WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 44 Issue 4
Aug.  2023
Article Contents
Turn off MathJax

Zhang Q, CHENG X L, LIU M, et al. Construction of core collection of Phoebe zhennan based on SSR molecular markers[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(4): 27−35 doi: 10.12172/202305190001
Citation: Zhang Q, CHENG X L, LIU M, et al. Construction of core collection of Phoebe zhennan based on SSR molecular markers[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(4): 27−35 doi: 10.12172/202305190001

Construction of Core Collection of Phoebe zhennan Based on SSR Molecular Markers


doi: 10.12172/202305190001
More Information
  • Corresponding author: 843752668@qq.com
  • Received Date: 2023-05-19
    Available Online: 2023-05-30
  • Publish Date: 2023-08-30
  • Phoebe zhennan is a precious and unique timber species in China. The establishment of a core collection have important value for the strengthen of resources protection and utilization, and speed up the breeding process of P. zhennan. Taking 102 germplasms of P. zhennan as materials. The methods of maximization strategy (M strategy), random sampling, simulated annealing algorithm maximizing the genetic diversity, and simulated annealing algorithm maximizing the number of alleles were used to construct the core collections using 14 SSR primers. The results showed that 166 alleles were detected by 14 SSR primers, and the average of the effective alleles was 4.875. The Shannon’s information index was 1.297, indicated relative high genetic diversity in the germplasms of P. zhennan. Comparative analysis showed that the core collections with relative high sampling proportion of constructed by maximization strategy, simulated annealing algorithm maximizing the genetic diversity, and simulated annealing algorithm maximizing the number of alleles were all showed high representativeness. The retention of alleles in core collections that constructed by simulated annealing algorithm maximizing the number of alleles and maximization strategy were all reached 100.00%, but the retention of the effective alleles and genetic diversity in core collection that constructed by algorithm maximizing the number of alleles were lower than maximization strategy. There was no obviously difference of the retention of Shannon’s information index in core collections that constructed by simulated annealing algorithm maximizing the genetic diversity and maximization strategy, but the alleles and effective alleles in core collection that constructed by maximization strategy were higher than simulated annealing algorithm maximizing the genetic diversity. Therefore, maximization strategy was the best sampling strategy in core collection construction according to the genetic diversity parameters. The principal coordinate analysis also showed that the core collection could represent the genetic diversity of the origin collection. The 60 germplasms includes 58.8% of the all germplasms, the retention of alleles, effective alleles, and Shannon’s information index were 100.00%, 120.51%, and 106.86%. Specific molecular identity for 60 core collections were established by the bands of 14 SSR primers, which could accurately identification the core collections. Our results provided theoretical basis and core materials for further research, utilization, and excellent gene resource mining of P. zhennan germplasms.
  • 加载中
  • [1] Escribano P, Viruel M A, Hormaza J I. Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species[J]. Annals of Applied Biology, 2008, 153(1): 25−32. doi: 10.1111/j.1744-7348.2008.00232.x
    [2] 杨汉波,张蕊,王帮顺,等. 基于 SSR 标记的木荷核心种质构建[J]. 林业科学,2017,53(6):37−46. doi: 10.11707/j.1001-7488.20170605
    [3] Frankel O H. Plant genetic resources today: a critical appraisal[J]. Crop genetic resources: conservation and evaluation, 1984: 241−256.
    [4] 吴涛,陈少瑜,肖良俊,等. 基于 SSR 标记的云南省核桃种质资源遗传多样性及核心种质构建[J]. 植物遗传资源学报,2020,21(3):767−774.
    [5] 毛秀红,朱士利,李善文,等. 基于荧光 SSR 标记的毛白杨核心种质构建[J]. 北京林业大学学报,2020,42(7):40−47. doi: 10.12171/j.1000-1522.20190413
