WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 44 Issue 4
Aug.  2023
Article Contents
Turn off MathJax

WANG Z L, YANG Y Z, DU J C, et al. Genetic differences revealed by Genomic-SSR and EST-SSR markers in Alnus cremastogyne[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(4): 36−42 doi: 10.12172/202210080001
Citation: WANG Z L, YANG Y Z, DU J C, et al. Genetic differences revealed by Genomic-SSR and EST-SSR markers in Alnus cremastogyne[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(4): 36−42 doi: 10.12172/202210080001

Genetic Differences Revealed by Genomic-SSR and EST-SSR Markers in Alnus cremastogyne


doi: 10.12172/202210080001
More Information
  • Received Date: 2022-10-08
    Available Online: 2023-03-21
  • Publish Date: 2023-08-30
  • As a non-leguminous and nitrogen-fixing tree species, Alnus cremastogyne is also the most important endemic species of Alnus in China, which has important ecological functions. In this paper, the genetic differences of Genomic-SSR and EST-SSR markers in Alnus cremastogyne genome were analyzed. The results showed that the average number of alleles and the average number of effective alleles with EST-SSR were higher than those of genomic-SSR, while the average observed heterozygosity and average expected heterozygosity were higher than those of EST-SSR. Cluster analysis showed that there were differences between genomic-SSR and EST-SSR in small groups, which indicated that there were some differences between Genomic-SSR and EST-SSR in analyzing genetic diversity and genetic relationship to a certain extent, and more objective results could be obtained by combining the two marker methods.
  • 加载中
  • [1] 陈之端. 桦木科植物的系统发育和地理分布(续)[J]. 植物分类学报,1994,32(2):101−153.
    [2] 匡可任, 李沛琼, 郑斯绪, 等. 中国植物志(21卷)[M]. 北京: 科学出版社, 93-103, 1979.
    [3] Zhuk A, Veinberga I, Daugavietis M et al. Cross-species amplification of <italic>Betula pendula</italic> Roth. simple sequence repeat markers in <italic>Alnus</italic> species[J]. Baltic Forestry, 2008, 14(2): 116−121.
    [4] Lance SL; Jones, KL, Hagen C et al. Development and characterization of nineteen polymorphic microsatellite loci from seaside alder, Alnus maritima. Conserv Genet, 2009, 10(6): 1907-1910.
    [5] Jones JM, Gibson JP. Population genetic diversity and structure within and among disjunct populations of <italic>Alnus maritima</italic> (seaside alder) using microsatellites[J]. Conserv Genet, 2011, 12(4): 1003−1013. doi: 10.1007/s10592-011-0203-3
    [6] Jones JM, Gibson JP. Mating system analysis of <italic>Alnus maritima</italic> (seaside alder), a rare riparian tree[J]. Castanea, 2012, 77(1): 11−20. doi: 10.2179/11-024
    [7] Lepais O, Muller SD, Ben Saad-Limam S et al. High genetic diversity and distinctiveness of rear-edge climate relicts maintained by ancient tetraploidisation for <italic>Alnus glutinosa</italic>[J]. PLoS One, 2013, 8(9): e75029. doi: 10.1371/journal.pone.0075029
    [8] Havrdova A, Douda J, Krak, K et al. Higher genetic diversity in recolonized areas than in refugia of <italic>Alnus glutinosa</italic> triggered by continent-wide lineage admixture[J]. Mol Ecol, 2015, 24(18): 4759−4777. doi: 10.1111/mec.13348
    [9] Mingeot D, Husson C, Mertens P et al. Genetic diversity and genetic structure of black alder (<italic>Alnus glutinosa</italic> [L. ] Gaertn) in the Belgium-Luxembourg-France cross-border area[J]. Tree Gene Genom, 2016, 12(2): 1−12.
