WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 44 Issue 5
Oct.  2023
Article Contents
Turn off MathJax

XU Y, LIU S D, LI Y J, et al. Influence of habitat on the activity intensity of dominant species in Wanglang Nature Reserve[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(5): 15−23 doi: 10.12172/202211300002
Citation: XU Y, LIU S D, LI Y J, et al. Influence of habitat on the activity intensity of dominant species in Wanglang Nature Reserve[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(5): 15−23 doi: 10.12172/202211300002

Influence of Habitat on the Activity Intensity of Dominant Species in Wanglang Nature Reserve


doi: 10.12172/202211300002
More Information
  • Received Date: 2022-11-30
    Available Online: 2023-04-10
  • Publish Date: 2023-10-25
  • The time allocation of species in a day is the most important survival strategy for wild animals, and it is very important for understanding the behavior ecology of species. In order to determine the dominant species in Wanglang Nature Reserve and the relationship between the activity intensity of the dominant species and the habitat status, from May 2018 to July 2019, the infrared camera monitoring and sample surveys methods were used to investigate the species and habitats of large and medium-sized beasts and understory birds in Wanglang Nature Reserve. The habitat conditions of 3 species (two wild dominant species and one domesticated species) with different activity intensities were evaluated. Moreover, the activity intensity of wild dominant species in Bos taurus habitat and other habitats were compared. The principal component analysis showed that the dominant species in Wanglang Reserve were blood pheasant Ithaginis cruentus and tufted deer Elaphodus cephalophus. The intensity of species activity was divided into high, medium and low intensity based on the relative abundance index of time. The difference in habitat conditions between blood pheasants and tufted deer in areas with different activity intensities was mainly manifested in terrain conditions and food resources. The difference in the habitat status of cattle in different activity intensity areas was mainly manifested in herb coverage. Nuclear density estimates indicated that blood pheasants and tufted deer had a high degree of overlap in their activity curves when using cattle habitats and other habitats. However, when using the cattle habitat, the activity intensity of the two peaks was higher than that of other habitats. The results showed that: (1) The activity intensity of dominant species in the area can represent areas with good terrain conditions and poor food resources. (2) When formulating habitat restoration policies in the protected area, priority can be given to areas where the dominant species have high activity intensity. (3) When restoring the habitat, focus should be placed on restoring the habitat used by the cattle species.
  • 加载中
  • [1] 魏辅文,冯祚建,王祖望. 野生动物对生境选择的研究概况[J]. 动物学杂志,1998(4):48−52. doi: 10.3969/j.issn.0250-3263.1998.04.014

