Bio22中国科学院资源环境科学数据中心
    干燥度Bio23中国科学院资源环境科学数据中心
    累年年平均风速Bio24中国气象科学数据共享服务网
    累年年极大风速Bio25中国气象科学数据共享服务网
    累年年日最大风速≥5.0m/s日数Bio26中国气象科学数据共享服务网
    累年年日最大风速≥10.0m/s日数Bio27中国气象科学数据共享服务网
    土壤类型Bio28中国西部环境与生态科学数据中心
    土壤酸碱度Bio29中国西部环境与生态科学数据中心
    土壤的阳离子交换能力Bio30中国西部环境与生态科学数据中心
    土壤深度Bio31中国西部环境与生态科学数据中心
    土壤有机碳含量Bio32中国西部环境与生态科学数据中心
    土壤沙含量Bio33中国西部环境与生态科学数据中心
    土壤有效水含量Bio34中国西部环境与生态科学数据中心
    下载: 导出CSV

    表  3  环境因子的小网格推算模型

    Tab.  3  Small grid calculation model of regionalization indexes of environmental factors

    代码模型
    Bio1f(λφh)=1657.54551−12.97394λ+54.67389φ+0.39683h
    Bio2f(λφh)=−336.95268+8.13548λ+0.27515φ+0.10552h−0.04139λφ+ 0.00008φh−0.00086λh−0.02906λ2+0.0748φ2
    Bio3f(λφh)=15.76845+0.26667λ+0.06554φ+0.00313h−0.00246λφ− 0.00007φh−0.00004λh−0.00129λ2−0.0058φ2
    Bio4f(λφh)=51.97112+0.04975λ−1.59158φ+0.00319h+0.01283λφ− 0.00009φh−0.00004λh−0.00345λ2−0.01934φ2
    Bio5f(λφh)=−5.49324+0.7591λ+0.63929φ−0.00227h−0.00085λφ+ 0.00004φh−0.00002λh−0.00391λ2−0.00625φ2
    Bio6f(λφh)=−25.15112+0.97693λ−0.14663φ+0.01252h−0.00339λφ− 0.00013φh−0.0001λh−0.00436λ2−0.00875φ2
    Bio7f(λφh)=−2.71393+0.38806λ+0.88003φ−0.00036h−0.00493λφ+ 0.00001φh−0.00004λh−0.00124λ2−0.00717φ2
    Bio8f(λφh)=−542.8135+6.3311λ+3.84034φ−0.03783h−0.01839λφ+ 0.00196φh−0.00006λh−0.0215λ2+0.09159φ2+0.00001h2
    Bio9f(λφh)=202.49821−2.98647λ+1.40932φ−0.08143h−0.01514λφ+0.00031φh+0.00048λh+0.01325λ2−0.00614φ2
    Bio10f(λφh)=−30.57987+0.58985λ+0.17632φ+0.00758h−0.00161λφ− 0.00002φh−0.00005λh−0.00241λ2+0.00367φ2
    Bio13f(λφh)=40.20716−0.01707λ−0.64466φ−0.0093h
    Bio14f(λφh)=7193.99788−86.49361λ−94.53044φ−1.09821h−0.86004λφ+0.00582φh+0.00755λh+0.62224λ2+1.69362φ2+0.00003h2
    Bio15f(λφh)=7151.25014−79.48638λ−97.8266φ−1.3132h−1.32853λφ+0.00958φh+0.00715λh+0.70653λ2+2.15358φ2+0.00006h2
    Bio16f(λφh)=7720.97762−99.21175λ−90.24615φ−1.12906h−0.33884λφ+0.00553φh+0.00835λh+0.55806λ2+1.06451φ2+0.00003h2
    Bio17f(λφh)=−687.35803+10.1539λ+11.68127φ+0.24181h−0.01193λφ− 0.00002φh−0.00208λh−0.04825λ2−0.10321φ2−0.00001h2
    Bio18f(λφh)=232.4859−2.67681λ−3.66311φ−0.01128h+0.00936λφ−0.0002φh+0.00019λh+0.01093λ2+0.02698φ2
    Bio19f(λφh)=127.01265+16.46271λ−53.94528φ+0.17506h−0.14495λφ− 0.00154φh−0.00129λh−0.03293λ2+0.851φ2
    Bio20f(λφh)=−287.76652+13.53065λ−10.8604φ−0.08777h+0.02005λφ+ 0.00116φh−0.00037λh−0.06146λ2+0.03945φ2+0.00001h2
    Bio21f(λφh)=409.22655−4.72918λ−3.05601φ−0.05713h+0.02024λφ−0.0001φh+0.00049λh+0.01796λ2−0.00621φ2
    Bio24f(λφh)=−14.33028+0.15696λ+0.20816φ+0.00247h−0.00304λφ− 0.00001φh−0.00002λh+0.00001λ2+0.0025φ2
    Bio25f(λφh)=−103.65452+1.1795λ+2.33329φ+0.00947h−0.03488λφ−0.00008φh−0.00005λh+0.00165λ2+0.02331φ2
    Bio26f(λφh)=−1899.89075+23.36367λ+16.81273φ+0.3808h−0.28339λφ− 0.00219φh−0.00218λh−0.03323λ2+0.28658φ2−0.00001h2
    Bio27f(λφh)=95.27993−3.19066λ+2.06246φ−0.06993h−0.04559λφ+0.00031φh+0.0006λh+0.02443λ2+0.05825φ2+0.00001h2
    下载: 导出CSV

