[1] 刘晓娟,马克平. 植物功能性状研究进展[J]. 中国科学(生命科学),2015,45(4):325−339.
[2] Pérez-Harguindeguy N, Díaz S, Garnier E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2013, 61(3): 167−234. doi: 10.1071/BT12225
[3] 杨冬梅,章佳佳,周丹,等. 木本植物茎叶功能性状及其关系随环境变化的研究进展[J]. 生态学杂志,2012,31(3):702−713.
[4] 丁佳,吴茜,闫慧,等. 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响[J]. 生物多样性,2011,19(2):158−167.
[5] Albert C H, Thuiller W, Yoccoz N G, et al. Intraspecific functional variability: extent, structure and sources of variation[J]. Journal of Ecology, 2010, 98(3): 604−613. doi: 10.1111/j.1365-2745.2010.01651.x
[6] Fajardo A, Siefert A. Phenological variation of leaf functional traits within species[J]. Oecologia, 2016, 180(4): 951−959. doi: 10.1007/s00442-016-3545-1
[7] Dwyer J M, Hobbs R J, Mayfield M M. Specific leaf area responses to environmental gradients through space and time[J]. Ecology, 2014, 95(2): 399−410. doi: 10.1890/13-0412.1
[8] Messier J , McGill B J , Enquist B J , et al. Trait variation and integration across scales: is the leaf economic spectrum present at local scales?[J] Ecography, 2017, 40(6): 685-697.
[9] Martin A R, Thomas S C. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees[J]. Tree Physiology, 2013, 33(12): 1338−1353. doi: 10.1093/treephys/tpt085
[10] Sendall K M, Reich P B. Variation in leaf and twig CO<sub>2</sub> flux as a function of plant size: a comparison of seedlings, saplings and trees[J]. Tree Physiology, 2013, 33(7): 713−729. doi: 10.1093/treephys/tpt048
[11] Poorter L, Wright S J, Paz H, et al. Are function traits good predictors of demographic rates? Evidence from five neotropical forests[J]. Ecology, 2008, 89(7): 1908−1920. doi: 10.1890/07-0207.1
[12] Joseph Wright S, Kitajima K, Kraft N J B, et al. Functional traits and the growth-mortality trade-off in tropical trees[J]. Ecology, 2010, 91(12): 3664−3674. doi: 10.1890/09-2335.1
[13] 何春霞,李吉跃,孟摇平,等. 4种高大树木的叶片性状及WUE随树高的变化[J]. 生态学报,2013,33(18):5644−5654.
[14] Lavorel S, Grigulis K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services[J]. Journal of Ecology, 2012, 100(1): 128−140. doi: 10.1111/j.1365-2745.2011.01914.x
[15] Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail[J]. Functional Ecology, 2002, 16(5): 545−556. doi: 10.1046/j.1365-2435.2002.00664.x
[16] Funk J L, Larson J E, Ames G M, et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes[J]. Biological Reviews, 2017, 92(2): 1156−1173. doi: 10.1111/brv.12275
[17] McGill B J, Enquist B J, Weiher E, et al. Rebuilding community ecology from functional traits[J]. Trends in ecology & evolution, 2006, 21(4): 178−185.
[18] Liu G, Freschet G T, Pan X, et al. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and ecosystems[J]. New Phytologist, 2010, 188(2): 543−553. doi: 10.1111/j.1469-8137.2010.03388.x
[19] Ordoñez J C, Van Bodegom P M, Witte J-PM, et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility[J]. Global Ecology and Biogeography, 2009, 18(2): 137−149. doi: 10.1111/j.1466-8238.2008.00441.x
[20] Coomes D A , Kunstler G , Canham C D , et al. A greater range of shade-tolerance niches in nutrient-rich forests: an explanation for positive richness-productivity relationships?[J] Journal of Ecology, 2009, 97(4): 705−717.
[21] 杨万勤,王开运,宋光煜,等. 金沙江干热河谷典型区生态安全问题探析[J]. 中国生态农业学报,2002,10(3):116−118.