    [10] Mandak B, Havrdova A, Krak, K et al. Recent similarity in distribution ranges does not mean a similar postglacial history: A phylogeographical study of the boreal tree species <italic>Alnus incana</italic> based on microsatellite and chloroplast DNA variation[J]. New Phytol, 2016, 210(4): 1395−1407. doi: 10.1111/nph.13848
    [11] 陈明皋,陈建华,吴际友,等. 桤木不同无性系结实量与种实性状变异[J]. 林业科学,2008,44(6):153−156.
    [12] 辜云杰,王启和,罗建勋,等. 四川桤木天然群体果实表型多样性研究[J]. 四川林业科技,2009,30(2):19−22. doi: 10.3969/j.issn.1003-5508.2009.02.004
    [13] 陈益泰,李桂英,王惠雄. 桤木自然分布区内表型变异的研究[J]. 林业科学研究,1999,12(4):379−385. doi: 10.3321/j.issn:1001-1498.1999.04.009
    [14] 王军辉. 桤木遗传变异与选择的研究[D]. 北京: 北京林业大学, 2000.
    [15] 卓仁英,陈益泰. 四川桤木不同群体间遗传分化研究[J]. 浙江林业科技,2005,25(1):13−16. doi: 10.3969/j.issn.1001-3776.2005.01.004
    [16] 饶龙兵,杨汉波,郭洪英,等. 基于桤木属转录组测序的SSR 分子标记的开发[J]. 林业科学研究,2016,29(6):875−882.
    [17] Mingeot D, Baleux R, Watillon B. Characterization of microsatellite markers for black alder (<italic>Alnus glutinosa</italic> [L. ] Gaertn)[J]. Conserv Genet Res, 2010, 2: 269−271. doi: 10.1007/s12686-010-9188-3
    [18] Lepais O, Bacles CFE. De Novo discovery and multiplexed amplification of microsatellite markers for black alder (<italic>Alnus glutinosa</italic>) and related species using SSR-enriched shotgun pyrosequencing[J]. J Hered, 2011, 102(5): 627−632. doi: 10.1093/jhered/esr062
    [19] Yang A, Wu B, Shen C et al. Microsatellite records for volume 9, issue 3[J]. Conserv Genet Res, 2017, 9(3): 507−511. doi: 10.1007/s12686-017-0806-1
    [20] Clark LV, Jasieniuk M. Polysat: An R package for polyploid microsatellite analysis[J]. Mol Ecol Res, 2011, 11(3): 562−566. doi: 10.1111/j.1755-0998.2011.02985.x
    [21] Meirmans PG, Van Tienderen PH. Genotype and genodive: Two programs for the analysis of genetic diversity of asexual organisms[J]. Mol Ecol Notes, 2004, 4(4): 792−794. doi: 10.1111/j.1471-8286.2004.00770.x
    [22] Slatkin M, Barton NH. A comparison of three indirect methods for estimating average levels of gene flow[J]. Evolution, 1989, 43(7): 1349−1368. doi: 10.2307/2409452
    [23] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89(3): 583−590. doi: 10.1093/genetics/89.3.583
    [24] Rohlf FJ. NTSYS-pc numerical taxonomy and multivariate analysis system[J]. Am Stat, 1987, 41: 330. doi: 10.2307/2684761
    [25] Mandak B, Vit P, Krak K et al. Flow cytometry, microsatellites and niche models reveal the origins and geographical structure of <italic>Alnus glutinosa</italic> populations in Europe[J]. Ann Bot, 2016, 117(1): 107−120. doi: 10.1093/aob/mcv158
    [26] 任保青,刘军. 中国桤木属植物的细胞学研究(I)[J]. 广西植物,2006,26(4):356−359.
    [27] 杨汉波,饶龙兵,郭洪英,等. 5种桤木属植物的核型分析[J]. 植物遗传资源学报,2013,14(6):203−207.
    [28] 洪德元. 植物细胞分类学[M]. 北京: 科学出版社, 1990.
    [29] Murai S. Phytotaxonomical and geobotanical studies on genus <italic>Alnus</italic> in Japan (III). Taxonomy of whole world species and distribution of each section[J]. Bull Gov For Exp Stat, 1964, 171: 1−107.
    [30] 宋跃朋,江锡兵,张曼,等. 杨树Genomic-SSR与EST-SSR分子标记遗传差异性分析[J]. 北京林业大学学报,2010,32(5):1−7.
    [31] 刘果,谢耀坚,陈鸿鹏,等. 桉树Genomic-SSR和EST-SSR分子标记的遗传差异性分析[J]. 桉树科技,2017,34(03):1−8.
    [32] 张亚东,彭婵,李振芳,等. 基因组SSR与EST-SSR标记在杨树不同种间的遗传差异[J]. 东北林业大学学报,2011,39(12):8−11+117. doi: 10.3969/j.issn.1000-5382.2011.12.003
    [33] 常玮,赵雪,李侠,等. 大豆EST-SSR标记开发及与Genomic-SSR的比较研究[J]. 中国油料作物学报,2009(2):149−156.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(4)