    [6] Yang H, Liu Q, Zhang R, et al. Genetic diversity of second generation-parental germplasm of masson pine revealed by SSR markers and establishment of a core germplasm collection[J]. Scandinavian Journal of Forest Research, 2021, 36(7-8): 524−531. doi: 10.1080/02827581.2021.1981432
    [7] Sun R X, Lin F R, Huang P, et al. Moderate genetic diversity and genetic differentiation in the relict tree Liquidambar formosana Hance revealed by genic simple sequence repeat markers. Frontiers in Plant Science, 2016, 7: 1411−1421.
    [8] Zhong Y, Wang Y, Sun Z, et al. Genetic diversity of a natural population of Akebia trifoliata (Thunb. ) Koidz and extraction of a core collection using simple sequence repeat markers[J]. Frontiers in Genetics, 2021: 1571.
    [9] Revord R S, Lovell S, Brown P, et al. Using genotyping-by-sequencing derived SNPs to examine the genetic and identify a core set of Corylus americana germplasm. Tree Genetic & Genomes, 2020, 16: 65.
    [10] Yang H, An W, Gu Y, et al. Integrative Metabolomic and Transcriptomic Analysis Reveals the Mechanism of Specific Color Formation in <italic>Phoebe zhennan</italic> Heartwood[J]. International Journal of Molecular Sciences, 2022, 23(21): 13569. doi: 10.3390/ijms232113569
    [11] Yang H, An W, Wang F, et al. Integrated Transcriptomic, Metabolomic, and Physiological Analyses Reveal New Insights into Fragrance Formation in the Heartwood of Phoebe hui[J]. International Journal of Molecular Sciences, 2022, 23(22): 14044. doi: 10.3390/ijms232214044
    [12] Lowe A J, Boshier D, Ward M, et al. Genetic resource impacts of habitat loss and degradation, reconciling empirical evidence and predicted theory for neotropical trees. Heredity, 2005, 95 (4): 255−273.
    [13] Zhu Y, An W, Peng J, et al. Genetic Diversity of Nanmu (<italic>Phoebe zhennan</italic> S. Lee. et FN Wei) Breeding Population and Extraction of Core Collection Using nSSR, cpSSR and Phenotypic Markers[J]. Forests, 2022, 13(8): 1320. doi: 10.3390/f13081320
    [14] Schoen D J, Brown A H D. Maximising genetic diversity in core collections of wild relatives of crop species[J]. 1995.
    [15] Cipriani G, Spadotto A, Jurman I, et al. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L. ) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin[J]. Theoretical and Applied Genetics, 2010, 121: 1569−1585. doi: 10.1007/s00122-010-1411-9
    [16] 张春雨,陈学森,张艳敏,等. 采用分子标记构建新疆野苹果核心种质的方法[J]. 中国农业科学,2009,42(2):597−604. doi: 10.3864/j.issn.0578-1752.2009.02.026
    [17] Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128−2129. doi: 10.1093/bioinformatics/bti282
    [18] Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Molecular ecology, 2007, 16(5): 1099−1106. doi: 10.1111/j.1365-294X.2007.03089.x
    [19] Peakall R O D, Smouse P E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research[J]. Molecular ecology notes, 2006, 6(1): 288−295. doi: 10.1111/j.1471-8286.2005.01155.x
    [20] 王建成,胡晋,黄歆贤,等. 植物遗传资源核心种质新概念与应用进展[J]. 种子,2008,27(5):47−50. doi: 10.3969/j.issn.1001-4705.2008.05.014
    [21] 姜俊烨,杨涛,王芳,等. 国内外蚕豆核心种质 SSR 遗传多样性对比及微核心种质构建[J]. 作物学报,2014,40(7):1311−1319.
    [22] 宗绪晓,关建平,王述民,等. 国外栽培豌豆遗传多样性分析及核心种质构建[J]. 作物学报,2008,34(9):1518−1528. doi: 10.3321/j.issn:0496-3490.2008.09.005
    [23] 王红霞,赵书岗,高仪,等. 基于 AFLP 分子标记的核桃核心种质的构建[J]. 中国农业科学,2013,46(23):4985−4995. doi: 10.3864/j.issn.0578-1752.2013.23.015
    [24] 张君玉. 利用 SSR 和 SRAP 分子标记构建葡萄核心种质[J]. 洛阳: 河南科技大学硕士学位论文, 2012.
    [25] 刘新龙,刘洪博,马丽,等. 利用分子标记数据逐步聚类取样构建甘蔗杂交品种核心种质库[J]. 作物学报,2014,40(11):1885−1894.
    [26] Liang W, Dondini L, De Franceschi P, et al. Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm[J]. Plant Molecular Biology Reporter, 2015, 33: 458−473. doi: 10.1007/s11105-014-0754-9
    [27] 刘勇, 孙中海, 刘德春, 等. 利用分子标记技术选择柚类核心种质资源. 果树学报, 2006, 23(3), 339−345.
    [28] 曾宪君, 李丹, 胡彦鹏, 等. 欧洲黑杨优质核心种质库的初步构建. 林业科学, 2014, 50(9), 51−58.
    [29] 刘娟,廖康,曼苏尔,等. 利用 ISSR 分子标记构建南疆杏种质资源核心种质[J]. 果树学报,2015(3):374−384.
    [30] 唐源江,曹雯静,吴坤林. 基于 SRAP 标记的国兰种质资源遗传多样性分析及分子身份证构建[J]. 中国农业科学,2015,48(9):1795−1806. doi: 10.3864/j.issn.0578-1752.2015.09.13
    [31] 郭娟, 樊军锋, 梁军, 等. 利用 SRAP 标记鉴别美洲黑杨及指纹图谱构建. 西北林学院学报, 2014, 29(2), 98-102. 沈敬理等(2015)
    [32] 何旭东, 郑纪伟, 孙冲, 等. 33 个杨柳品种指纹图谱构建. 南京林业大学学报 (自然科学版), 2021, 45(2), 35.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(5)

