[1] 陈之端. 桦木科植物的系统发育和地理分布(续)[J]. 植物分类学报,1994,32(2):101−153.
[2] 匡可任, 李沛琼, 郑斯绪, 等. 中国植物志(21卷)[M]. 北京: 科学出版社, 93-103, 1979.
[3] Zhuk A, Veinberga I, Daugavietis M et al. Cross-species amplification of <italic>Betula pendula</italic> Roth. simple sequence repeat markers in <italic>Alnus</italic> species[J]. Baltic Forestry, 2008, 14(2): 116−121.
[4] Lance SL; Jones, KL, Hagen C et al. Development and characterization of nineteen polymorphic microsatellite loci from seaside alder, Alnus maritima. Conserv Genet, 2009, 10(6): 1907-1910.
[5] Jones JM, Gibson JP. Population genetic diversity and structure within and among disjunct populations of <italic>Alnus maritima</italic> (seaside alder) using microsatellites[J]. Conserv Genet, 2011, 12(4): 1003−1013. doi: 10.1007/s10592-011-0203-3
[6] Jones JM, Gibson JP. Mating system analysis of <italic>Alnus maritima</italic> (seaside alder), a rare riparian tree[J]. Castanea, 2012, 77(1): 11−20. doi: 10.2179/11-024
[7] Lepais O, Muller SD, Ben Saad-Limam S et al. High genetic diversity and distinctiveness of rear-edge climate relicts maintained by ancient tetraploidisation for <italic>Alnus glutinosa</italic>[J]. PLoS One, 2013, 8(9): e75029. doi: 10.1371/journal.pone.0075029
[8] Havrdova A, Douda J, Krak, K et al. Higher genetic diversity in recolonized areas than in refugia of <italic>Alnus glutinosa</italic> triggered by continent-wide lineage admixture[J]. Mol Ecol, 2015, 24(18): 4759−4777. doi: 10.1111/mec.13348
[9] Mingeot D, Husson C, Mertens P et al. Genetic diversity and genetic structure of black alder (<italic>Alnus glutinosa</italic> [L. ] Gaertn) in the Belgium-Luxembourg-France cross-border area[J]. Tree Gene Genom, 2016, 12(2): 1−12.
[10] Mandak B, Havrdova A, Krak, K et al. Recent similarity in distribution ranges does not mean a similar postglacial history: A phylogeographical study of the boreal tree species <italic>Alnus incana</italic> based on microsatellite and chloroplast DNA variation[J]. New Phytol, 2016, 210(4): 1395−1407. doi: 10.1111/nph.13848
[11] 陈明皋,陈建华,吴际友,等. 桤木不同无性系结实量与种实性状变异[J]. 林业科学,2008,44(6):153−156.
[12] 辜云杰,王启和,罗建勋,等. 四川桤木天然群体果实表型多样性研究[J]. 四川林业科技,2009,30(2):19−22. doi: 10.3969/j.issn.1003-5508.2009.02.004
[13] 陈益泰,李桂英,王惠雄. 桤木自然分布区内表型变异的研究[J]. 林业科学研究,1999,12(4):379−385. doi: 10.3321/j.issn:1001-1498.1999.04.009
[14] 王军辉. 桤木遗传变异与选择的研究[D]. 北京: 北京林业大学, 2000.
[15] 卓仁英,陈益泰. 四川桤木不同群体间遗传分化研究[J]. 浙江林业科技,2005,25(1):13−16. doi: 10.3969/j.issn.1001-3776.2005.01.004
[16] 饶龙兵,杨汉波,郭洪英,等. 基于桤木属转录组测序的SSR 分子标记的开发[J]. 林业科学研究,2016,29(6):875−882.
[17] Mingeot D, Baleux R, Watillon B. Characterization of microsatellite markers for black alder (<italic>Alnus glutinosa</italic> [L. ] Gaertn)[J]. Conserv Genet Res, 2010, 2: 269−271. doi: 10.1007/s12686-010-9188-3
[18] Lepais O, Bacles CFE. De Novo discovery and multiplexed amplification of microsatellite markers for black alder (<italic>Alnus glutinosa</italic>) and related species using SSR-enriched shotgun pyrosequencing[J]. J Hered, 2011, 102(5): 627−632. doi: 10.1093/jhered/esr062
[19] Yang A, Wu B, Shen C et al. Microsatellite records for volume 9, issue 3[J]. Conserv Genet Res, 2017, 9(3): 507−511. doi: 10.1007/s12686-017-0806-1
[20] Clark LV, Jasieniuk M. Polysat: An R package for polyploid microsatellite analysis[J]. Mol Ecol Res, 2011, 11(3): 562−566. doi: 10.1111/j.1755-0998.2011.02985.x
[21] Meirmans PG, Van Tienderen PH. Genotype and genodive: Two programs for the analysis of genetic diversity of asexual organisms[J]. Mol Ecol Notes, 2004, 4(4): 792−794. doi: 10.1111/j.1471-8286.2004.00770.x
[22] Slatkin M, Barton NH. A comparison of three indirect methods for estimating average levels of gene flow[J]. Evolution, 1989, 43(7): 1349−1368. doi: 10.2307/2409452
[23] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89(3): 583−590. doi: 10.1093/genetics/89.3.583
[24] Rohlf FJ. NTSYS-pc numerical taxonomy and multivariate analysis system[J]. Am Stat, 1987, 41: 330. doi: 10.2307/2684761
[25] Mandak B, Vit P, Krak K et al. Flow cytometry, microsatellites and niche models reveal the origins and geographical structure of <italic>Alnus glutinosa</italic> populations in Europe[J]. Ann Bot, 2016, 117(1): 107−120. doi: 10.1093/aob/mcv158
[26] 任保青,刘军. 中国桤木属植物的细胞学研究(I)[J]. 广西植物,2006,26(4):356−359.
[27] 杨汉波,饶龙兵,郭洪英,等. 5种桤木属植物的核型分析[J]. 植物遗传资源学报,2013,14(6):203−207.
[28] 洪德元. 植物细胞分类学[M]. 北京: 科学出版社, 1990.
[29] Murai S. Phytotaxonomical and geobotanical studies on genus <italic>Alnus</italic> in Japan (III). Taxonomy of whole world species and distribution of each section[J]. Bull Gov For Exp Stat, 1964, 171: 1−107.
[30] 宋跃朋,江锡兵,张曼,等. 杨树Genomic-SSR与EST-SSR分子标记遗传差异性分析[J]. 北京林业大学学报,2010,32(5):1−7.
[31] 刘果,谢耀坚,陈鸿鹏,等. 桉树Genomic-SSR和EST-SSR分子标记的遗传差异性分析[J]. 桉树科技,2017,34(03):1−8.
[32] 张亚东,彭婵,李振芳,等. 基因组SSR与EST-SSR标记在杨树不同种间的遗传差异[J]. 东北林业大学学报,2011,39(12):8−11+117. doi: 10.3969/j.issn.1000-5382.2011.12.003
[33] 常玮,赵雪,李侠,等. 大豆EST-SSR标记开发及与Genomic-SSR的比较研究[J]. 中国油料作物学报,2009(2):149−156.