Article views(231) PDF downloads(8) Cited by()

Related
Proportional views

Genetic Differences Revealed by Genomic-SSR and EST-SSR Markers in Alnus cremastogyne

doi: 10.12172/202210080001
  • 1. Sichuan Academy of Forestry, Chengdu 610081, China
  • 2. Sichuan Academy of Grassland Sciences, Chengdu 611731, China

Abstract: As a non-leguminous and nitrogen-fixing tree species, Alnus cremastogyne is also the most important endemic species of Alnus in China, which has important ecological functions. In this paper, the genetic differences of Genomic-SSR and EST-SSR markers in Alnus cremastogyne genome were analyzed. The results showed that the average number of alleles and the average number of effective alleles with EST-SSR were higher than those of genomic-SSR, while the average observed heterozygosity and average expected heterozygosity were higher than those of EST-SSR. Cluster analysis showed that there were differences between genomic-SSR and EST-SSR in small groups, which indicated that there were some differences between Genomic-SSR and EST-SSR in analyzing genetic diversity and genetic relationship to a certain extent, and more objective results could be obtained by combining the two marker methods.

  • 桤木属(Alnus Mill.)为非豆科固氮树种,根系富含根瘤,可改良土壤,是重要的先锋造林与生态功能树种。桤木属是现存桦木科植物中最原始的属,也是北半球新生代植物区系的重要植物类群,主要分布在欧亚和北美,拉丁美洲与非洲有少量分布[1-2]。四川省及邻近地区是桤木属的重要分布区,原生分布有桤木(Alnus cremastogyne, 又名四川桤木)、川滇桤木(A. ferdinandi-coburgii)、毛桤木(A. lanata)、尼泊尔桤木(A. nepalensis),可能是桤木属植物起源与分化的中心[1],其中桤木是我国最重要的一个特有种,也是研究最广泛的一个种,生长迅速、适应性强、童期短且结实量大,目前其适生栽培区域已扩大至长江中下游地区,是中国长江流域退耕还林工程、生态建设工程和混交造林的重要树种。

    SSR(Simple sequence repeat,简单序列重复)分子标记具有分布广泛、多态性丰富、稳定、共显性等特点,自从被开发以来,在物种遗传改良上获得了广泛的应用。在桤木属植物SSR研究方面,Zhuk等最早开发出了桤木SSR引物[3]。随后,Lance等通过筛选海岸桤木(A. maritima)基因组文库获得了19条桤木SSR引物 [4]。使用Lance开发的引物,Jones等人系统研究了美国濒危物种海岸桤木的遗传多样性与群体结构等,为其提供了的濒危保护理论基础[5,6]。随后SSR技术逐渐的应用到其他桤木属树种中,这些树种的群体遗传变异基础与进化史也逐渐被深入揭示[7-10]。目前国内桤木遗传改良研究主要集中于育苗、栽培等常规育种方面,在群体遗传变异研究上,主要通过表型鉴定方法进行[11-14],采用分子标记手段的研究较少,仅有卓仁英等建立了RAPD体系[15]。在SSR分子标记方面,也仅有饶龙兵等基于桤木、欧洲桤木(A. glutinosa)、硬桤木(A. firma)转录组数据开发了适用于桤木属的SSR标记[16]。总之桤木群体遗传变异缺乏分子水平上的数据支撑,影响了其保护与进一步的推广利用。