Article views(343) PDF downloads(16) Cited by()

Related
Proportional views

Construction of Core Collection of Phoebe zhennan Based on SSR Molecular Markers

doi: 10.12172/202305190001
  • 1. Chengdu Xinglu Forestry Technology Development Co., Ltd Wenjiang 611100, China
  • 2. Buotuo Foresty and Grassland Administration, Butuo 616350, China
  • 3. Sichuan Key Laboratory of Forest and Wetland Ecological Restoration and Conservation, Sichuan Academy of Forestry Sciences, Chengdu 610081, China
  • 4. Sichuan Provincial Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
  • 5. Sichuan Forestry and Grassland Promotion Center, Chengdu 611130, China
  • Corresponding author: 843752668@qq.com

Abstract: Phoebe zhennan is a precious and unique timber species in China. The establishment of a core collection have important value for the strengthen of resources protection and utilization, and speed up the breeding process of P. zhennan. Taking 102 germplasms of P. zhennan as materials. The methods of maximization strategy (M strategy), random sampling, simulated annealing algorithm maximizing the genetic diversity, and simulated annealing algorithm maximizing the number of alleles were used to construct the core collections using 14 SSR primers. The results showed that 166 alleles were detected by 14 SSR primers, and the average of the effective alleles was 4.875. The Shannon’s information index was 1.297, indicated relative high genetic diversity in the germplasms of P. zhennan. Comparative analysis showed that the core collections with relative high sampling proportion of constructed by maximization strategy, simulated annealing algorithm maximizing the genetic diversity, and simulated annealing algorithm maximizing the number of alleles were all showed high representativeness. The retention of alleles in core collections that constructed by simulated annealing algorithm maximizing the number of alleles and maximization strategy were all reached 100.00%, but the retention of the effective alleles and genetic diversity in core collection that constructed by algorithm maximizing the number of alleles were lower than maximization strategy. There was no obviously difference of the retention of Shannon’s information index in core collections that constructed by simulated annealing algorithm maximizing the genetic diversity and maximization strategy, but the alleles and effective alleles in core collection that constructed by maximization strategy were higher than simulated annealing algorithm maximizing the genetic diversity. Therefore, maximization strategy was the best sampling strategy in core collection construction according to the genetic diversity parameters. The principal coordinate analysis also showed that the core collection could represent the genetic diversity of the origin collection. The 60 germplasms includes 58.8% of the all germplasms, the retention of alleles, effective alleles, and Shannon’s information index were 100.00%, 120.51%, and 106.86%. Specific molecular identity for 60 core collections were established by the bands of 14 SSR primers, which could accurately identification the core collections. Our results provided theoretical basis and core materials for further research, utilization, and excellent gene resource mining of P. zhennan germplasms.

  • 林木种质资源是育种工作的重要物质基础,是决定育种效果的关键,世界各国都非常关注对种质资源的调查、搜集、评价、保存和利用[1-2]。但是,随着林木种质资源收集、保存数量的不断增加,给保存、评价和利用带来了巨大困难。Frankel等[3]在种质资源库的基础上提出了核心种质的概念,其目的是以最少数量的种质资源最大限度地保存整个群体的遗传多样性,从而解决种质资源规模过大难以管理和利用的难题。核心种质的提出为种质资源的有效保护与深入研究、利用开辟了新的途径,目前已有大量的植物构建了核心种质,但主要以作物为主[2]。相较于农作物,林木核心种质的构建起步较晚,涉及的树种也有限,近10年国内相关研究主要涉及的树种有核桃[4]、毛白杨[5]、木荷[2]、马尾松[6]等。目前构建核心种质主要是基于形态和分子标记两类数据,对于多年生、树体高大的木本植物,表型数据获取需要较长的年限;而以DNA多态性为基础的分子标记不受植物生长期影响,较形态标记更适合林木核心种质构建[7]。例如在SSR标记遗传多样性基础上,采用逐步聚类法以17.2%的入选率构建了包含164份种质的三叶木通核心种质[8];根据以等位基因最大化为标准,从272份金缕梅种质资源中提取了51份核心种质,能够代表原种质95%的等位基因数。总的来说,核心种质是种质资源的重复子集,有助于资源长期保存和长效利用,可以帮助研究者快速捕捉到具有目标性状的种质,提高育种效率[9]