    表  4  各环境因子变量的贡献率

    Tab.  4  Contribution rate of each environmental factor variable

    变量贡献率置换重要性
    bio1225.32.3
    bio221.544
    bio1320.83.7
    bio2512.85.1
    bio286.41.8
    bio72.511.6
    bio272.40.7
    bio141.61.7
    bio181.51.7
    bio817.6
    bio50.80.2
    bio230.53.6
    bio310.54.3
    bio290.40.6
    bio240.40.2
    bio100.31.7
    bio210.30.6
    bio110.21.5
    bio40.20.2
    bio220.10.7
    bio260.10.8
    bio330.10.2
    bio200.10.7
    bio190.11
    bio60.11
    bio3000.4
    bio1700.8
    bio900.5
    bio3200
    bio1500
    bio1600
    bio3400
    bio100.5
    bio300
    下载: 导出CSV

    表  5  关键环境因子变量的相关系数

    Tab.  5  Correlation coefficient of key environmental factor variables

     bio2bio7bio8bio12bio13bio14bio18bio25bio27bio28
    bio21.000
    bio7−0.805**1.000
    bio80.841**−0.776**1.000
    bio12−0.788**0.727**−0.729**1.000
    bio13−0.895**0.948**−0.848**0.775**1.000
    bio140.260**−0.0450.062−0.054−0.158**1.000
    bio180.576**−0.649**0.510**−0.395**−0.681**0.393**1.000
    bio250.070−0.157**0.195**−0.009−0.193**0.1120.564**1.000
    bio270.376**−0.430**0.565**−0.228**−0.418**−0.284**0.464**0.493**1.000
    bio28−0.235**0.142*−0.243**0.1070.201**−0.126*−0.160**−0.170**−0.149*1.000
    下载: 导出CSV