    此外,SSR分子标记从来源上说包括Genomic-SSR与EST-SSR,分别来源于基因组数据与表达序列标签(Express sequence tags,EST)数据。本研究分析了2种来源的桤木SSR标记的差异,以期推动其在国内桤木遗传变异研究上的应用。

    • 采样群体为天然次生林,共包括13个群体(表1)。群体范围包括成都平原区、盆周山地区、盆地丘陵区、川西高山峡谷区和川西南山地区。群体取样单株之间相距至少50m,采集桤木新鲜叶片,硅胶干燥保存带回实验室。

      群体编号
      ID
      地点
      Location
      群体数目
      Size
      经度
      Longitude (E)
      纬度
      Latitude (N)
      海拔范围
      Elevation range/m
      AA美姑8103.0828.301609–2352
      AC峨边13103.2529.28828–1180
      B泸定12102.1329.771303–2343
      F冕宁16102.1029.181884–1908
      I平武11104.5032.30845–1440
      J青川12105.1432.41552–1496
      K剑阁13105.4532.16569–808
      N巴中24106.6331.68368–591
      Q宣汉10107.6231.55482–998
      S金堂12103.8030.74740–960
      T邛崃9103.1630.32746–1118
      U沐川16103.7129.15500–530
      V峨眉山8103.3329.59650–1273

      Table 1.  Location and number of trees sampled in 13 Alnus Cremastogyne populations

    • 使用天根植物基因组提取试剂盒DNA(DP305)提取基因组DNA。

      SSR扩增所用引物来源于2部分:(1)Genomic-SSR,公开发表文献中其它桤木属树种相关研究中使用的SSR引物[3-4, 17-18],10对引物;(2)EST-SSR[19],6对引物。具体信息见表2

      LocusRepeat motifSize rangeTm(oC)NaNeHoHtGstNmPrimer source
      Acg3(CT)3CC(CT)2CC
      (CT)13AT(CT)5
      210-2625518.005.1560.9630.8590.0356.893L3.1[9]
      Acg7(AG)11265-2935613.003.8970.9390.7910.0288.679Alma7[10]
      Acg8(AG)12177-2175616.004.0930.8290.8040.01615.375Alma12[10]
      Acg11(GT)12(GA)10248-256585.002.2490.8840.5820.002124.75Alma20[10]
      Acg16(AG)14156-168607.004.4220.8540.8320.0347.103CAC-A105[17]
      Acg19(TC)15130-138585.002.7240.8930.6630.00641.417CAC-B113[17]
      Acg20(GA)12142-1965825.002.5640.6520.6560.0317.815CAC-C118[17]
      Acg21(TC)12247-2875820.006.1110.9940.8710.01318.981Ag01[18]
      Acg22(TC)11184-210588.003.1010.9630.7200.0269.365Ag05[18]
      Acg23(TG)12248-2805814.003.4680.5180.7630.01714.456Ag09[18]
      均值13.103.7790.8490.7540.02111.655
      Ace1(TC)11n(TC)8ta
      (TC)6
      220-2486013.001.7680.5600.4670.02012.250FQ338662[19]
      Ace3(CT)12(CA)6210-2406011.003.7780.9390.7940.0425.702FQ335170[19]
      Ace27(CT)13(CA)7155-1855815.007.1130.9880.8840.002124.750FQ351578[19]
      Ace29(TC)26219-2855827.008.4670.9940.9340.01024.750FQ344263[19]
      Ace35(TC)20194-200584.001.6700.7130.4680.0872.624FQ334282[19]
      Ace37(GA)19119-1375810.001.4020.4150.3140.0298.371FQ351410[19]
      均值13.334.0330.7680.6430.0279.009
      总均值13.193.8740.8190.7130.0259.750
      Na: 等位基因数; Ne: 有效等位基因数; Ho: 观察杂合度; Ht: 期望杂合度; Gst: 分化系数; Nm: 基因流
      Na: number of alleles; Ne: number of effective alleles; Ho: observed heterozygosity; Ht: expected heterozygosity; Gst: differentiation coefficient; Nm: gene flow