    楠木(Phoebe zhennan)是我国特有的珍贵用材树种,其优质大径级木材因呈现金黄色绢丝状而被称为“金丝楠”,是“金丝楠木”的最优来源树种之一,但由于其生长缓慢,加之历代无节制采伐,楠木资源趋于枯竭,楠木现存资源多为人工栽培群体[10-11]。人为活动的干扰可能会导致降低其遗传多样性水平,大量优良基因缺失,群体趋于纯化,遗传基础变窄[12]。而珍贵用材是林木资源战略储备的重要组成部分,因此,加强对珍贵树种楠木的恢复性培育尤为重要,并应作为长期坚持的任务。为了保护楠木的优良种质资源和维持其可持续性遗传改良,亟需开展楠木核心种质的构建。鉴于此,我们以楠木第一轮育种群体(102份种质资源)为研究对象,利用SSR引物进行基因分型,通过比较和分析不同抽样策略下构建的核心种质遗传参数评价,确定楠木核心种质构建的最适取样策略和比例,期望用最少的种质最大程度保存楠木遗传多样性,同时为楠木种质资源的深入研究和加强利用、发掘优异基因资源提供理论依据和核心材料。

    • 2012年,在四川、重庆、湖南、湖北和贵州省等楠木产区根据树高、胸径和环境适应性选择优树102株,基本涵盖了楠木天然分布区,分单株采集优树种子,沙藏;2013年春季分家系育苗;2014年在泸州市玉蟾山国家林草长期科研基地建立楠木种质资源基因库(105.387529°E, 29.137715°N, 海拔553 m)。2022年6月,对102个家系采集新鲜嫩叶,将其放入硅胶中保存,带回实验室置于−80℃冰箱中保存备用。

    • 本研究采用改良CTAB法快速提取楠木基因组DNA。选用14对条带清晰、多态性强的SSR引物进行PCR扩增(见表1),SSR引物由生工生物(上海)股份有限公司合成荧光引物,扩增产物经Fragment Analyzer全自动毛细管电泳分析仪进行检测[13]

      引物编号
      Marker
      重复基序
      Repeat motif
      引物组合
      Primer pair (5'-3')
      预期产物大小
      Predicted size (bp)
      MN-g30(GA)30AGAGATGTACCTCGCTGCGT156
      GAGAGCCCATCATGACCAAT
      ZiN-e8(TAACAG)4CCTTTAACAACATCAAAACCATC239
      ATCAAGTTAACAGAATTCGCAAG
      MN-e96(TAAA)5TGGGTTTAGCCGTCACTACC107
      TCACTGCCTTGGCTCTGTAA
      MN-g3(TC)34TTGAGGGGGAATGTTGAGAG248
      TGAAGGCAACTGATCACAAGA
      MN-g5(GA)35AAATGGTTGGGTCAAGTTCG325
      GTGCCCATATACCCGATGAC
      MN-g18(TC)30GAAGGTCCTCCTATCCTGCC153
      AATCCGGCTGATACTTCTGC
      Unigene29601-GCAGGTATCTGTTGTGTCTTC287
      CATTCGTCTTCTTGGAGTCATC
      CL20730Contig1-CCACTGCCACTGCCACTG255
      GCCTCCCTCAACTCCATTCC
      CL4747Contig1-ACATCAGAGGCAGGCAGG287
      CGGAGGCGGCAAGATTTG
      PZmf02(AT)5CTCCTGCAAAGAAAGGGGGT224
      ACAGATTGTGGCACTACCCG
      PZmk03(TA)5GGTTTTCAAGACCGGGGCTA216
      CATGGAGTCCGGGGAAATCC
      PZmf07(TC)5CGGATCAGATAGAGTCGGCG268
      TCATCCAACAGGAATAGTTGTTCT
      PZmf05(TA)7CGACCCGCGAAAAGATATACTC238
      AGCTCGCCATTCCATAAGCT
      PZmf06(TC)6TAATATAATAGAGCCAAAGAGGAGGT201
      AACAATAATCCTCTATCCGGATCT

      Table 1.  Base information of SSR primers used in core collection construction of Phoebe zhennan

    • (1)M策略:以核心种质中标记位点最大化为标准的核心种质构建方法[14]。通过Core Finder软件以等位基因最大化为原则抽取核心种质[15]