    WEI F W, FENG Z J, WANG Z W. General situation of habitat selection of wild animals[J]. Chinese Journal of Zoology, 1998(4): 48−52. doi: 10.3969/j.issn.0250-3263.1998.04.014
    [2] FAN F, BU H, MCSHEA W J, et al. Seasonal habitat use and activity patterns of blood pheasant Ithaginis cruentusbe in the presence of free-ranging livestock[J]. Global Ecology and Conservation, 2020, 23: e01155. doi: 10.1016/j.gecco.2020.e01155
    [3] EKBLAD C, TIKKANEN H, SULKAVA S, et al. Diet and breeding habitat preferences of White-tailed Eagles in a northern inland environment[J]. Polar Biology, 2020, 43(12): 2071−2084. doi: 10.1007/s00300-020-02769-1
    [4] BEARER S, LINDERMAN M, HUANG J, et al. Effects of fuelwood collection and timber harvesting on giant panda habitat use[J]. Biological Conservation, 2008, 141(2): 385−393. doi: 10.1016/j.biocon.2007.10.009
    [5] TANG F, FU M, WANG L, et al. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality[J]. Ecological Indicators, 2020, 117: 106719. doi: 10.1016/j.ecolind.2020.106719
    [6] HULL V, ZHANG J, ZHOU S, et al. Impact of livestock on giant pandas and their habitat[J]. Journal for Nature Conservation, 2014, 22(3): 256−264. doi: 10.1016/j.jnc.2014.02.003
    [7] SCHOFIELD L N, EYES S A, SIEGEL R B, et al. Habitat selection by spotted owls after a megafire in Yosemite National park[J]. Forest Ecology and Management, 2020, 478: 118511. doi: 10.1016/j.foreco.2020.118511
    [8] SAITO M, IDANI G. Giraffe diurnal recumbent behavior and habitat utilization in Katavi National Park, Tanzania[J]. Journal of Zoology, 2020, 312(3): 183−192. doi: 10.1111/jzo.12825
    [9] KANG D, WANG X, LI J. Resting site use of giant pandas in Wanglang Nature Reserve[J]. Scientific reports, 2017, 7(1): 1−6.
    [10] KANG D, YANG H, LI J, et al. Can conservation of single surrogate species protect co-occurring species?[J]. Environmental science and pollution research, 2013, 20(9): 6290−6296. doi: 10.1007/s11356-013-1675-0
    [11] LI B V, PIMM S L. China's endemic vertebrates sheltering under the protective umbrella of the giant panda[J]. Conservation Biology, 2016, 30(2): 329−339. doi: 10.1111/cobi.12618
    [12] LI B V, PIMM S L, LI S, et al. Free-ranging livestock threaten the long-term survival of giant pandas[J]. Biological Conservation, 2017, 216: 18−25. doi: 10.1016/j.biocon.2017.09.019
    [13] HE K, DAI Q, GU X, et al. Effects of roads on giant panda distribution: a mountain range scale evaluation[J]. Scientific reports, 2019, 9(1): 1−8. doi: 10.1038/s41598-018-37186-2
    [14] YAN T T, RAN J H, ZHAO C H, et al. Climate-change impacts on bamboo distribution and giant panda habitat in Qionglai mountains[J]. Acta Ecol. Sin, 2017, 7: 1−8.
    [15] ZANG Z, DENG S, REN G, et al. Climate-induced spatial mismatch may intensify giant panda habitat loss and fragmentation[J]. Biological Conservation, 2020, 241: 108392. doi: 10.1016/j.biocon.2019.108392
    [16] LINDBLADH M, LINDSTRÖM Å, HEDWALL P O, et al. Avian diversity in Norway spruce production forests–How variation in structure and composition reveals pathways for improving habitat quality[J]. Forest ecology and management, 2017, 397: 48−56. doi: 10.1016/j.foreco.2017.04.029
    [17] GIACOMAZZO M, BERTOLO A, BRODEUR P, et al. Linking fisheries to land use: How anthropogenic inputs from the watershed shape fish habitat quality[J]. Science of the Total Environment, 2020, 717: 135377. doi: 10.1016/j.scitotenv.2019.135377
    [18] MA J M, LIU S R, SHI Z M, et al. A review on restoration evaluation studies of degraded forest ecosystem[J]. Acta Ecologica Sinica, 2010, 30(12): 3297−3303.
    [19] GATICA‐SAAVEDRA P, ECHEVERRÍA C, NELSON C R. Ecological indicators for assessing ecological success of forest restoration: a world review[J]. Restoration Ecology, 2017, 25(6): 850−857. doi: 10.1111/rec.12586
    [20] ZHANG J, HULL V, HUANG J, et al. Natural recovery and restoration in giant panda habitat after the Wenchuan earthquake[J]. Forest Ecology and Management, 2014, 319: 1−9. doi: 10.1016/j.foreco.2014.01.029
    [21] MIAO Q L, TIAN X R, ZHAO F J. NDVI recovery process for post-fire vegetation in Da xing’anling. Scientia Silvae Sinicae, 2015, 51(02): 90-98.
    [22] LIN Y H, GU H J, LONG Y L, et al. Impact of logging upon the habitat of giant panda in Pingwu County, Sichuan, China[J]. Scientia Silvae Sinicae, 2005, 41(1): 109−115.
    [23] ZHANG C H, ZHU J J, YAN Q L, et al. Comparison of plant species diversity and factors influencing species diversity of primeval and secondary forests on the northern slope of Changbai Mountains, China[J]. Journal of Northeast Forestry University, 2009, 37(11): 52−55.
    [24] OUYANG Z Y, LI Z X, LIU J G, et al. The recovery processes of giant panda habitat in Wolong Nature Reserve, Sichuan China[J]. Acta Ecologica Sinica, 2002, 22(11): 1840−1849.
    [25] KANG D, WANG X, LI S, et al. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat[J]. Scientific reports, 2017, 7(1): 1−7.
    [26] PALO A, IVASK M, LIIRA J. Biodiversity composition reflects the history of ancient semi-natural woodland and forest habitats—compilation of an indicator complex for restoration practice[J]. Ecological indicators, 2013, 34: 336−344. doi: 10.1016/j.ecolind.2013.05.020