    表  6  主导环境因子变量的贡献率

    Tab.  6  Contribution rate of dominant environmental factor variables

    变量贡献率置换重要性
    bio246.473.7
    bio1217.41.8
    bio2510.112.6
    bio148.22.1
    bio287.92.3
    bio187.23.8
    bio272.83.8
    下载: 导出CSV
  • [1] 陈永忠. 《油茶优良种质资源》. [M]. 北京: 中国林业出版社, 2008.
    [2] 秦国锋, 周志春. 《中国马尾松优良种质资源》. [M]. 北京: 中国林业出版社, 2012.
    [3] 汤国安, 杨晞. ArcGIS地理信息系统空间分析实验教程. [M]. 北京: 科学出版社, 2010.
    [4] 段居琦,周广胜. 中国水稻潜在分布及其气候特征[J]. 生态学报,2011,31(22):6659−6668.
    [5] 高雅,秦华. MaxEnt生态位模型在红花槭引种区预测上的应用探讨[J]. 中国园林,2018,34(4):89−93. doi: 10.3969/j.issn.1000-6664.2018.04.016
    [6] 雷军成,徐海根. 基于MaxEnt的加拿大一枝黄花在中国的潜在分布区预测[J]. 生态与农村环境学报,2010,26(2):137−141. doi: 10.3969/j.issn.1673-4831.2010.02.008
    [7] 郭兆夏,梁轶,王景红,等. GIS技术支持下的陕西核桃精细化气候适宜性区划[J]. 干旱地区农业研究,2015,33(1):194−198.
    [8] 屈振江,周广胜. 中国富士苹果种植的气候适宜性研究[J]. 气象学报,2016,74(3):479−490. doi: 10.11676/qxxb2016.027
    [9] 林正雨,陈强,邓良基,等. 四川柑橘适宜分布及其对气候变化的响应研究[J]. 中国生态农业学报(中英文),2019,27(6):845−859.
    [10] 刘倩,齐增湘,周永,等. 我国银杉潜在分布区预测及适宜性评价[J]. 安徽农学通报,2019,25(18):53−57. doi: 10.3969/j.issn.1007-7731.2019.18.024
    [11] 魏淑婷,李涛,林玉成. 基于MaxEnt模型预测四川省松材线虫的潜在适生区[J]. 四川动物,2019,38(1):37−46. doi: 10.11984/j.issn.1000-7083.20180218
    [12] 黄振,吴淇铭,黄可辉. 应用MaxEnt模型预测辣椒果实蝇在中国的潜在地理分布[J]. 武夷科学,2017,33(1):28−34.
    [13] 王翀,林慧龙,何兰,等. 紫茎泽兰潜在分布对气候变化响应的研究[J]. 草业学报,2014,23(4):20−30. doi: 10.11686/cyxb20140403
    [14] 王茹琳,王明田,李庆,等. 基于MaxEnt模型的美味猕猴桃在中国气候适宜性分析[J]. 云南农业大学学报(自然科学版),2019,34(3):522−531.
    [15] 冯茜,胡强,施小刚,等. 卧龙国家级自然保护区红腹角雉适宜栖息地与活动节律研究[J]. 四川林业科技,2021,42(4):12−19. doi: 10.12172/202012080001
    [16] 李灿,刘贤安,王娟,等. 基于MaxEnt的四川省红豆杉潜在分布区分析及适宜性评价[J]. 四川林业科技,2017,38(5):1−7.
    [17] 王茹琳,姜 淦,王闫利,等. 气候变暖情境下华山松大小蠹在中国的潜在分布区预测[J]. 四川林业科技,2015,36(1):73−78. doi: 10.3969/j.issn.1003-5508.2015.01.018
  • [1] 孟庆银.  土壤有机碳全氮与杉木幼苗生长相关性研究 . 四川林业科技, 2022, 43(): 1-6. doi: 10.12172/202112020002
    [2] 包小梅, 华朝晖, 叶金俊, 王海蓉, 齐明, 何贵平.  杉木高世代育种群体和一代群体遗传基础的比较研究及早期初选 . 四川林业科技, 2022, 43(1): 24-30. doi: 10.12172/202104080001
    [3] 黄振, 李强, 李玉华, 李佳蔓, 陈炙, 杨勇智, 慕长龙.  杉木小孢子发育特征及其在杂交育种中的应用 . 四川林业科技, 2021, 42(4): 1-4. doi: 10.12172/202012290003
    [4] 孟庆银.  2年生指数施肥杉木实生容器苗试验林测定分析 . 四川林业科技, 2021, 42(5): 133-136. doi: 10.12172/202102100001
    [5] 袁莲珍, 杨斌, 刘际梅, 史富强.  外源植物激素对杉木种子萌发及苗木生长的影响 . 四川林业科技, 2020, 41(6): 75-79. doi: 10.12172/202006220001
    [6] 刘盖, 陈善波, 金银春, 王莎.  广元市主要核桃良种生长表现及经济性状分析 . 四川林业科技, 2019, 40(1): 52-55. doi: 10.16779/j.cnki.1003-5508.2019.01.011
    [7] 周开君, 张安刚, 刘芳, 龚兆全, 吴哲, 颜伟, 高巍.  优良油用牡丹引种试验初报 . 四川林业科技, 2018, 39(6): 51-54. doi: 10.16779/j.cnki.1003-5508.2018.06.011
    [8] 鲜伟, 吴开志, 陈保军, 陈国全.  四川杉木第二代无系种子园洪雅半同胞子代测定林生长分析 . 四川林业科技, 2018, 39(4): 45-48. doi: 10.16779/j.cnki.1003-5508.2018.04.011
    [9] 王伟平, 李绍才, 孙海龙, 缪宁, 马瑞, 陶文静, 杨皓.  杉木和柳杉人工林的土壤理化性质对比 . 四川林业科技, 2018, 39(5): 68-73. doi: 10.16779/j.cnki.1003-5508.2018.05.016
    [10] 王凘璐, 罗建勋, 高洁.  “达梅1号”果梅良种选育初报 . 四川林业科技, 2018, 39(4): 112-114. doi: 10.16779/j.cnki.1003-5508.2018.04.027
    [11] 尚彬.  缓释肥对杉木容器育苗生长的影响 . 四川林业科技, 2017, 38(3): 93-94,119. doi: 10.16779/j.cnki.1003-5508.2017.03.020
    [12] 李灿, 刘贤安, 王娟, 彭培好, 邵怀勇.  基于MaxEnt的四川省红豆杉潜在分布区分析及适宜性评价 . 四川林业科技, 2017, 38(5): 1-7,32. doi: 10.16779/j.cnki.1003-5508.2017.05.001
    [13] 贾晨, 张时林, 段爱国, 罗建勋, 刘芙蓉, 杨马进.  杉木第3代种子园半同胞家系子代苗期测定与优良家系选择 . 四川林业科技, 2016, 37(6): 72-75. doi: 10.16779/j.cnki.1003-5508.2016.06.015
    [14] 杨平, 陈炙, 黄振, 李玉华, 黄正芬.  月江杉木2代种子园优树选择研究 . 四川林业科技, 2016, 37(3): 20-24. doi: 10.16779/j.cnki.1003-5508.2016.03.004
    [15] 刘海鹰, 万雪琴, 刘均利, 杨晓蓉.  杉木优良无性系组培繁育技术研究 . 四川林业科技, 2016, 37(5): 1-6. doi: 10.16779/j.cnki.1003-5508.2016.05.001
    [16] 刘韩, 伍杰, 帅伟, 余海清, 刘燕云, 彭克忠, 兰常军.  甘孜州早实核桃引种栽培试验 . 四川林业科技, 2015, 36(5): 103-106. doi: 10.16779/j.cnki.1003-5508.2015.05.022
    [17] 李真子, 徐玉梅, 袁莲珍, 孔琼荣.  N、P、K对杉木幼苗生长量的影响 . 四川林业科技, 2015, 36(2): 95-97. doi: 10.16779/j.cnki.1003-5508.2015.02.021
    [18] 李恒, 唐平, 刀丽平, 张春花, 沈杰.  攀枝花9个核桃优良单株主要经济性状的主成分分析及良种筛选 . 四川林业科技, 2015, 36(4): 33-36. doi: 10.16779/j.cnki.1003-5508.2015.04.005
    [19] 王茹琳, 姜淦, 王闫利, 林姗, 沈沾红.  气候变暖情境下华山松大小蠹在中国的潜在分布区预测 . 四川林业科技, 2015, 36(1): 73-78. doi: 10.16779/j.cnki.1003-5508.2015.01.018
    [20] 邱月群, 范建, 张小平, 万军, 游勇, 曹小军, 蒋东安.  威远县无花果引种试验初报 . 四川林业科技, 2013, 34(6): 77-79,55. doi: 10.16779/j.cnki.1003-5508.2013.06.019
  • 加载中
  • 图(7) / 表(6)
    计量
    • 文章访问数:  75
    • HTML全文浏览量:  3
    • PDF下载量:  6
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-13
    • 网络出版日期:  2022-07-25
    • 刊出日期:  2022-06-25