      (2)随机取样法:依据张春雨等[16]随机取样策略,以10%、20%、40%和50%为取样比例,分别构建核心种质。

      (3)以核心种质保留等位基因或遗传多样性最大化分别构建核心种质,抽样比例为10%、20%、40%和50%,借助PowerMarker version 3.25软件进行核心种质的抽取[17]

    • 使用Genemarker 2.2.0软件分析毛细管电泳数据。Cervus 3.0.7软件计算多态信息含量(PIC)[18]。利用GeneAlEx 6.5软件[19]计算等位基因数、有效等位基因数、期望杂合度、观测杂合度及Shannon’s信息指数,用这些指标来评价核心种质、原有种质与保留种质的遗传多样性,并通过t检验对核心种质与原有种质各遗传多样性指标进行差异显著性分析[2]。同时,运用主坐标分析法对构建的核心种质进行确认。最后,将SSR-PCR产物毛细管电泳谱带转化为数字指纹图谱,以此构建楠木核心种质的分子身份信息。

    2.   结果与分析
    • 利用14对SSR引物对102份楠木种质资源进行遗传多样性分析(见表2)。结果显示,14对SSR引物共检测到166个等位基因,每对SSR引物检测到等位基因数的范围在2(PZmf07、CL20730Contig1、PZmf05和PZmf02)~37(MN-g3)之间,平均为12。有效等位基因数平均为4.875,各引物检测到的有效等位基因数在1.021(PZmf02)~3.125(MN-g3)之间。期望杂合度与观测杂合度分别在0.117(PZmf07)~0.943(MN-g3)和0.000(PZmf07、PZmf05、PZmf06和PZmf02)~0.978(MN-g3)之间,平均分别为0.561和0.373。Shannon’s信息指数最高的为引物MN-g3(3.125),其次为引物MN-g5(3.029),最低为引物PZmf02(0.057),楠木种质资源平均Shannon’s信息指数为1.297。以上结果表明楠木种质资源具有较为丰富的遗传多样性。

      位点
      Locus
      等位基因数
      Na
      有效等位基因数NeShannon’s信息指数I观测杂合度Ho期望杂合度He多态信息指数
      PIC
      PZmk0341.9910.7390.0220.5000.384
      ZiN-e8101.4760.7610.0480.3250.306
      Unigene2960182.8941.3540.2280.6580.617
      MN-g303311.2762.8851.0000.9160.906
      PZmf0721.1310.2320.0000.1170.109
      MN-e9652.3730.9950.9240.5820.491
      PZmf0521.7070.6050.0000.4160.328
      PZmf0631.6320.6120.0000.3890.320
      CL20730Contig121.1600.2650.1490.1390.128
      MN-g33716.0153.1250.9780.9430.934
      MN-g53414.3873.0290.2780.9360.926
      MN-g18189.0342.5300.9370.8940.881
      CL4747Contig162.1500.9690.6530.5380.459
      PZmf0221.0210.0570.0000.5020.375
      平均Mean124.8751.2970.3730.5610.512
      Na: Number of different alleles, Ne: Number of effective alleles, I: Shannon’s information index, Ho: Observed heterozygosity, He: Expected heterozygosity, PIC: Polymorphic information content

      Table 2.  The genetic diversity parameters of P. zhennan germplasm resources

    • 随取样比例的增加,不同取样策略构建的候选核心种质等位基因数及其保留率呈逐渐上升的趋势(见表3)。在取样比例较低时,各遗传多样性参数值和保留率均处于较低水平。如随机取样和遗传多样性最大化策略在取样比例低于20%时,其等位基因数和有效等位基因数的保留率均低于60%,表现出明显的等位基因缺失。当取样比例为50%时,虽然随机取样、等位基因最大化和遗传多样性最大化法构建的候选核心种质Shannon’s信息指数均略高于原有种质,但其余遗传多样性参数,如观测杂合度、期望杂合度明显低于原有种质。而M策略以58.8%的取样比例构建的核心种质有效等位基因数、Shannon’s信息指数、观测杂合度以及期望杂合度均明显高于原有种质,等位基因数保留率100%。不同取样策略构建的候选核心种质与原有种质遗传参数t检验结果显示,Shannon’s信息指数和期望杂合度在各种质间无显著差异,候选核心种质与原有种质存在显著差异的遗传参数主要集中在等位基因数、有效等位基因数和观测杂合度。10%取样比例时,随机取样、等位基因最大化和遗传多样性最大化法构建的候选核心种质等位基因数和有效等位基因数均显著低于原有种质。M策略构建的核心种质各遗传参数与原有种质并无显著差异。根据5个遗传参数的综合考虑,选择M策略抽取的60份(58.8%)种质资源构建的楠木和新种指能够以较小的种质份数最大程度地代表整个楠木种质资源地遗传多样性。利用M策略构建的楠木核心种质中包含四川36份(55.4%)、湖北5份(45.5%)、湖南11份(64.7%)、贵州5份(83.3%)和重庆3份(100.0%)共计60份种质材料。

