[1] Guo D, Yang M, Wang H. Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau[J]. Environmental Earth Sciences, 2011, 63(1): 97−107. doi: 10.1007/s12665-010-0672-6
[2] Ren J, Song C, Hou A, et al. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China[J]. Science of the Total Environment, 2018, 625: 782−791. doi: 10.1016/j.scitotenv.2017.12.309
[3] Zhe C, Yang S, Zhang A, et al. Nitrous oxide emissions following seasonal freeze-thaw events from arable soils in Northeast China[J]. Journal of integrative agriculture, 2018, 17(1): 231−246. doi: 10.1016/S2095-3119(17)61738-6
[4] Yang M X, Yao T D, Gou X H, et al. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau[J]. Chinese Science Bulletin, 2007, 52(1): 136−139. doi: 10.1007/s11434-007-0004-8
[5] Wang Q, Zhang T, Jin H, et al. Observational study on the active layer freeze–thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai-Tibet Plateau[J]. Quaternary International, 2017, 440: 13−22. doi: 10.1016/j.quaint.2016.08.027
[6] Zhang L, Ren F, Li H, et al. The influence mechanism of freeze-thaw on soil erosion: a review[J]. Water, 2021, 13(8): 1010. doi: 10.3390/w13081010
[7] 陈泓硕,马大龙,姜雪薇,等. 季节性冻融对扎龙湿地土壤微生物群落结构和胞外酶活性的影响[J]. 环境科学学报,2020,40(4):1443−1451. doi: 10.13671/j.hjkxxb.2019.0435
[8] 孙辉,秦纪洪,吴杨. 土壤冻融交替生态效应研究进展[J]. 土壤,2008,4:505−509. doi: 10.3321/j.issn:0253-9829.2008.04.001
[9] Xue X, You Q, Peng F, et al. Experimental Warming Aggravates Degradation‐Induced Topsoil Drought in Alpine Meadows of the Qinghai–Tibetan Plateau[J]. Land degradation & development, 2017, 28(8): 2343−2353.
[10] Li X, Jin R, Pan X, et al. Changes in the near-surface soil freeze–thaw cycle on the Qinghai-Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 17: 33−42. doi: 10.1016/j.jag.2011.12.002
[11] Li N, Cuo L, Zhang Y. On the freeze-thaw cycles of shallow soil and connections with environmental factors over the Tibetan Plateau[J]. Climate Dynamics, 2021, 57(11-12): 3183−3206. doi: 10.1007/s00382-021-05860-3
[12] Zhang K L, Liu H Y. Research progresses and prospects on freeze thaw erosion in the black soil region of Northeast China[J]. Sci Soil Water Conse, 2018, 16: 17−24.
[13] Luo S, Wang J, Pomeroy J W, et al. Freeze–thaw changes of seasonally frozen ground on the Tibetan Plateau from 1960 to 2014[J]. Journal of Climate, 2020, 33(21): 9427−9446. doi: 10.1175/JCLI-D-19-0923.1
[14] 王展,张玉龙,虞娜,等. 冻融作用对土壤微团聚体特征及分形维数的影响[J]. 土壤学报,2013,50(1):83−88.
[15] Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099−2103. doi: 10.1016/S0038-0717(00)00179-6
[16] Gui-Yuan L I, Hao-Ming F A N. Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China[J]. Pedosphere, 2014, 24(2): 285−290.
[17] McMinn W A M, Keown J, Allen S J, et al. Effect of freeze-thaw process on partitioning of contaminants in ferric precipitate[J]. Water research, 2003, 37(20): 4815−4822. doi: 10.1016/j.watres.2003.08.015
[18] Lin Z, Guodong C, Yongjian D. Studies on frozen ground of China[J]. Journal of Geographical Sciences, 2004, 14(4): 411−416. doi: 10.1007/BF02837484
[19] Gao M, Li Y X, Zhang X L, et al. Influence of freeze-thaw process on soil physical, chemical and biological properties: A review[J]. J. Agro-Environ. Sci, 2016, 35: 2269−2274.
[20] Zhao X B, Liu T J, Xu S G, et al. Freezing-thawing process and soil moisture migration within the black soil plow layer in seasonally frozen ground regions[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 233−240.
[21] 徐欢,王芳芳,李婷,等. 冻融交替对土壤氮素循环关键过程的影响与机制研究进展[J]. 生态学报,2020,40(10):3168−3182.
[22] En-heng W, Yu-sen Z, Xiang-wei C. Effects of seasonal freeze-thaw cycle on soil aggregate characters in typical phaeozem region of Northeast China[J]. Yingyong Shengtai Xuebao, 2010, 21(4).