    [27] SUGANUMA M S, DURIGAN G. Indicators of restoration success in riparian tropical forests using multiple reference ecosystems[J]. Restoration Ecology, 2015, 23(3): 238−251. doi: 10.1111/rec.12168
    [28] KANG D, LV J, LI S, et al. Integrating indices to evaluate the effect of artificial restoration based on different comparisons in the Wanglang Nature Reserve[J]. Ecological Indicators, 2018, 91: 423−428. doi: 10.1016/j.ecolind.2018.04.032
    [29] OBEROSLER V, GROFF C, IEMMA A, et al. The influence of human disturbance on occupancy and activity patterns of mammals in the Italian Alps from systematic camera trapping[J]. Mammalian Biology, 2017, 87(1): 50−61.
    [30] ROWCLIFFE J M, KAYS R, KRANSTAUBER B, et al. Quantifying levels of animal activity using camera trap data[J]. Methods in Ecology and Evolution, 2014, 5(11): 1170−1179. doi: 10.1111/2041-210X.12278
    [31] MORETTI L, HENTRUP M, KOTRSCHAL K, et al. The influence of relationships on neophobia and exploration in wolves and dogs[J]. Animal Behaviour, 2015, 107: 159−173. doi: 10.1016/j.anbehav.2015.06.008
    [32] FATTORINI N, BRUNETTI C, BARUZZI C, et al. Temporal variation in foraging activity and grouping patterns in a mountain-dwelling herbivore: environmental and endogenous drivers[J]. Behavioural processes, 2019, 167: 103909. doi: 10.1016/j.beproc.2019.103909
    [33] LUO G, YANG C, ZHOU H, et al. Habitat use and diel activity pattern of the Tibetan Snowcock (Tetraogallus tibetanus): a case study using camera traps for surveying high-elevation bird species[J]. Avian Research, 2019, 10(1): 1−9. doi: 10.1186/s40657-018-0140-7
    [34] NGOPRASERT D, LYNAM A J, GALE G A. Effects of temporary closure of a national park on leopard movement and behaviour in tropical Asia[J]. Mammalian Biology, 2017, 82(1): 65−73.
    [35] GAYNOR K M, HOJNOWSKI C E, CARTER N H, et al. The influence of human disturbance on wildlife nocturnality[J]. Science, 2018, 360(6394): 1232−1235. doi: 10.1126/science.aar7121
    [36] SHENG L I, DAJUN W, HONGLIANG B U, et al. Camera-trapping survey on the mammal diversity in the Laohegou Nature Reserve, Sichuan Province[J]. Acta Theriologica Sinica, 2016, 36(3): 282.
    [37] KANG D, ZHAO Z, CHEN X, et al. Characteristics and impacts of solid waste on giant panda habitat in Wanglang Nature Reserve[J]. Science of The Total Environment, 2020, 724: 138210. doi: 10.1016/j.scitotenv.2020.138210
    [38] LIU Z X, DAYANANDA B, JEFFREE R A, et al. Giant panda distribution and habitat preference: The influence of sympatric large mammals[J]. Global Ecology and Conservation, 2020, 24: e01221. doi: 10.1016/j.gecco.2020.e01221
    [39] SMITH M D, KNAPP A K. Dominant species maintain ecosystem function with non‐random species loss[J]. Ecology Letters, 2003, 6(6): 509−517. doi: 10.1046/j.1461-0248.2003.00454.x
    [40] SASAKI T, LAUENROTH W K. Dominant species, rather than diversity, regulates temporal stability of plant communities[J]. Oecologia, 2011, 166(3): 761−768. doi: 10.1007/s00442-011-1916-1
    [41] TIAN C, LIAO P C, DAYANANDA B, et al. Impacts of livestock grazing, topography and vegetation on distribution of wildlife in Wanglang National Nature Reserve, China[J]. Global Ecology and Conservation, 2019, 20: e00726. doi: 10.1016/j.gecco.2019.e00726
    [42] SMITH A T, XIE Y. Hoffmann R S, et al. A Guide to the Mammals of China[M]. Hunan Education Press, 2010, Changsha.
    [43] GRAY T N E. Monitoring tropical forest ungulates using camera‐trap data[J]. Journal of Zoology, 2018, 305(3): 173−179. doi: 10.1111/jzo.12547
    [44] CHEN X, ZHAO L, HU X X, et al. Impact of livestock terrain utilization patterns on wildlife: A case study of Wanglang National Nature Reserve[J]. Biodiversity Science, 2019, 27(6): 630. doi: 10.17520/biods.2019122
    [45] TIAN C, ZHANG Y Y, LIU Z X, et al. Temporal niche patterns of large mammals in Wanglang National Nature Reserve, China[J]. Global Ecology and Conservation, 2020, 22: e01015. doi: 10.1016/j.gecco.2020.e01015
    [46] YU G Q, KANG Z J, LIU M S, et al. Preliminary survey using infrared camera reveals fauna and avifauna diversity at Hupingshan National Nature Reserve, Hunan, China[J]. Acta Theriologica Sinica, 2018, 38(1): 104.
    [47] MASON T H E, STEPHENS P A, APOLLONIO M, et al. Predicting potential responses to future climate in an alpine ungulate: interspecific interactions exceed climate effects[J]. Global change biology, 2014, 20(12): 3872−3882. doi: 10.1111/gcb.12641
    [48] JIA X, LIU X, YANG X, et al. Seasonal activity patterns of ungulates in Qinling Mountains based on camera-trap data[J]. Biodiversity Science, 2014, 22(6): 737. doi: 10.3724/SP.J.1003.2014.140073
    [49] NIE Y, SPEAKMAN J R, WU Q, et al. Exceptionally low daily energy expenditure in the bamboo-eating giant panda[J]. Science, 2015, 349(6244): 171−174. doi: 10.1126/science.aab2413
    [50] ZHANG J, HULL V, HUANG J, et al. Activity patterns of the giant panda (Ailuropoda melanoleuca)[J]. Journal of Mammalogy, 2015, 96(6): 1116−1127. doi: 10.1093/jmammal/gyv118
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(3)