      取样策略
      Sampling strategy
      种质数
      Number
      平均等位基因数
      Mean Na
      平均有效等位基因数
      Mean Ne
      平均Shannon's信息指数
      Mean I value
      平均期望杂合度
      Mean He
      平均观测杂合度
      Mean Ho
      原有种质102124.8751.2970.3730.524
      M策略6012 (100.00)5.875 (120.51)1.386 (106.86)0.383 (102.68)0.553 (105.53)
      随机取样(10%)107 (58.33)*2.123 (43.55)*1.034 (79.72)0.305 (81.77)0.318 (60.69)*
      随机取样(20%)207 (58.33)*3.32 (68.1)*1.145 (88.28)0.311 (83.38)0.332 (63.36)*
      随机取样(40%)419 (75)4.523 (92.78)1.246 (96.07)0.315 (84.45)0.347 (66.22)*
      随机取样(50%)5110 (83.33)4.889 (100.29)1.345 (103.7)0.335 (89.81)0.359 (68.51)*
      等位基因最大化(10%)108 (66.67)*2.234 (45.83)*1.193 (91.98)0.354 (94.91)0.339 (64.69)*
      等位基因最大化(20%)2010 (83.33)3.1134 (63.86)*1.242 (95.76)0.362 (97.05)0.346 (66.03)*
      等位基因最大化(40%)4111 (91.67)5.235 (107.38)1.328 (102.39)0.373 (100.00)0.362 (69.08)
      等位基因最大化(50%)5112 (100)5.584 (114.54)1.332 (102.7)0.377 (101.07)0.374 (71.37)
      遗传多样性最大化(10%)107 (58.33)*2.119 (43.47)*1.104 (85.12)0.336 (90.08)0.351 (66.98)*
      遗传多样性最大化(20%)208 (66.67)*3.416 (70.07)1.245 (95.99)0.371 (99.46)0.364 (69.47)
      遗传多样性最大化(40%)4111 (91.67)4.582 (93.99)1.375 (106.01)0.376 (100.8)3.371 (70.80)
      遗传多样性最大化(50%)5111 (91.67)4.956 (101.66)1.384 (106.71)0.381 (102.14)0.375 (71.56)
        注:括号内数字为保留率/%,*表示在α=0.05水平下候选核心种质与原有种质间各项指标的统计检验具有显著差异。
        Na: Number of different alleles, Ne: Number of effective alleles, I: Shannon’s information index, Ho: Observed heterozygosity, He: Expected heterozygosity

      Table 3.  Comparisons of genetic diversity parameters of candidates core collection constructed by different tactics

    • M策略构建的楠木核心种质保留了原有种质58.8%的材料,等位基因数、有效等位基因数、Shannon’s信息指数、观测杂合度和期望杂合度的保留率分别为100.0%、106.9%、105.5%和102.7%(见表4)。t检验结果也表明,利用M策略构建的楠木核心种质和原有种质的遗传多样性参数间差异不显著。由此,认为本研究利用M策略构建的核心种质具有很高的代表性。采用主坐标分析法(PCoA)对构建的核心种质进行比较分析,以进一步确定其代表性。结果显示,楠木核心种质在整个种质资源的主坐标图内均匀分布,表明M策略构建的楠木核心种质具有很好的代表性(见图1)。

      种质种质数NaNeIHeHo
      原有种质10216668.2471.2970.3730.524
      核心种质60166 (58.8)69.534 (100.0)1.386 (106.9)0.383 (102.7)0.553 (105.5)
      保留种质42125 (41.2)62.495 (91.6)1.134 (87.4)0.328 (87.9)0.447 (85.3)
        注:括号内数字为保留率/%。
        Na: Number of different alleles, Ne: Number of effective alleles, I: Shannon’s information index, Ho: Observed heterozygosity, He: Expected heterozygosity

      Table 4.  Comparison of genetic diversity parameters among core collection, reserve collection, and original collection

      Figure 1.  Principal coordinates lots of core collection and original collection

    • 利用14对SSR引物扩增的全部多态性谱带构建了60份楠木核心种质的分子身份信息(见表5)。每份核心种质材料都有其唯一的分子身份信息,可以通过其专一的分子身份信息将60份核心种质材料相互区分鉴别出来。