      Table 2.  Genetic diversity of 164 trees in A. cremastogyne revealed by 10 Genomic-SSRs and 6 EST-SSRs

      SSR上游引物添加FAM荧光标记。PCR扩增使用Takara Taq 聚合酶(Takara, Dalian, China) ,20 uL反应体系包括: 13.85 μL ddH2O, 2.0 μL 10 × buffer, 2.0 μL 2.0 mM dNTP, 0.5 μL of each primer (at 10 μM), 1 μL基因组DNA模版(30-50ng), and 0.75 U Taq DNA聚合酶。扩增程序如下:94 ℃预变性5 min;94 ℃变性20 s,退火温度退火20 s,72 ℃延伸40 s,25-30个循环;72 ℃延长5 min,4 ℃保存。退火温度根据文献或引物设计软件给出的数据。PCR产物进行毛细管荧光电泳分型,SSR片段长度由软件GeneMarker version 2.2.0 (SoftGenetics, USA)判读。

    • 首先利用Excel2007整理整合GeneMarker输出的基因型分子量数据,随后数据输入基于R环境的Polysat 1.6软件[20],整合相关信息后,最后输出为GenoDive格式文件进行进一步分析。利用GenoDive 2.0b27[21]计算等位基因数(Na)、有效等位基因数(Ne)、观测杂合度(Ho)、总望杂合度(Ht)、固定系数(Gst,同Fst)等遗传参数,评价各群体的遗传多样性水平。基因流值(Nm)根据公式(1-GST)/(4GST)估算[22]

      利用GenoDive 2.0b27计算Nei’s(1978)遗传距离,运用NTSYS-pc 2.10s 软件生成UPGMA聚类图并计算各遗传距离的相关系数[23-24]

    2.   结果与分析
    • 利用10个Genomic-SSR位点与6个EST-SSR个位点检测了13个桤木群体164个个体的遗传多样性参数,16个位点全部具有多态性。进一步分析结果表明(表2),在10个Genomic-SSR位点中,平均等位基因数为13.10,平均有效等位基因数为3.779,平均观察杂合度为0.849,平均期望杂合度为0.754;对EST-SSR来说,平均等位基因数为13.33,平均有效等位基因数为4.033,平均观察杂合度为0.768,平均期望杂合度为0.643。平均等位基因数EST-SSR位点高于Genomic-SSR位点,而对检测的杂合度来说,Genomic-SSR位点高于EST-SSR位点。就单个位点而言,揭示遗传多性度最高的为EST-SSR位点Ace29,其等位基因数达到27,有效等位基因数为8.467,观察杂合度为0.994。在10个基因组SSR位点中,等位基因数≥20的位点有2个,在10与20之间的位点有4个,10以下的位点有4个;而6个EST-SSR位点中,有1个超过20,在10(包括等于)与20之间的位点有4个,10以下的位点有1个。