Article views(356) PDF downloads(23) Cited by()

Related
Proportional views

Influence of Habitat on the Activity Intensity of Dominant Species in Wanglang Nature Reserve

doi: 10.12172/202211300002
  • 1. Institute of Industry Development Planning, National Forestry and Grassland Administration, Beijing 100010, China
  • 2. Beijing Forestry University, Beijing 100091, China
  • 3. Sichuan Wanglang National Nature Reserve, Mianyang 622550, China

Abstract: The time allocation of species in a day is the most important survival strategy for wild animals, and it is very important for understanding the behavior ecology of species. In order to determine the dominant species in Wanglang Nature Reserve and the relationship between the activity intensity of the dominant species and the habitat status, from May 2018 to July 2019, the infrared camera monitoring and sample surveys methods were used to investigate the species and habitats of large and medium-sized beasts and understory birds in Wanglang Nature Reserve. The habitat conditions of 3 species (two wild dominant species and one domesticated species) with different activity intensities were evaluated. Moreover, the activity intensity of wild dominant species in Bos taurus habitat and other habitats were compared. The principal component analysis showed that the dominant species in Wanglang Reserve were blood pheasant Ithaginis cruentus and tufted deer Elaphodus cephalophus. The intensity of species activity was divided into high, medium and low intensity based on the relative abundance index of time. The difference in habitat conditions between blood pheasants and tufted deer in areas with different activity intensities was mainly manifested in terrain conditions and food resources. The difference in the habitat status of cattle in different activity intensity areas was mainly manifested in herb coverage. Nuclear density estimates indicated that blood pheasants and tufted deer had a high degree of overlap in their activity curves when using cattle habitats and other habitats. However, when using the cattle habitat, the activity intensity of the two peaks was higher than that of other habitats. The results showed that: (1) The activity intensity of dominant species in the area can represent areas with good terrain conditions and poor food resources. (2) When formulating habitat restoration policies in the protected area, priority can be given to areas where the dominant species have high activity intensity. (3) When restoring the habitat, focus should be placed on restoring the habitat used by the cattle species.

  • 生境是物种生存的基础,提供给了物种所必需的食物资源、活动区域及繁殖条件等[1-3]。生境质量下降和丧失一直是影响物种生存的关键因素[4-6]。有很多学者研究了物种生境选择、利用、和偏好等[6-9]。也有一些学者研究了物种生境选择的影响因子,如同域物种、气候变化、人为干扰等[10-14] 。还有一些学者评价了物种生境质量[15-17] 。掌握物种利用生境的状况,对于物种的保护是十分重要的。

    许多研究已经提出并使用了一些指标来评价物种生境状况。如植被覆盖度[18-19] 、物种组成[20-21]、群落结构[22-24]、物种丰富度[25-27]和树木生长指标[28]等。日活动节律是一天内物种对不同资源状况利用的活动强度和策略[29-30],近年来,红外相机被证明能够用来描述大概的大中型兽类和地栖型鸟类的活动节律[11, 30] 。以前的研究表明物种的活动节律是受到多种环境因子的综合影响,比如生境质量、同域物种的活动节律以及人为干扰等[31-36] 。最近的研究表明[37],物种会通过调查自身的活动规律来适应周围环境的变化,许多学者表明物种在生境条件好的地方活动强度大,又有很多学者研究表明物种在生境条件差的地方活动强度大。物种的活动强度与生境质量之间的联系是不清楚的,这不利于政府制定相应的物种及其生境的保护措施。