      核心种质
      Core collection
      分子身份信息
      Molecular ID
      核心种质
      Core collection
      分子身份信息
      Molecular ID
      ZNcq01DDFFIUADAAOgMMFLDEBBBBA ZNsc20GGBFNaDD00Sdc000BEABBA
      ZNcq02CCEEIOADAATfYYCPDEBAABAZNsc21CCBFVcADAAdiaaIIEEAAACA
      ZNcq03DDFFJVADAA00OOFLDEBBABAZNsc22DDDDLVADAANaBHCE00ABACA
      ZNgz01DDBBPWADAANdBDGHDEABABAZNsc24IIDDLVAD00MYBGCEBEBACA
      ZNgz02DDEEIRADAASbUUCPDEBBABAZNsc27BDEEIRADAAQZVVCPDEABABA
      ZNgz03DDCHGKADABCITVCCEEABACAZNsc28EE00ISADAAScVVCPDEBBBBA
      ZNgz05DDFFIRADAA0000CP00BBABAZNsc29DDCCIYADABMcBBGJEEABBBA
      ZNgz06DDFFIRADAASbUUCPDEBBABAZNsc31CCACIXADAAMcBBGJEEABBBA
      ZNhb0100FFKOADAASfXXCODEBBBBZNsc32DDBBFQADABJWPPKKEEBAACA
      ZNhb03DDFFMN00AA00WWCODEBBABAZNsc33DDFFIRADAAWfXXCPDEBBABA
      ZNhb0700FFIRADAARZUUCQDEABABAZNsc34DDFFBTADAAFK00KK00BBACB
      ZNhb10DDFFIRADAASbUUCPDEABABZNsc3500CFNaDDAASeeeIMEEABBBA
      ZNhb11DDFFHXADAAUUBIMMEEBBBCAZNsc37DDCFNZADABSeddIMEEABBBA
      ZNhn01DDFFIRADAASbUUCPDEBBBBAZNsc38CCCFOaDDAASeeeIMEEABBBA
      ZNhn02DD00IRADAASbVVCPDEBBBBAZNsc39CC00S0ADAAAeTTBGEEBBBBA
      ZNhn03DDCFNaADAASeffIMEEABBBAZNsc41DDCCKVADABCMFTCHEEABACA
      ZNhn04DDFFR0ADAAQaLTBKDDBBBCAZNsc43DDFGSVADABBeTTBGEEBBBBA
      ZNhn05DDFFIRADAAQcXXCPDEBBBBAZNsc46DDFFJWADABScMMFLDEBBBBA
      ZNhn08DH00RSAD00PZKSBKBDBACAZNsc47DDBEC0ADAAHHggLLFFABBCA
      ZNhn09DDFFJOADAAdfWWCQDEBBABAZNsc48DDBBIXADABLbBBGJEEABABA
      ZNhn10DDFFOgBDAACHRRHRDDBBACAZNsc49DDBFAfBDABEYEQCKEEBBBCA
      ZNhn1100FFKOBDAASfWWCODEBBABAZNsc50DDCCIWADAAMcBBGJEEABBBA
      ZNhn13BJFFKOADAASfXXCODEABABAZNsc52FFCFAfBD00DXEQCKBEBBCA
      ZNhn1400000000AA00000000BAAAZNsc5300CFAfAD00DW00CKAEAACA
      ZNsc02ADDFVbADAAGWKiHJEEABBCAZNsc54DDCCDSADAAUWFNDNDFABABA
      ZNsc05DDFFVdADAAGWKhHJEEABACAZNsc55CCCFScCDAAAYCiBIEEBBBCA
      ZNsc09DDBFHV00AAMfAFGLEFBBACAZNsc58DDBESeCDABBYCiBIEEBBACA
      ZNsc11DDBBchBBAAbjJbARCEBBABAZNsc60DDCCESADABUWENDNDFABBBA
      ZNsc14CCBBahBBAAdjJbARCEBBABAZNsc61DDEEIPBDAAVdWWCPDEBBACA
      ZNsc19000000BEAAYkDZGLDDABAZNsc6200FFJVADAASdQQFLDEBAABA
        注:表中大写和小写字母表示SSR引物迁移谱带顺序,根据谱带从大到小依次为A, B, C…或a, b, c…,00表示无扩增条带。