[22] 明庆忠,史正涛. 三江并流区干热河谷成因新探析[J]. 中国沙漠,2007,27(1):99−104.
[23] Peng S L, Chen A Q, Fang H D, et al. Effects of vegetation restoration types on soil quality in Yuanmou dry-hot valley, China[J]. Soil Science & Plant Nutrition, 2013, 59(3): 347−360.
[24] Ma H C, McConchie J A. The dry-hot valleys and forestation in southwest China[J]. Journal of Forestry Research, 2001, 12(1): 35−39. doi: 10.1007/BF02856797
[25] 何周窈,王勇,苏正安,等. 干热河谷冲沟沟头活跃度对植物群落结构的影响[J]. 草业科学,2020,29(9):28−37.
[26] Yuan Y, Xiong D H, Wu H, et al. Spatial variation of soil physical properties and its relationship with plant biomass in degraded slopes in dry-hot valley region of Southwest China[J]. Journal of Soils and Sediments, 2020, 20(5): 2354−2366. doi: 10.1007/s11368-020-02617-z
[27] Liu X F, Ma Y P, Wan Y M, et al. Genetic Diversity of <italic>Phyllanthus emblica</italic> From Two Different Climate Type Areas[J]. Frontiers in plant science, 2020, 11(1): 580812.
[28] Zhang Y B, Wu H D, Yang J, et al. Environmental filtering and spatial processes shape the beta diversity of liana communities in a valley savanna in southwest China[J]. Applied Vegetation Science, 2020, 23(4): 482−494. doi: 10.1111/avsc.12514
[29] Lin Y M, Chen A M, Yan S W, et al. Available soil nutrients and water content affect leaf nutrient concentrations and stoichiometry at different ages of Leucaena leucocephala forests in dry-hot valley[J]. Journal of Soils and Sediments, 2019, 19(9): 511−521.
[30] 杨永, 莫旭, 刘冰, 等. 金沙江河谷四川攀枝花苏铁国家级自然保护区彩色植物图志[M]. 北京: 高等教育出版社, 2015: 1-2.
[31] Jobbágy E G, Jackson R B. The distribution of soil nutrients with depth: Global patterns and the imprint of plants[J]. Biogeochemistry, 2001, 53(1): 51−77. doi: 10.1023/A:1010760720215
[32] 康文辉. 永定河上游太子城河流域土壤养分空间分布及其影响因素[D]. 北京林业大学, 2021.
[33] Sardans J, Peñuelas J. Potassium: a neglected nutrient in global change[J]. Global Ecology and Biogeography, 2015, 24(3): 261−275. doi: 10.1111/geb.12259
[34] Chadwick O A, Derry L A, Vitousek P M, et al. Changing sources of nutrients during four million years of ecosystem development[J]. Nature, 1999, 397(6719): 491−497. doi: 10.1038/17276
[35] Zhang W, Zhao J, Pan F J, et al. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China[J]. Plant Soil, 2015, 391(1-2): 77−91. doi: 10.1007/s11104-015-2406-8
[36] Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51: 335−380. doi: 10.1071/BT02124
[37] Niinemets Ü, Kull K. Co-limitation of plant primary productivity by nitrogen and phosphorus in a species-rich wooded meadow on calcareous soils[J]. Acta Oecologica, 2005, 28(3): 345−356. doi: 10.1016/j.actao.2005.06.003
[38] 卜文胜,臧润国,丁易,等. 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化[J]. 植物生态学报,2013,21(3):278−287.
[39] Ding Y, Zang R G, Liu S, et al. Recovery of woody plant diversity in tropical rain forests in southern China after logging and shifting cultivation[J]. Biological Conservation, 2012, 145: 225−233. doi: 10.1016/j.biocon.2011.11.009
[40] 周一平,张玉革,马望,等. 氮添加和干旱对呼伦贝尔草原5种植物性状的影响[J]. 生态环境学报,2020,29(1):41−48. doi: 10.16258/j.cnki.1674-5906.2020.01.005