    基于MaxEnt和GIS预测四川省杉木良种在湖北省同一适宜引种生态区

    doi: 10.12172/202108130002
      作者简介:

      胡超(1985—),男,工程师,硕士,377163772@qq.com

      通讯作者: 185680003@qq.com

    摘要: 通过运用MaxEnt模型和地理信息系统(ArcGIS)软件进行建模,对四川省盆周山区杉木良种在湖北省同一适宜引种生态区进行预测,同时分析确定影响该杉木良种生长的主导气候因子。结果表明:MaxEnt模型对该杉木良种同一适宜引种生态区的预测精度高,模型预测的训练样本和测试样本AUC均值大于0.8。四川省盆周山区杉木产区的杉木良种在湖北省的低适生区面积为5204295 hm2,主要分布在:鄂中的随县、东宝区、掇刀区、沙洋县、荆州区、沙市区、江陵县、松滋市、公安县和石首市;鄂西的宜昌市、恩施市、襄阳市、十堰市和神农架。太阳辐射日均值和≥10℃积温是影响四川省盆周山区杉木良种适生区分布的主导气候因子。

    English Abstract

    • 林木良种是有适宜生态区域要求的,如果自然条件不适宜,再好的良种也达不到丰产、稳产。因林木良种不适应引种区自然条件而造成巨大损失的教训是深刻的:20世纪70年代,各地在油茶(Camellia oleifera Abel.)生产发展过程中调购种子比较随意,较多地方因为超地理区域引种造林,引种前没有进行科学预判,盲目性的引种,导致幼林生长不良、成林产量很低,在人力、物力等方面都造成了较大的损失[1]

      传统的林木良种引种适宜生态区凭主观经验判断较多,如,宜林范围内每个按水平分布的气候带和垂直气候带都分布着特有类型的森林植被。经纬度由北向南,由西向东调运范围大于相反方向的范围,海拔高度不超过300~500 m,但是,1958年,湖北引种广东、福建马尾松(Pinus massoniana Lamb.)种子成功,用事实改变了过去专家认为“马尾松南种北移的幅度不能超过2~3°”的定论[2]。1979年李传志论证马尾松一次北移6~7°育苗是可以成功的[2]。所以,温度、降水、土壤等主要环境因子相似,即为林木良种同一适宜引种生态区。

      杉木(Cunninghamia lanceolata)是湖北省主要造林树种之一。传统的杉木良种引种适宜生态区也是凭主观经验判断较多。杉木良种数量较多,且生长周期长,像农作物良种一样,对所有杉木良种都进行引种试验的可行性不大。基于MaxEnt和ARCGIS分析杉木良种同一适宜引种生态区[3,4,5],对四川省盆周山区杉木产区现有审定杉木良种,以100 m×100 m(即1 hm2)为单元,用34个环境因子划分四川省盆周山区杉木良种在湖北省同一适宜引种生态区,提高预测精度,为湖北省杉木良种造林工作能够“适地适树”,经营管理上“经济、合理”,杉木生产达到“速生、丰产、优质”奠定基础。

      • 四川省林木良种审定委员会审定通过了5个无性系种子园良种。这些良种具有生长速度快、抗性强等优点。四川省盆周山区审定杉木良种信息来源于湖北省林业局林木种苗管理总站(见表1)。

        34个环境因子数据获取于中国气象科学数据共享服务网、中国科学院资源环境科学数据中心、国家青藏高原科学数据中心、中国西部环境与生态科学数据中心(见表2)。

        表 1  四川省盆周山区杉木产区审定杉木良种

        Table 1.  Approved superior Cunninghamia lanceolata varieties selected form Cunninghamia lanceolata production area in the mountainous regions surrounding Sichuan basin

        良种名称Name of superior varieties
        良种编号
        Number of superior varieties
        选育单位
        Breeding unit
        适宜栽培范围
        Suitable cultivation range
        洪雅杉木第一代无性系种子园川S-CSO(1)-CLA-002-2010四川省洪雅林场四川省盆周山区
        洪雅杉木第一代改良无性系种子园川S-CSO(1.5)-CLA-003-2010四川省洪雅林场四川省盆周山区
        筠连杉木第一代改良无性系种子园川S-CSO(1.5)-CLA-004-2010筠连县林木种子园四川省盆周山区
        高县杉木第一代改良无性系种子园川S-CSO(1.5)-CLA-006-2010高县月江森林经营所四川省盆周山区
        沐川杉木第一代无性系种子园川S-CSO(1)-CLA-001-2011沐川县森林经营所四川省盆周山区

        表 2  四川省盆周山区杉木良种在湖北省同一适宜引种生态区环境因子

        Table 2.  Environmental factors of the identical suitable introduction ecological distribution of the superior Cunninghamia lanceolata varieties in Hubei province introduced from the mountainous region surrounding Sichuan basin