      Table 5.  Molecular ID of core collection

    3.   讨论
    • 种质资源收集和保存对于保存物种遗传多样性和育种利用具有重要意义,是育种循环的必不可少的组成部分。所以,采用合适的技术方法构建核心种质,对于优异种质资源的挖掘利用,提高种质资源的利用价值和效率具有重要的指导意义[3]。而关于林木核心种质的构建方法,前人已有一些研究。Yang等[6]认为核心种质的数量应根据种质资源的总数及其遗传变异的丰富程度而定。如果种质资源数较少,则核心种质取样的比例可以相对大一些;如种质资源总数很大,则核心种质取样比例可以小一些[5]。例如,Yang等[6]在304份马尾松二代育种群体中以34.2%的比例抽取104份种质构建了马尾松二代育种核心种质。杨汉波等[2]以15.3%的比例从754份木荷种质资源中抽取115份种质组成木荷核心种质。本研究利用M策略以58.8%的抽样比例从102份楠木种质资源中抽取60份种质组建核心种质,能够最大程度地代表原有种质的遗传多样性。以上结果均反映出供试种质资源数量对核心种质抽样比例有明显影响,分析其原因可能为:(1)相对较少的种质资源数,暗示种质资源选择时的强度较大,中选并保存的优异种质资源具有丰富的遗传变异,导致在构建核心种质时需要抽取更多的种质数以保证核心种质的代表性;(2)核心种质抽样方法的不同也可能造成最终核心种质抽样比例存在差异。因此,对于不同种质资源总数的树木核心种质抽样方法的选择对正确构建核心种质的关键。

      目前,主要通过表型数据、遗传标记数据或表型与分子标记相结合的方式来构建核心种质[20]。在许多作物中,通常是应用形态学数据对原始群体进行压缩,建立基于形态学数据的初级核心种质,然后再利用分子数据压缩原始群体,建立基于分子数据的初级核心种质,最后将二者进行综合,构建最终的核心种质[21-22]。但这在树体高大、表型变异丰富的林木而言,要得到可靠的表型数据需要较长的年限[23]。DNA分子标记不会或极少受到环境的影响,较形态学标记更适用于构建核心种质,且优势明显[24-25]。已有相当数量的林木树种利用分子标记技术成功构建了核心种质,反映出DNA标记技术在林木核心种质构建中的高效性和准确性。例如,Liang等[26]利用SSR标记从苹果种质中以13.2%的抽样比例构建了苹果核心种质。刘勇等[27]根据678个SSR和AFLP分子标记聚类结果,采用逐级压缩法选择、构建了包含25份样本的柚类核心种质。曾宪君等[28]利用SSR分子遗传多样性以30.2%的抽样比例构建了欧洲黑杨核心种质。本研究中,基于等位基因和遗传多样性取样策略构建的楠木核心种质等位基因数等遗传多样性参数保留率明显高于随机取样策略。这与刘娟等[29]、杨汉波等[2]对杏和木荷核心种质构建的结果相一致,均证明基于等位基因和遗传多样性优先的取样策略优于随机取样策略。本研究对不同取样策略构建的候选核心种质遗传多样性参数利用t检验在统计学上进行验证,以验证各候选核心种质的代表性。最终确定M策略是楠木核心种质的最优取样策略,并以此构建了包含60份种质的楠木核心种质,5个省(市)的种质资源均有抽取。当然,由于本次研究的楠木种质资源总数偏少且遗传多样性丰富,导致核心种质抽取比例偏大,也从侧面反映出资源收集的欠缺,后续应当进一步强化楠木种质资源全面调查,以最大限度地收集楠木优良种质资源,扩大种质资源的数量,提高遗传多样性,以期在楠木育种循环中获得更高的遗传增益。

      通过DNA指纹是目前品种资源鉴定的有效技术手段,在植物品种鉴定中得到广泛应用[30]。如郭娟等[31]利用61条SRAP特异性条带构建了5个杨树品种的分子指纹图谱。何旭东等[32]优选核心EST-SSR引物组合构建杨树品种的指纹图谱,可以将33个杨树品种准确区分开来。沈敬理等(2015)采用15个SSR位点+2对SRAP标记组合的方式构建了马尾松种子园131个无性系的DNA指纹图谱,可有效区分种子园各无性系。以上研究均表明,利用分子标记技术可实现种质或品种的高效、精准鉴别。本研究利用全部14对SSR引物扩增的多态性条带构建了60份楠木核心种质的分子身份信息,可以实现每份核心种质的准确鉴定。考虑到引物数量在种质鉴定中重要作用,在今后的工作中,可适当增加标记数量以形成更加精准的分子身份信息,以提高种质鉴定的准确性,为辅助杂交亲本选配和再选育提供参考。

Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return