      针对13个桤木群体来说,除了平均有效等位基因数EST-SSR位点高于Genomic-SSR(4.251>3.941)之外,其余3个遗传参数(平均等位基因数、观察杂合度、期望杂合度)Genomic-SSR位点均高于EST-SSR。对于具体群体来说,Genomic-SSR与EST-SSR位点分析均显示F(冕宁)群体遗传多样性水平最高,但是Genomic-SSR位点显示I(平武、Ne值最小)、J(青川、Na与Ho值最小)、Q(宣汉、Ht值最小)群体遗传多样性水平最低,EST-SSR位点显示I(平武、Na、Ne、Ho值最小)、U(沐川、Ht值最小)群体遗传多样性水平最低。

      标记
      Marker
      Genomic-SSR遗传距离
      Genetic distance of Genomic-SSR
      EST-SSR遗传距离
      Genetic distance of EST-SSR
      Genomic-SSR1
      EST-SSR0.908**1
      Genomic-SSR+EST-SSR0.975**0.966**
        注: **表示在 0.01水平相关显著。
        Note: * * indicates significant correlation at 0.01 level.

      Table 4.  Correlation between genetic similarity coefficients based on Genomic-SSR, EST-SSR, and Genomic-SSR+EST-SSR

    • 为确定两种标记对桤木群体遗传关系的鉴定准确度,本研究基于Nei’s遗传距离使用UPGMA方法对参试材料进行聚类分析,由图1(A、B)可知,Genomic-SSR与EST-SSR均将AA与F群体归为1类,进一步Genomic-SSR标记将其余群体归为3类:AC、B;I、S、T、V;J、Q、U、K、N,而EST-SSR划分的3类为:AC;B、T;I、J、K、N、Q、U、V、S。说明在大的区域分类上,Genomic-SSR与EST-SSR相一致,而在小的分类上有差异。

      Figure 1.  Unweighted pair-group method with arithmetic means (UPGMA) cluster analysis of 13 A. cremastogyne populations based on Nei’s genetic distance (A: Genomic-SSR; B: EST-SSR; C: Genomic-SSR+EST-SSR)

      基于Genomic-SSR与EST-SSR总的16个标记的Nei’s遗传距离构建的UPGMA聚类树显示桤木群体可明显地分为4个类群(AA与F、B、I、其它)(图1 C),与Genomic-SSR标记结果更为相似,说明本研究中Genomic-SSR更能精确地鉴别出桤木群体遗传关系。

      对 Genomic-SSR、EST-SSR以及 Genomic-SSR+EST-SSR计算出的遗传距离进行相关性分析,结果显示(表3):3部分相关系数呈极显著正相关(P<0.01),但是Genomic-SSR与Genomic-SSR+EST-SSR 相关系数稍高,即两种标记计算的综合相关系数与Genomic-SSR标记更为相似,表明本研究中Genomic-SSR能更准确地揭示不同桤木个体间的遗传关系,与上述聚类分析结果相一致。

      群体gSSReSSRgSSR+eSSR
      NaNeHoHtNaNeHoHtNaNeHoHt
      AA(美姑)7.904.6640.8750.7638.504.7880.8750.7398.1254.6310.8750.747
      AC(峨边)7.103.5550.8310.7116.674.3040.7180.6096.9383.7560.7880.663
      B(泸定)7.704.5840.8750.7827.004.0840.7920.6677.4384.3660.8440.736
      F(冕宁)9.604.9200.9130.7859.835.3280.8540.7439.6884.9610.8910.762
      I(平武)7.103.3180.8270.7075.333.4010.6820.5606.4383.2950.7730.646
      J(青川)6.103.7110.8080.6945.503.7400.8330.6195.8753.6690.8180.660
      K(剑阁)6.603.5220.8460.6947.004.4990.7560.6056.753.8060.8130.656
      N(巴中)8.203.6830.8210.6938.334.9180.750.5708.254.110.7940.644
      Q(宣汉)6.603.5780.8400.6926.504.1090.7670.5786.5623.6910.8130.641
      S(金堂)6.904.0880.8420.7235.673.5810.7220.5766.4383.7980.7970.657
      T(邛崃)6.503.8470.9110.7496.004.1270.8520.6636.3123.8530.8890.707
      U(沐川)7.904.0550.8380.7187.834.4570.7190.5527.8754.0720.7930.648
      V(峨眉山)6.103.7080.8500.7465.673.9330.7080.5565.9383.6940.7970.665
      均值7.2543.9410.8520.7276.9104.2510.7710.6187.1253.9770.8220.679
        Na: 等位基因数; Ne: 有效等位基因数; Ho: 观察杂合度; Ht: 期望杂合度.
        Na: number of alleles; Ne: number of effective alleles; Ho: observe the heterozygosity; Ht: Expected heterozygosity.