    家牛是野生物种特殊的同域物种,也是人为干扰的一种类型[12, 31] 。以前的研究表明家牛和野生物种使用的生境之间存在差异,会促使野生动物选择更次级的生境[38]。也有研究表明野生物种受到放牧的影响,与牛出现了时间生态位分化[2]。但是很少有研究表明野生动物的活动强度在利用牛出现和未出现生境间的差异。

    优势种是区域内生态位宽度较大,对资源的利用更充分的物种[39-40] 。通过对区域内优势种进行评价,可以更为显著的反映区域内的生境状况。本研究利用红外相机和样方调查,对王朗保护区内的大中型兽类和地栖型鸟类物种进行调查,分析优势物种活动强度与生境状况间的关系。研究的目的是:1)确定区域内优势物种。2)对优势物种的活动强度进行分级。3)研究优势物种活动强度和生境状况之间的关系。4)从优势物种活动强度的角度来描述适宜生境的特征。通过研究优势物种活动强度和生境状况之间的关系,旨在提出可用于定义和解释这种关系的指标和变量,并为区域内生境保护提供基本参考信息。

    • 王朗自然保护区位于平武县(103°50ʹ—104°58ʹE, 32°49ʹ—33°02ʹN), 是四川省最早建立保护大熊猫的保护区之一。保护区面积为322.97 km2,海拔范围为2320—4980 m [38],平均年降水量约862.5 mm。一月份最低的平均气温为—6.1°C,七月份的最高平均气温为12.7°C。包含针阔混交林、常绿落阔混交林、落叶阔叶林等多种植被类型,保护区有着丰富的生物多样性资源,包括多种珍稀濒危的大中型兽类和地栖型鸟类资源[38, 41]

    • 利用Arcgis10.0将王朗保护区均划分为 1 km×1 km的网格,结合以往巡护路线,排除人和动物难以到达的区域,适当调整红外相机安放位置。最终在王朗保护区选取了33个网格安置红外相机(LtlAcornTM 6 210,猎科电子有限公司),海拔范围为2 640—3 204 m。并记录每台相机点位的经纬度、海拔及栖息地类型,安置相机位点见图1。 红外相机安置地点靠近兽径或水源,相机固定在距离地面 30~80 cm的乔木、灌木或竹丛上。相机在2018年5月至2019年6月在王朗保护区监测。数据收集时间在2018年9月和2019年6月。

      Figure 1.  Camera-trapping sites of the Wanglang National Nature Reserve,Sichuan

      规定物种被相机拍摄到时,即为利用了该地生境。为了评价物种出现时周边生境的状况,另外以相机安放点为中心,设置一个20×20 m的样方,调查相机周围的地形条件(海拔,坡度和坡向)及植被状况(乔木盖度、密度及胸径,灌木盖度、密度,竹子盖度、密度)。数据收集时间在2018年9月、10月及2019年6月、7月。

    • 为了确定保护区内的优势种,根据红外相机拍摄到的物种照片,对照片拍摄到的物种进行识别。兽类物种识别参考了《中国兽类野外手册》[42],鸟类物种识别参考了中国鸟类图库(http://www.birdnet.cn)。为了保证物种拍摄的独立性,认定30分钟内拍摄到的同一物种的照片为1张,记录拍摄到该物种为1次[43]。最后根据每个相机拍摄到的物种照片的数量,分别对大中型兽类和地栖型鸟类进行主成分分析,分别确定王朗保护区内大中型兽类和地栖型鸟类的优势种。

    • 采用日活动强度作为活动强度的代表,我们以2小时为间隔,共划分12个时间段,将每个时间段内拍摄到物种的相对丰富度作为评价活动强度的标准,判断活动强度的公式如下:

      式中的TRDI表示的物种第i时间段内的相对丰富度,Pi为第i时间段拍摄的照片,PTotal为物种拍摄到的物种照片总数。

      根据物种各时间段的相对丰富度来划分物种活动强度等级,认定0为物种活动强度的最小值,参考物种相对丰富度的最大值,来设定活动强度的最大值。根据活动范围的最大值和最小值,将物种活动强度划分为高、中、低三个等级。

    • 为了证明不同活动强度下,物种所联系的生境状况是否不同。利用单因素方差分析、U检验以及多重比较检验单个物种不同活动强度下所利用生境状况的差异。当数据符合方差齐性时,利用单因素方差分析,不符合时,利用U检验。多重比较分析3组数据之间环境变量的差异。