[23] Wang E, Cruse R M, Chen X, et al. Effects of moisture condition and freeze/thaw cycles on surface soil aggregate size distribution and stability[J]. Canadian Journal of Soil Science, 2012, 92(3): 529−536. doi: 10.4141/cjss2010-044
[24] 李晓宁. 川西北高寒区冻融交替作用下土壤水—热运移研究[D]. 西南科技大学, 2018.
[25] 杨梅学,姚檀栋. 青藏高原表层土壤的日冻融循环[J]. 科学通报,2006,51(16):1974−1976. doi: 10.3321/j.issn:0023-074X.2006.16.020
[26] Chang D, Liu J K. Review of the influence of freeze-thaw cycles on the physical and mechanical properties of soil[J]. Sciences in cold and arid regions, 2013, 5(4): 457−460. doi: 10.3724/SP.J.1226.2013.00457
[27] Oztas T, Fayetorbay F. Effect of freezing and thawing processes on soil aggregate stability[J]. Catena, 2003, 52(1): 1−8. doi: 10.1016/S0341-8162(02)00177-7
[28] Li Z, Yang G, Liu H. The Influence of Regional Freeze–Thaw Cycles on Loess Landslides: Analysis of Strength Deterioration of Loess with Changes in Pore Structure[J]. Water, 2020, 12(11): 3047. doi: 10.3390/w12113047
[29] Zhao Y D, Hu X. Influence of freeze-thaw on CT measured soil pore structure of Alpine meadow[J]. J. Soil Water Conserv, 2020, 34: 352−367.
[30] 张迎新. 冻融作用对重金属Pb和Cd在土壤中吸附/解吸作用的影响及其机理[D]. 长春: 吉林大学, 2011.
[31] 李琳慧,李旭,许梦,等. 冻融温度对东北黑土理化性质及土壤酶活性的影响[J]. 江苏农业科学,2015,43(4):318−320.
[32] 高敏,李艳霞,张雪莲,等. 冻融过程对土壤物理化学及生物学性质的影响研究及展望[J]. 农业环境科学学报,2016,35(12):2269−2274. doi: 10.11654/jaes.2016-1087
[33] 刘亚红. 冻融作用对土壤含水率, pH 值, 电导率的影响[J]. 山西科技,2010(2):78−79. doi: 10.3969/j.issn.1004-6429.2010.02.038
[34] Kahimba F C, Ranjan R S, Froese J, et al. Cover crop effects on infiltration, soil temperature, and soil moisture distribution in the Canadian Prairies[J]. Applied engineering in agriculture, 2008, 24(3): 321−333. doi: 10.13031/2013.24502
[35] 龚家栋,祁旭升,谢忠奎,等. 季节性冻融对土壤水分的作用及其在农业生产中的意义[J]. 冰川冻土,2012,19(4):328−333.
[36] 赵春雷,邵明安,贾小旭. 冻融循环对黄土区土壤饱和导水率影响的试验研究[J]. 土壤通报,2015,46(1):68−73.
[37] 腾凯,柳宝田,李益新,等. 季节性冻土区地下水的变化规律及开发利用[J]. 地下水,1996,18(1):35−37.
[38] 温美丽,刘宝元,魏欣,等. 冻融作用对东北黑土容重的影响[J]. 土壤通报,2009(3):492−495.
[39] 韩露,万忠梅,孙赫阳. 冻融作用对土壤物理, 化学和生物学性质影响的研究进展[J]. 土壤通报,2018(3):736−742.
[40] 胡春丽, 刘东明, 王贺然, 等. 2019年4月辽西农业干旱特征及成因分析[J]. 农业灾害研究, 2020, (10)04: 62-64+68.
[41] Zhongping Y, Yao W, Xuyong L, et al. The effect of long-term freeze-thaw cycles on the stabilization of lead in compound solidified/stabilized lead-contaminated soil[J]. Environmental Science and Pollution Research, 2021, 28(28): 37413−37423. doi: 10.1007/s11356-021-13401-y
[42] Hou R, Wang L, Shen Z, et al. Simultaneous reduction and immobilization of Cr (VI) in seasonally frozen areas: Remediation mechanisms and the role of ageing[J]. Journal of Hazardous Materials, 2021, 415: 125650. doi: 10.1016/j.jhazmat.2021.125650
[43] Li L, Ma J, Xu M, et al. The adsorption and desorption of Pb2+ and Cd2+ in freeze–thaw treated soils[J]. Bulletin of environmental contamination and toxicology, 2016, 96(1): 107−112. doi: 10.1007/s00128-015-1694-2
[44] 王娇月,宋长春,王宪伟,等. 冻融作用对土壤有机碳库及微生物的影响研究进展[J]. 冰川冻土,2011,33(2):442−452.