        环境因子变量
        Environmental factor variable
        代码
        Code
        来源
        Sources of data
        累年年日照时数Bio1中国气象科学数据共享服务网
        太阳辐射日均值Bio2国家青藏高原科学数据中心
        累年年平均气温Bio3中国气象科学数据共享服务网
        累年年极端最低气温Bio4中国气象科学数据共享服务网
        累年年极端最高气温Bio5中国气象科学数据共享服务网
        累年最寒冷月(1月)平均气温Bio6中国气象科学数据共享服务网
        累年最热月(7月)平均气温Bio7中国气象科学数据共享服务网
        累年年日最低气温≤0.0℃平均日数日Bio8中国气象科学数据共享服务网
        累年年日最高气温≥35.0℃平均日数日Bio9中国气象科学数据共享服务网
        累年年平均气温日较差Bio10中国气象科学数据共享服务网
        ≥0℃积温(经DEM校正)Bio11中国科学院资源环境科学数据中心
        ≥10℃积温(经DEM校正)Bio12中国科学院资源环境科学数据中心
        累年年平均 5cm 地温Bio13中国气象科学数据共享服务网
        累年平均年降水量Bio14中国气象科学数据共享服务网
        累年年最多降水量Bio15中国气象科学数据共享服务网
        累年年最少降水量Bio16中国气象科学数据共享服务网
        累年月最长连续无降水日数Bio17中国气象科学数据共享服务网
        累年月最长连续降水日数Bio18中国气象科学数据共享服务网
        累年月最长连续降水量Bio19中国气象科学数据共享服务网
        累年年最大日降水量Bio20中国气象科学数据共享服务网
        累年年平均相对湿度Bio21中国气象科学数据共享服务网
        湿润指数Bio22中国科学院资源环境科学数据中心
        干燥度Bio23中国科学院资源环境科学数据中心
        累年年平均风速Bio24中国气象科学数据共享服务网
        累年年极大风速Bio25中国气象科学数据共享服务网
        累年年日最大风速≥5.0m/s日数Bio26中国气象科学数据共享服务网
        累年年日最大风速≥10.0m/s日数Bio27中国气象科学数据共享服务网
        土壤类型Bio28中国西部环境与生态科学数据中心
        土壤酸碱度Bio29中国西部环境与生态科学数据中心
        土壤的阳离子交换能力Bio30中国西部环境与生态科学数据中心
        土壤深度Bio31中国西部环境与生态科学数据中心
        土壤有机碳含量Bio32中国西部环境与生态科学数据中心
        土壤沙含量Bio33中国西部环境与生态科学数据中心
        土壤有效水含量Bio34中国西部环境与生态科学数据中心

        中国行政区划数据、中国海拔高度(DEM)数据获取于中国科学院资源环境科学数据中心和湖北省林业调查规划院。

      • 为避免样点数据在某个地理空间上过度聚集,在四川省盆周山区杉木适生范围内,用Arcgis10的Create fishnet 工具生成空间为30行x30列的格网数据,以1个格网作为1个采样单元对杉木良种的分布数据进行采样(见图1[6]。根据选育单位确定的杉木良种适宜的自然地理环境条件范围,如,适宜海拔范围为400~1500 m,在Excel表中,剔除高程小于400 m、高程大于1500 m、土壤厚度小于30 cm和异常值的采样点,全部采样分布记录共301条。按照MaxEnt软件的“Samples”的要求整理数据,将分布点以“物种+经度+纬度(西经、南纬的值为负,经纬度为十进制小数格式。)”另存为CSV格式文件。

        图  1  四川省盆周山区杉木产区采样点分布示意图

        Figure 1.  Distribution of sampling points in Cunninghamia lanceolata production areas of the mountainous region surrounding Sichuan basin

      • 地形因子(经度、纬度、高度)与环境因子有较好的回归关系,利用中国2160个基本、基准地面气象观测站的观测数据,推算模拟无测站区域的环境资源分布情况。建立Bio1~Bio10、Bio13~Bio21、Bio24~Bio27等23个环境因子的空间分布模型,其表达式为:

        $$ Y = f\left( {\lambda ,\varphi ,h} \right) + \varepsilon $$ (1)

        式中,Y为环境因子要素;λ为经度;φ为纬度;h为海拔高度(m);函数f(λ, φ, h)为气候学方程;ε为残差项,可视为小地形因子(坡度、坡向等)及下垫面对环境的影响。将f(λ,φ,h)展成三维二次趋势面方程[7]

        $$\begin{aligned} f\left( {\lambda ,\varphi ,h} \right) =& b_{0}+ b_{1}\lambda+ b_{2}\phi + b_{3}h + b_{4}\lambda \phi + b_{5}\phi h+\\ &b_{6}\lambda h+b_{7}\lambda^{2}+b_{8}\phi^{2}+b_{9}h^{2} \end{aligned}$$ (2)

        式中,b0~b9为待定系数,利用SAS9.4建立逐步回归优化回归模型,模拟23个环境因子的宏观趋势项,分别建立23个环境因子的小网格推算模型(见表3)。

        表 3  环境因子的小网格推算模型

        Table 3.  Small grid calculation model of regionalization indexes of environmental factors