    • 使用核密度估计法比较优势种在利用牛出现和未出现生境时的活动强度差异。以下对牛出现的生境称为家牛生境,对于牛未出现的生境称为其他生境。认定拍摄到牛的相机周围生境即为家牛生境,否则为其他生境。通过时钟记录的时间转换为相对的太阳时间来标准化事件的时间,绘制优势种在两种生境状况时的活动强度曲线,计算活动曲线的重叠度△,并使用Wald检验两曲线重叠的显著度[45]

    2.   结果与分析
    • 33台红外相机共监测到地栖型鸟类1目1科6种,分别为血雉Ithaginis cruentus、红腹角雉Tragopan temminckii、红腹锦鸡Chrysolophus pictus、勺鸡Pucrasia macrolopha和蓝马鸡 Crossoptilon auritum;共监测到大中型兽类4目9科17种。主成分分析表示,在地栖型鸟类中PC1解释了93.13%的鸟类物种组成,见表1。其中物种分数得分最高的为血雉;在大中型兽类中PC1解释了89.38%的兽类物种组成。其中物种分数得分最高的为毛冠鹿。王朗保护区内大中型兽类的优势种为毛冠鹿,地栖型鸟类的优势种为血雉。

      鸟类 Birds兽类 Animals
      物种
      Species
      PC1
      (93.13%)
      物种
      Species
      PC1
      (89.38%)
      物种
      Species
      PC1
      (89.38%)
      物种
      Species
      PC1
      (89.38%)
      红腹角雉1.76407大熊猫0.49162毛冠鹿10.63573中华斑羚−0.24598
      红腹锦鸡0.81718豹猫0.02039黑熊−0.02675中华鬣羚0.43703
      红喉雉鹑0.34472川金丝猴0.112小麂0.24263中华竹鼠0.16046
      血雉9.67065黄喉貂0.13076野猪0.41048猪獾0.10866
      勺鸡0.03119黄鼬0.02245隐纹花松鼠0.98957扭角羚−0.01866
      蓝马鸡0.05562林麝0.12843中国豪猪0.16 546

      Table 1.  Principle analysis of species in Wanglang Nature Reserve

    • 王朗保护区内优势种日活动强度(见表2)。我们根据物种的日活动强度最高值,对物种活动强度进行分级。根据血雉的日活动时间丰富指数,认为当0≤TRAI≤0.06时为低活动强度;0.06<TRAI≤0.12时为中活动强度;0.12<TRAI≤0.18时为高活动强度;根据毛冠鹿的日活动强度丰富指数,认为当0≤TRAI≤0.05时为低活动强度;0.05<TRAI≤0.10时为中活动强度;0.10<TRAI≤0.15时为高活动强度;根据家牛的日活动强度丰富指数,我们认为当0≤TRAI≤0.06时为低活动强度;0.06<TRAI≤0.12时为中活动强度;0.12<TRAI≤0.18时为高活动强度。

      血雉Ithaginis cruentus毛冠鹿Elaphodus cephalophus家牛Bos taurus
      时间范围
      Time range
      照片数量
      Independent photograph
      TRAI照片数量
      Independent photograph
      TRAI照片数量
      Independent photograph
      TRAI
      0:00—2:00140.03210.05130.08
      2:00—4:0060.01150.0450.03
      4:00—6:0010.00160.0440.02
      6:00—8:00510.10410.10120.07
      8:00—10:00750.15560.13290.17
      10:00—12:00830.17560.13210.13
      12:00—14:00830.17350.08140.08
      14:00—16:00760.16410.10190.11
      16:00—18:00570.12610.14150.09
      18:00—20:00290.06580.14180.11
      20:00—22:0040.0190.02100.06
      22:00—24:0090.02120.0360.04

      Table 2.  Time relative abundance index of dominant species and domestic species

      发现血雉和毛冠鹿不同活动强度区域的生境状况存在一定差异(见表3)。血雉的高活动强度与低活动强度活动区域的生境状况差异表现在8个变量:海拔、坡向、乔木胸径、灌木密度、灌木盖度、草本盖度、竹子盖度和竹子密度。中活动强度与低活动强度区域的生境状况差异表现在9个变量:海拔、坡向、乔木胸径、乔木密度、灌木密度、灌木盖度、草本盖度、竹子盖度和竹子密度;高活动强度与中活动强度区域的生境状况差异表现在4个变量:坡度、郁闭度、乔木密度和空旷地比例。毛冠鹿的高活动强度与低活动强度区域的生境状况差异表现在5个变量:海拔、乔木胸径、灌木盖度、草本盖度和竹子盖度;中活动强度与低活动强度区域的生境状况差异也表现在以上描述的5个变量上。高活动强度与中活动强度区域的生境状况均无明显差异。还发现牛不同活动强度区域的生境状况差异不明显,仅仅在高活动强度与低活动强度区域的草本盖度上差异显著。