      Table 3.  Genetic diversity of 13 A. cremastogyne populations revealed by 10 Genomic-SSRs and 6 EST-SSRs

    3.   讨论
    • 在相关研究中,欧洲桤木是被作为二倍体树种进行研究的,随后Lepais等[7]与Mandák等[25]在非洲与欧洲分别发现了四倍体群体(2n=4x=56)。在染色体水平上,任保青等[26]与杨汉波等[27]通过核型研究发现桤木染色体数为56,根据洪德元提到桤木属的染色体基数为x=14[28],或Murai认为的X=7[29],则桤木可能是四倍体或八倍体。而核型分析显示桤木染色体结构相同的染色体对数多数为2对[27],表明桤木可能正在进行或接近完成二倍体化。由于本研究种桤木SSR分型数据表现出了四倍体特性,因此本研究以多倍体分析软件Polysat、Genodive为基础[20, 21],结合NTSYS软件进行了桤木群体遗传参数估算与分析。

    • 本研究对两种来源SSR标记的遗传差异进行了比较分析,结果显示:平均等位基因数与有效等位基因数EST-SSR标记高于Genomic-SSR标记,而两种杂合度Genomic-SSR位点高于EST-SSR位点,与前人研究结果均不完全一致。如在宋跃朋等与刘果等分别对杨树与桉树的研究中,均显示Genomic-SSR标记的等位基因数、多态性、杂合度高于EST-SSR标记[30,31],而在张亚东等对杨树研究则显示EST-SSR标记等位基因数、多态性、杂合度高于Genomic-SSR标记[32],而大豆相关研究则显示Genomic-SSR的等位基因数高于EST-SSR标记,但是EST-SSR标记的多态性稍高于Genomic-SSR[33]。在对桤木群体遗传多样性的解析中,Genomic-SSR与EST-SSR分析结果也不一致。尽管理论上由于EST-SSR引物来自高度保守的DNA转录区,其揭示的多态性在理论上应低于基因组SSR标记,但由于试验材料与参试标记的不同,其显示的遗传差异可能不同。因此,在物种遗传多样性的研究中,应利用不同来源的分子标记进行综合评价,以获得更加客观的结论。

      在对桤木群体遗传关系的分析中,在大的类群上Genomic-SSR与EST-SSR标记相一致,而在进一步的小类群上则显示出差异,而且本研究中两种标记计算的综合相关系数与Genomic-SSR标记更为相似,表明本研究中Genomic-SSR能更准确地揭示桤木不同群体或个体间的遗传关系,与前述宋跃朋等、刘果等与张亚东等研究结果不一致,这3项研究均显示EST-SSR能更准确地揭示基因型之间的遗传关系[30-32]。这可能与研究所用材料有关,这3项研究分析的均是杨树与桉树不同种间的遗传关系,而本研究材料为桤木的不同群体,由于EST-SSR来自DNA转录区,保守性强,对亲缘关系较近的基因型灵敏度不及基因组SSR,但在近邻的种间具有通用性,对不同种属系统演化研究、加密遗传连锁图谱、基因精细定位、标记功能研究等具有重要作用。

      总之,本研究表明桤木Genomic-SSR与EST-SSR标记在解析群体遗传多样性与遗传关系方面有一定差异,要得到更准确的结果,需要综合使用两种标记。

Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return