        代码模型
        Bio1f(λφh)=1657.54551−12.97394λ+54.67389φ+0.39683h
        Bio2f(λφh)=−336.95268+8.13548λ+0.27515φ+0.10552h−0.04139λφ+ 0.00008φh−0.00086λh−0.02906λ2+0.0748φ2
        Bio3f(λφh)=15.76845+0.26667λ+0.06554φ+0.00313h−0.00246λφ− 0.00007φh−0.00004λh−0.00129λ2−0.0058φ2
        Bio4f(λφh)=51.97112+0.04975λ−1.59158φ+0.00319h+0.01283λφ− 0.00009φh−0.00004λh−0.00345λ2−0.01934φ2
        Bio5f(λφh)=−5.49324+0.7591λ+0.63929φ−0.00227h−0.00085λφ+ 0.00004φh−0.00002λh−0.00391λ2−0.00625φ2
        Bio6f(λφh)=−25.15112+0.97693λ−0.14663φ+0.01252h−0.00339λφ− 0.00013φh−0.0001λh−0.00436λ2−0.00875φ2
        Bio7f(λφh)=−2.71393+0.38806λ+0.88003φ−0.00036h−0.00493λφ+ 0.00001φh−0.00004λh−0.00124λ2−0.00717φ2
        Bio8f(λφh)=−542.8135+6.3311λ+3.84034φ−0.03783h−0.01839λφ+ 0.00196φh−0.00006λh−0.0215λ2+0.09159φ2+0.00001h2
        Bio9f(λφh)=202.49821−2.98647λ+1.40932φ−0.08143h−0.01514λφ+0.00031φh+0.00048λh+0.01325λ2−0.00614φ2
        Bio10f(λφh)=−30.57987+0.58985λ+0.17632φ+0.00758h−0.00161λφ− 0.00002φh−0.00005λh−0.00241λ2+0.00367φ2
        Bio13f(λφh)=40.20716−0.01707λ−0.64466φ−0.0093h
        Bio14f(λφh)=7193.99788−86.49361λ−94.53044φ−1.09821h−0.86004λφ+0.00582φh+0.00755λh+0.62224λ2+1.69362φ2+0.00003h2
        Bio15f(λφh)=7151.25014−79.48638λ−97.8266φ−1.3132h−1.32853λφ+0.00958φh+0.00715λh+0.70653λ2+2.15358φ2+0.00006h2
        Bio16f(λφh)=7720.97762−99.21175λ−90.24615φ−1.12906h−0.33884λφ+0.00553φh+0.00835λh+0.55806λ2+1.06451φ2+0.00003h2
        Bio17f(λφh)=−687.35803+10.1539λ+11.68127φ+0.24181h−0.01193λφ− 0.00002φh−0.00208λh−0.04825λ2−0.10321φ2−0.00001h2
        Bio18f(λφh)=232.4859−2.67681λ−3.66311φ−0.01128h+0.00936λφ−0.0002φh+0.00019λh+0.01093λ2+0.02698φ2
        Bio19f(λφh)=127.01265+16.46271λ−53.94528φ+0.17506h−0.14495λφ− 0.00154φh−0.00129λh−0.03293λ2+0.851φ2
        Bio20f(λφh)=−287.76652+13.53065λ−10.8604φ−0.08777h+0.02005λφ+ 0.00116φh−0.00037λh−0.06146λ2+0.03945φ2+0.00001h2
        Bio21f(λφh)=409.22655−4.72918λ−3.05601φ−0.05713h+0.02024λφ−0.0001φh+0.00049λh+0.01796λ2−0.00621φ2
        Bio24f(λφh)=−14.33028+0.15696λ+0.20816φ+0.00247h−0.00304λφ− 0.00001φh−0.00002λh+0.00001λ2+0.0025φ2
        Bio25f(λφh)=−103.65452+1.1795λ+2.33329φ+0.00947h−0.03488λφ−0.00008φh−0.00005λh+0.00165λ2+0.02331φ2
        Bio26f(λφh)=−1899.89075+23.36367λ+16.81273φ+0.3808h−0.28339λφ− 0.00219φh−0.00218λh−0.03323λ2+0.28658φ2−0.00001h2
        Bio27f(λφh)=95.27993−3.19066λ+2.06246φ−0.06993h−0.04559λφ+0.00031φh+0.0006λh+0.02443λ2+0.05825φ2+0.00001h2

        在中国海拔高度(DEM)数据支持下,在ArcGIS10里,用23个环境因子的小网格推算模型,将环境因子Bio1~Bio10、Bio13~Bio21、Bio24~Bio27分别插值为100 m×100 m 网格的基础数据[8,9]。用IDW法分别插值其残差项为100 m×100 m 网格的修正数据。用Spatial Analyst工具→数学→逻辑→加,将每个环境因子的基础数据和修正数据叠加相加为环境因子栅格数据。23个环境因子栅格数据用投影栅格工具统一为地理坐标系D_WGS_1984。以湖北省和四川省矢量边界为掩膜,裁剪出这23个环境因子栅格数据图层。最后,用栅格转ASCII工具将这23个环境因子栅格数据转换保存为MaxEnt所需要的ASCII格式文件。

        在ArcGIS10里,将下载的Bio11、Bio12、Bio22、Bio23、Bio28~Bio34等11个环境因子数据通过重采样工具使其像元大小与Bio1~Bio10、Bio13~Bio21、Bio24~Bio27等23个环境因子一致[10]。11个环境因子数据统一为地理坐标系D_WGS_1984。以湖北省和四川省矢量边界为掩膜,裁剪出这11个环境因子栅格数据图层。最后,用栅格转ASCII工具将这11个环境因子栅格数据转换保存为MaxEnt所需要的ASCII格式文件。