      血雉Ithaginis cruentus毛冠鹿Elaphodus cephalophus家牛Bos taurus
      高-低
      High-Low
      中-低
      Medium-Low
      中-高
      Medium-High
      高-低
      High-Low
      中-低
      Medium-Low
      中-高
      Medium-
      High
      高-低
      High-Low
      中-低
      Medium-Low
      高-中
      High-Medium
      海拔
      Altitude
      −216.97(0.00)*−198.62(0.00)*18.35(0.42)−61.70(0.01)*−63.31(0.02)*−1.61(0.99)−31.96(0.36)−16.41(0.72)15.54(0.62)
      坡向
      Aspect
      −6.41(0.06)−2.29(0.73)4.13(0.00)*2.80(0.35)3.98(0.18)1.18(0.77)3.68(0.18)3.18(0.22)−0.50(0.94)
      坡度
      Slope
      −108.11(0.00)*−123.92(0.00)*−15.80(0.10)5.04(0.86)0.03(0.99)−5.00(0.81)16.34(0.25)12.84(0.37)−3.50(0.88)
      郁闭度
      Canopy
      −2.77(0.72)1.39(0.93)4.16(0.05)*−1.91(0.53)−3.63(0.16)−1.72(0.48)0.90(0.81)−0.37(0.96)−1.26(0.45)
      乔木密度Tree_Density−0.07(0.23)−0.13(0.02)*−0.06(0.02)*0.02(0.84)−0.00(0.97)−0.02(0.58)0.04(0.36)0.02(0.66)−0.02(0.72)
      乔木
      Tree_DBH
      −10.22(0.00)*−11.48(0.00)*−1.26(0.31)−3.49(0.02)*−4.13(0.01)*−0.64(0.83)2.32(0.07)1.13(0.46)−1.19(0.25)
      灌木密度Shrub_Density0.23(0.00)*0.27(0.00)*0.04(0.19)−0.00(0.99)0.03(0.45)0.04(0.16)0.04(0.21)0.01(0.89)−0.03(0.17)
      灌木盖度Shrub_Canopy16.60(0.00)*17.78(0.00)*1.18(0.68)4.76(0.00)*5.62(0.00)*0.86(0.80)1.00(0.76)0.09(0.99)−0.91(0.65)
      草本盖度Herb_Canopy−40.65(0.00)*−39.90(0.00)*0.75(0.94)−7.56(0.00)*−9.69(0.00)*−2.14(0.50)−6.46(0.04)*−4.53(0.16)1.93(0.57)
      农田覆盖度Field_Canopy−4.06(0.23)−1.01(0.92)3.05(0.03)*1.26(0.61)0.16(0.99)−1.11(0.59)2.38(0.36)1.20(0.73)−1.17(0.62)
      竹盖度Bamboo_Canopy13.22(0.00)*12.94(0.00)*−0.28(0.95)4.81(0.00)*4.58(0.00)*−0.23(0.97)−1.30(0.32)−0.76(0.63)0.54(0.68)
      竹密度Bamboo_Density−2.38(0.00)*−2.23(0.00)*0.15(0.88)0.92(0.06)0.94(0.09)0.03(0.99)−0.34(0.82)−0.12(0.97)0.23(0.85)

      Table 3.  Habitat condition comparison between different activity intensity of three species

    • 核密度估计结果显示,血雉在利用牛出现生境和牛未出现生境时,活动曲线重叠度高(△=0.92,95%CI:0.91—0.96,P<0.05);毛冠鹿在利用家牛生境和其他生境时,活动曲线重叠度高(△=0.87,95%CI:0.87—0.89,P<0.05)(见图2)。血雉在利用家牛生境和其他生境时,活动强度大致相似,在12:00—14:00时间段,血雉在利用家牛生境时的活动强度要高于利于其他生境;在18:00—20:00时间段,毛冠鹿在利用家牛生境时的活动强度要高于利用其他生境的活动强度(见图3)。

      Figure 2.  Activity curve of dominant species when using two habitat conditions

      Figure 3.  Comparison of activity intensity of dominant species in different time periods when using two habitats