[45] Grogan P, Michelsen A, Ambus P, et al. Freeze–thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biology and Biochemistry, 2004, 36(4): 641−654. doi: 10.1016/j.soilbio.2003.12.007
[46] 王洋,刘景双,王全英. 冻融作用对土壤团聚体及有机碳组分的影响[J]. 生态环境学报,2013,22(7):1269−1274. doi: 10.3969/j.issn.1674-5906.2013.07.030
[47] Wagner-Riddle C, Congreves K A, Abalos D, et al. Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles[J]. Nature Geoscience, 2017, 10(4): 279−283. doi: 10.1038/ngeo2907
[48] 李娜,汤洁,张楠,等. 冻融作用对水田土壤有机碳和土壤酶活性的影响[J]. 环境科学与技术,2015,38(10):1−6.
[49] 王丽芹,齐玉春,董云社,等. 冻融作用对陆地生态系统氮循环关键过程的影响效应及其机制[J]. 应用生态学报,2015,26(11):3532−3544.
[50] 崔虎. 退耕还湿条件下土壤团聚体中磷的赋存及释放特征研究[D]. 中国科学院大学 (中国科学院东北地理与农业生态研究所), 2019.
[51] 周丽丽,黄东浩,范昊明,等. 冻融作用对东北黑土磷素吸附-解吸过程的影响[J]. 水土保持通报,2016(6):27−31.
[52] 邹慧芳. 褐土磷吸附特征及不同水肥条件下设施黄瓜的生长[D]. 山西大学, 2019.
[53] 樊志颖,李江荣,高郯,等. 色季拉山森林土壤重金属空间分布特征及污染评价[J]. 西北农林科技大学学报 (自然科学版),2020,48(8):93−100.
[54] 郭平, 李洋, 张迎新, 等. 冻融作用对土壤吸附重金属的影响[J]. 吉林大学学报(理学版), 2012, (50)03: 593-597.
[55] Wang Q, Liu J, Wang L. An experimental study on the effects of freeze–thaw cycles on phosphorus adsorption–desorption processes in brown soil[J]. RSC advances, 2017, 7(59): 37441−37446. doi: 10.1039/C7RA05220K
[56] 杨桂生,宋长春,万忠梅,等. 三江平原小叶章湿地土壤微生物活性特征研究[J]. 环境科学学报,2010,30(8):1715−1721. doi: 10.13671/j.hjkxxb.2010.08.027
[57] 陈静,刘荣辉,陈岩贽,等. 重金属污染对土壤微生物生态的影响[J]. 生命科学,2018,30(6):667−672. doi: 10.13376/j.cbls/2018079
[58] Yergeau E, Kowalchuk G A. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency[J]. Environmental microbiology, 2008, 10(9): 2223−2235. doi: 10.1111/j.1462-2920.2008.01644.x
[59] Walker V K, Palmer G R, Voordouw G. Freeze-thaw tolerance and clues to the winter survival of a soil community[J]. Applied and Environmental Microbiology, 2006, 72(3): 1784−1792. doi: 10.1128/AEM.72.3.1784-1792.2006
[60] Li Y, Wang L, Tian L, et al. Dissolved organic carbon, an indicator of soil bacterial succession in restored wetland under freeze-thaw cycle[J]. Ecological Engineering, 2022, 177: 106569. doi: 10.1016/j.ecoleng.2022.106569
[61] Sawicka J E, Robador A, Hubert C, et al. Effects of freeze–thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat[J]. The ISME journal, 2010, 4(4): 585−594. doi: 10.1038/ismej.2009.140
[62] Stres B, Philippot L, Faganeli J, et al. Frequent freeze–thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: a laboratory experiment[J]. FEMS Microbiology ecology, 2010, 74(2): 323−335. doi: 10.1111/j.1574-6941.2010.00951.x
[63] Degens B P. Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review[J]. Soil Research, 1997, 35(3): 431−460. doi: 10.1071/S96016
[64] 刘利. 季节性冻融对亚高山/高山森林土壤微生物多样性的影响[D]. 成都: 四川农业大学, 2010.
[65] Männistö M K, Tiirola M, Häggblom M M. Effect of freeze-thaw cycles on bacterial communities of Arctic tundra soil[J]. Microbial Ecology, 2009, 58(3): 621−631. doi: 10.1007/s00248-009-9516-x
[66] Schostag M, Priemé A, Jacquiod S, et al. Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil[J]. The ISME journal, 2019, 13(5): 1345−1359. doi: 10.1038/s41396-019-0351-x
[67] Perez-Mon C, Frey B, Frossard A. Functional and structural responses of arctic and alpine soil prokaryotic and fungal communities under freeze-thaw cycles of different frequencies[J]. Frontiers in microbiology, 2020, 11: 982. doi: 10.3389/fmicb.2020.00982
[68] 徐俊俊. 冻融交替对高寒草甸土壤氮素的影响[D]. 成都: 四川农业大学, 2010.