      • (1)物种数据:将之前导出的杉木良种分布数据(csv格式)的文件,通过Browse加载到MaxEnt软件“Samples”模块。

        (2)环境数据:把ASCII格式文件的34个环境数据加载到MaxEnt软件“Environmental layers”模块。

        (3)参数设置:使用auto features 选项,根据自动特征规则进行计算,所有的要素类型都将用到。结果以comulative类型和ASCII格式输出,并定义其输出位置。设置界面的选择 settings里‘Random test percentage’设置为25,随机选取75%的样本点数据作为训练数据[11],settings中replicates本试验选择3次重复作为平行试验,最大迭代次数设为500次,收敛阈值设为0.00001,取值范围0-100[12]。选择‘Do jackknife to measure variable importance ’衡量所有变量的重要性,MaxEnt软件分别对每一个环境影响因子进行刀切图绘出。

      • 绘制响应曲线(Response curves)评价模型精度。ROC 曲线以真阳性率为纵坐标(敏感性,实际存在且被预测为存在的比率),以假阳性率(1-特异性,实际不存在但被预测为存在的比率)为横坐标,AUC值指 ROC 曲线与横坐标围成的面积值,值域为0~1。AUC值越大表示与随机分布相距越远,环境因子变量与预测的杉木良种同一适宜引种生态区之间的相关性越大,即模型预测效果越好,反之说明模型预测效果越差。AUC值在 0.5~0.6,0.6~0.7,0.7~0.8,0.8~0.9,0.9~1 分别表示模拟效果失败、较差、一般、好、非常好[4,8]。34个环境因子预测模型的训练样本和测试样本的AUC值达到0.921和0.902(见图2),AUC均值在0.9~1之间,说明模型预测效果非常好。

        图  2  初始模型的ROC曲线分析及AUC值

        Figure 2.  ROC curve analysis and AUC value for the initial model

      • 在使用MaxEnt模型进行较大空间范围的杉木良种同一适宜引种生态区预测时,如果环境因子变量过多、变量空间共线性过强,将导致模型的复杂性增加,随机误差增大。所以,过多低贡献率的环境因子变量会导致模型运行结果的准确性降低。因此,需要对环境因子进行筛选或降维[13]

      • 在34个环境因子中,对于杉木良种同一适宜引种生态区分布贡献较大的环境因子变量有:Bio2、Bio7、Bio8、Bio12~Bio14、Bio18、Bio25、Bio27、Bio28,累计贡献率为95.8%。Bio1、Bio3~Bio6、Bio9~Bio11、Bio15~Bio17、Bio19~Bio24、Bio26、Bio29~Bio34等24个环境变量的贡献率都小于1%(见表4),对杉木的种植分布影响有限,对这24个环境因子变量进行剔除[14]

        表 4  各环境因子变量的贡献率

        Table 4.  Contribution rate of each environmental factor variable

        变量贡献率置换重要性
        bio1225.32.3
        bio221.544
        bio1320.83.7
        bio2512.85.1
        bio286.41.8
        bio72.511.6
        bio272.40.7
        bio141.61.7
        bio181.51.7
        bio817.6
        bio50.80.2
        bio230.53.6
        bio310.54.3
        bio290.40.6
        bio240.40.2
        bio100.31.7
        bio210.30.6
        bio110.21.5
        bio40.20.2
        bio220.10.7
        bio260.10.8
        bio330.10.2
        bio200.10.7
        bio190.11
        bio60.11
        bio3000.4
        bio1700.8
        bio900.5
        bio3200
        bio1500
        bio1600
        bio3400
        bio100.5
        bio300
      • 刀切法(jackknife test)测定各环境因子变量权重。刀切法就是每次都忽略一个环境因子变量,然后基于剩下的环境因子变量来对杉木良种同一适宜引种生态区进行预测,然后MaxEnt软件自带程序画出柱形图作为依据评估环境因子变量的重要性。红色条带代表所有变量的贡献;深蓝色的条带越长,说明该变量越重要;浅蓝色的条带长度代表除该变量以外,其他所有变量组合的贡献。Bio2、Bio7、Bio8、Bio12~Bio14、Bio18、Bio25、Bio27、Bio28对应的深蓝色条带都大于0.1(见图3),说明它们本身的增益值较大,表明它们对预测杉木良种同一适宜引种生态区是重要环境因子变量,所以,保留这10个环境因子变量。

        图  3  刀切法的环境因子变量重要性分析

        Figure 3.  Importance analysis of the environmental factors variables in the Jackknife method

      • 用GIS软件的值提取至点工具提取有效分布点的环境因子变量数值,用SPSS软件对贡献较大的Bio2、Bio7、Bio8、Bio12~Bio14、Bio18、Bio25、Bio27、Bio28等10个主导环境因子进行Spearman相关分析(见表5),检验环境因子变量之间的多重共线性。Bio2分别与Bio7、Bio8、Bio13的相关系数|r|≥0.8,对比初始模型中二者的贡献率,Bio7、Bio8、Bio13贡献率较小,所以,剔除贡献率较小的变量Bio7、Bio8、Bio13,提高模型模拟的精度 [14]