    3.   结论与讨论
    • 研究划分了王朗国家级自然保护区内两个野生优势种和一个家养种的3个活动强度等级,并比较了不同活动强度区域所联系的生境状况。还比较了区域内优势种在两个不同生境状况下的活动曲线和活动强度。发现区域内地形条件好、食物资源差的区域,优势种活动强度高。此外优势种在利用放牧干扰后的生境时,会提高自身活动高峰时的活动强度。这表明优势种的活动强度与生境条件和放牧干扰都有一定联系。基于以上发现,建议在制定保护区政策时,可以将监测到的优势种活动强度作为参考指标进行生境恢复,并且在生境恢复期间,适当清除放牧干扰带来的痕迹。

    • 物种各时间段存在差异,这与物种的习性有关。血雉和毛冠鹿都是日行性动物,白天的活动强度会高于晚上的活动强度。血雉的活动强度曲线表现为单峰型。这与以前的研究结论相似[2]。还发现毛冠鹿表现出双峰型活动曲线,在08:00—10:00和16:00—20:00活动强度大。以前的研究表明毛冠鹿日活动强度高峰出现在02:00—08:00和16:00—20:00[44],还有研究表明毛冠鹿日活动强度高峰出现在06:00—08:00和16:00—20:00[46]。这可能是由于受到不同地区所联系的水、食物和捕食风险差异的影响[47]。同时也表明了毛冠鹿有着晨昏性行为。毛冠鹿有着明显的晨昏性行为,一方面是早晨的植物可以提供新鲜的露水,另一方面和各时间段所联系的光照条件有关[44,47-48]。推测物种一天中活动强度出现差异,一方面是与物种习性有关,另一方面还和周围的环境因子如:光照条件、水分条件有关。

    • 研究发现血雉高强度和中强度活动区域间有4个变量存在差异,低强度活动区域与高强度和中强度区域间分别有8和9个变量存在差异。毛冠鹿低强度活动区域与高强度和中强度区域间均有5个变量存在差异。这些变量主要概括为地形条件和食物资源。血雉在海拔低,坡度小的区域活动强度高;毛冠鹿在海拔低的区域活动强度高。以前的研究表明物种更喜欢在地形条件好的区域活动[38]。地形条件好的区域也方便物种取食。血雉和毛冠鹿在食物资源较差的区域,活动强度大。以前的研究表明物种为了满足自己的生存,会消耗较多的能量在空间移动[49,50]。还发现在毛冠鹿在高强度和中强度活动区域间生境状况无明显的差异。以前的研究表明,毛冠鹿在寒冷季节清晨的活动高峰会高于温暖季节,在晚上的活动高峰则会低于温暖季节[41]。推测当生境状况中的食物资源较差以及获取食物资源困难时,物种需要提高自己的活动强度来寻找更多食物来满足自身一天的需求。并且这种活动强度高低与季节所联系的温度条件也有关。

      研究还发现,家牛仅仅在高强度和低强度活动区域间的草本盖度存在差异,其他活动强度区域的生境状况均没有明显差异。家牛是杂食性动物,主要摄入食物为草类植物。草本盖度联系着食物状况。正如我们上面所描述的一样,草本盖度低时,家牛就需要提高活动强度来获取更多的食物来维持自身的需求。其他活动强度区域间没有差异,这可能与家牛食性复杂,分布活动范围广有关。

    • 放牧物种利用生境后会产生固体废物,这会影响野生物种对生境的使用[37]。这也就造成了家牛生境和其他生境的差异。研究表明血雉和毛冠鹿在利用家牛生境和其他生境时,活动曲线重叠度高。血雉和毛冠鹿在利用家牛生境和其他生境时,活动规律大致相同。血雉和毛冠鹿在利用家牛生境和其他生境时,活动强度具有差异。血雉在12:00—16:00时利用家牛生境的活动强度要高于其他生境。毛冠鹿在16:00—20:00时利用家牛生境的活动强度要高于其他生境。以前的研究表明,家畜的活动并没有对血雉繁殖期间的时空分布造成负面影响,还创造了更适宜血雉生存的生境[2]。最近的研究表明,毛冠鹿活动高峰与家畜相比出现延迟,这是因为两者食性相似,因此产生了活动节律的差异[44]。推测家牛去过的生境会造成食物资源变少,这会调整区域内的空间密度,使血雉和毛冠鹿能够更方便活动,但同时也降低了生境质量,要求血雉和毛冠鹿提高自己的活动强度在该区域获得足够食物。

Reference (50)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return