        表 5  关键环境因子变量的相关系数

        Table 5.  Correlation coefficient of key environmental factor variables

         bio2bio7bio8bio12bio13bio14bio18bio25bio27bio28
        bio21.000
        bio7−0.805**1.000
        bio80.841**−0.776**1.000
        bio12−0.788**0.727**−0.729**1.000
        bio13−0.895**0.948**−0.848**0.775**1.000
        bio140.260**−0.0450.062−0.054−0.158**1.000
        bio180.576**−0.649**0.510**−0.395**−0.681**0.393**1.000
        bio250.070−0.157**0.195**−0.009−0.193**0.1120.564**1.000
        bio270.376**−0.430**0.565**−0.228**−0.418**−0.284**0.464**0.493**1.000
        bio28−0.235**0.142*−0.243**0.1070.201**−0.126*−0.160**−0.170**−0.149*1.000
      • 用剩余的Bio2、Bio12、Bio14、Bio18、Bio25、Bio27、Bio28等7个主导环境因子变量重新建模,重建模型的训练样本和测试样本的AUC值达到0.902和0.890(见图4),AUC均值在0.8~0.9之间,表明重建模型适用性及模拟精度均好,与主导环境因子变量之间的相关性大,预测同一适宜引种生态区的结果好,可以据此进行引种推广。

        图  4  重建模型的ROC曲线分析及AUC值

        Figure 4.  ROC curve analysis and AUC value of the reconstruction model

      • MaxEnt进行3次重复试验,选取重复试验中,AUC值最高的图层导人ArcGIS软件进行适宜等级划分和可视化表达(见图5)。MaxEnt模型输出的数据为ASCⅡ格式,用ArcGIS的ASCII to Raster功能,输出数据类型选FLOAT,使该结果可在 ArcGIS中显示[14]。利用“Reclassify”功能, 划分分布值等级及相应分布范围, 并使用不同颜色表示,划分标准为: 存在概率<0.05 为不适生区;0.05≤存在概率<0.33为低适生区;0.33≤存在概率<0.66为中适生区;存在概率≥0.66为高适生区[4,8]。整体来看,四川省盆周山区杉木产区的杉木良种在湖北省的低适生区面积为5204295 hm2,主要分布在:鄂中的随县、东宝区、掇刀区、沙洋县、荆州区、沙市区、江陵县、松滋市、公安县和石首市;鄂西的宜昌市、恩施市、襄阳市、十堰市和神农架。低适宜区域在引种杉木良种时,需要选择适宜的小生境。

        图  5  四川省盆周山区杉木良种在湖北省同一适宜引种生态区分布图

        Figure 5.  Distribution of the identical suitable introduction ecological distribution of superior Cunninghamia lanceolata varieties in Hubei province introduced from the mountainous regions surrounding Sichuan basin

      • 用刀切法(Jackknife Test)检测7个主导环境因子变量对于分布增益的贡献,结果(见表6)表明:太阳辐射日均值(Bio2)对杉木分布的增益最大,当太阳辐射日均值为115~119 w·m−2,分布值随太阳辐射日均值的升高而增大;当太阳辐射日均值为119~170 w·m−2,分布值随太阳辐射日均值的升高而减小(见图6)。≥10℃积温(Bio25)也对杉木分布的影响较大,当≥10℃积温为0~50000℃,分布值随≥10℃积温的升高而减小(见图7)。

        表 6  主导环境因子变量的贡献率

        Table 6.  Contribution rate of dominant environmental factor variables

        变量贡献率置换重要性
        bio246.473.7
        bio1217.41.8
        bio2510.112.6
        bio148.22.1
        bio287.92.3
        bio187.23.8
        bio272.83.8

        图  6  太阳辐射日均值(Bio2)反馈曲线

        Figure 6.  Daily average solar radiation (Bio2) feedback curve

        图  7  ≥10℃积温(Bio12)反馈曲线

        Figure 7.  Accumulated temperature ≥10℃ (Bio12) feedback curve

      • 基于MaxEnt生态位模型的同一适宜生态区研究中,环境因子数据常来自世界气候-全球气候数据库网站,仅19个环境因子,空间分辨率仅为5arc-min[5,6,10,14-17]。研究选取34个重要环境因子,用中国2160个基准地面气象观测站的观测数据,推算模拟无测站区域的环境资源分布情况,提高了四川省盆周山区杉木良种在湖北省同一适宜引种生态区预测精度。

        传统的杉木良种引种同一适宜生态区以乡镇、县、市、省等行政单位为单元。然而,影响杉木成活生长的光、热、水、气等环境因子,受太阳辐射、大气环流的影响,在地面上呈地带性的分布。由于山体起伏,垂直森林地带在实际上并不都是连续的,而是由断断续续地呈孤岛状分布的地块组成。为了获得精准的引种效果,100 m×100 m为单元,进一步提高预测精度。

        传统的林木引种是以单个树种划出同一适宜生态区。然而,随着自然条件演变和科学技术的发展,转抗性基因育种、种间和远缘杂交育种等遗传改良工作在广泛开展,每年都有新的林木良种通过审定。在相同的立地条件下,同一树种,不同良种之间的生长好坏是有显著差异的。为了获得精准的引种效果,本研究是以单个良种划出同一适宜生态区,精准预测四川省盆周山区杉木良种在湖北省同一适宜生态区。

        通过运用MaxEnt生态位模型对四川省盆周山区杉木良种在湖北省同一适宜引种生态区进行分析,证明了MaxEnt模型在林木良种引种应用方面的可行性以及可信度,同时结合刀切法探讨对杉木良种生长影响最显著的环境因子,这对四川省盆周山区杉木良种适生性分析提供了更进一步的技术支撑。

    参考文献 (17)

    目录

      /

      返回文章
      返回