WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 44 Issue 3
Jun.  2023
Article Contents
Turn off MathJax

MU W T, ZHOU L Y, LIU J P, et al. Effects of sunken landscape water body on temperature and humidity of offshore sites with different slope directions in summer[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(3): 95−101 doi: 10.12172/202208310001
Citation: MU W T, ZHOU L Y, LIU J P, et al. Effects of sunken landscape water body on temperature and humidity of offshore sites with different slope directions in summer[J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(3): 95−101 doi: 10.12172/202208310001

Effects of Sunken Landscape Water Body on Temperature and Humidity of Offshore Sites with Different Slope Directions in Summer


doi: 10.12172/202208310001
More Information
  • Corresponding author: jpgg2000@163.com
  • Received Date: 2022-08-31
    Available Online: 2023-03-06
  • Publish Date: 2023-06-25
  • The design and construction of sunken water body was a classic method to create garden landscape and improve ecological function. In order to study the impact of sunken landscape water on the temperature and humidity of offshore sites in different slope directions in summer, an artificial lake about 11940 m2 area in subtropical climate was taken as the object. The observation sites of 0 m, 5 m, 10 m, 15 m and 20 m offshore were set in the four slope directions of the southeast and northwest of the water slope protection. In summer (39℃/25℃), the temperature and humidity of the sites were measured at 9:30, 11:30, 13:30, 15:30 and 17:30 respectively, and the differences among sites, slope directions and times were analyzed. The results showed that: (1) There were significant differences in temperature and humidity at 20 sites in 4 slope directions around the landscape water body (P < 0.05). The maximum temperature difference was 6.54 ℃ at 17:30, and the maximum humidity difference was 18.73% at 9:30. (2) The temperature and humidity showed significant differences among directions, among sites and among times (P < 0.05). Among directions, the maximum temperature difference at 15:30 and the maximum humidity difference at 11:30. Among sites, the maximum temperature difference at 17:30 and the maximum humidity difference at 9:30. (3) The temperature and humidity were significantly affected by slope direction, location and time (P < 0.05). The influence of landscape water on humidity was greater than that of temperature. The first influence factor on temperature was time, and the first influence factor on humidity was site, but the second influence factor on temperature and humidity was slope direction similarly. (4) The influence of landscape water on temperature and humidity of slope direction was east > west > north > south, and the influence on offshore site was site0 > site20 > site5 > site15 > site10. In conclusion, the cooling and humidification effects of water body on offshore sites with different slope directions were significantly different, so the plant community of ecological slope protection of sunken landscape water should be constructed according to the slope directions and sites.
  • 加载中
  • [1] 李吉富,李艳梅. 水体面积与微气候变化关系特征研究现状及进展[J]. 环境生态学,2022,4(1):59−64.
    [2] 卞晴,赵晓龙,刘笑冰. 水体景观气候调节性研究进展与展望[J]. 风景园林,2020,27(6):88−94.
    [3] ARNFIELD A J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the Urban Heat Island[J]. International Journal of Climatology, 2003, 23(1): 1−26. doi: 10.1002/joc.859
    [4] NAKAYAMA T, FUJITA T. Cooling effect of water-holding pavements made of new materials on water and heat budgets in Urban Areas[J]. Landscape and Urban Planning, 2010, 96(2): 57−67. doi: 10.1016/j.landurbplan.2010.02.003
    [5] 赵荻. 基于CFD模型的城市湖泊湿度效应变化规律研究[D]. 中南林业科技大学, 2018.
    [6] THEEUWES N E, SOLCEROVÁ A, STEENEVELD G J. Modeling the Influence of Open Water Surfaces on the Summertime Temperature and Thermal Comfort in the City[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(16): 8881−8896. doi: 10.1002/jgrd.50704
    [7] 纪鹏,朱春阳,王洪义,等. 城市中不同宽度河流对滨河绿地四季温湿度的影响[J]. 湿地科学,2013,11(2):240−245. doi: 10.3969/j.issn.1672-5948.2013.02.014
    [8] COUTTS A, BERINGER J. Impact of Increasing Urban Density on Local Climate: Spatial and Temporal Variations in the Surface Energy Balance in Melbourne Australia[J]. Journal of Applied Meteorology and Climatology, 2007, 46(4): 177−193.
    [9] 吕鸣杨. 城市公园小型水体小气候效应实测分析[D]. 浙江农林大学, 2019.
    [10] 段玉侠. 风景园林空间小气候实测及适应性设计研究[D]. 浙江农林大学, 2018.
    [11] 陈茗, 西安城市户外公共空间水体小气候效应实测分析[D]. 西安建筑科技大学, 2015.
    [12] 岳文泽,徐丽华. 城市典型水域景观的热环境效应[J]. 生态学报,2013,33(6):1852−1859.
    [13] 杨凯,唐敏,刘源,等. 上海中心城区河流及水体周边小气候效应分析[J]. 华东师范大学学报(自然科学版),2004(3):105−114. doi: 10.3969/j.issn.1000-5641.2004.03.019
    [14] 马勇,曾晓琳,刘金平,等. 坡向和年限对冷季型混播护坡草坪群落特征和草坪草重要值的影响[J]. 中国草地学报,2021,43(7):70−77.
    [15] 曾晓琳,王大伟,刘金平,等. 坡向对3 种冷季型草坪草表观性状及叶绿素含量的影响[J]. 草业科学,2015,32(11):1823−1831. doi: 10.11829/j.issn.1001-0629.2015-0087
    [16] LI X, MITRA C, DONG L, et al. Understanding Land Use Change Impacts on Microclimate Using Weather Research and Forecasting (WRF) Model[J]. Physics and Chemistry of the Earth, 2018, 103: 115−126. doi: 10.1016/j.pce.2017.01.017
    [17] 张琳,刘滨谊,林俊. 城市滨水带风景园林小气候适应性设计初探[J]. 中国城市林业,2014,12(4):36−39. doi: 10.3969/j.issn.1672-4925.2014.04.010
    [18] 刘娇妹,杨志峰. 北京市冬季不同景观下垫面温湿度变化特征[J]. 生态学报,2009,29(6):3241−3252. doi: 10.3321/j.issn:1000-0933.2009.06.056
    [19] 轩春怡, 城市水体布局变化对局地大气环境的影响效应研究[D]. 兰州大学, 2011.
    [20] 吕鸣杨,金荷仙,王亚男. 城市公园小型水体夏季小气候效应实测分析——以杭州太子湾公园为例[J]. 中国城市林业,2019,17(4):18−24.
    [21] 王浩,傅抱璞. 水体的温度效应[J]. 气象科学,1991,11(3):233−243.
    [22] 梁胜,陈存友,胡希军,等. 基于CFD的建筑对城市湖泊湿度效应的影响模拟[J]. 生态科学,2020,39(2):191−198.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(8)

Article views(406) PDF downloads(4) Cited by()

Related
Proportional views

Effects of Sunken Landscape Water Body on Temperature and Humidity of Offshore Sites with Different Slope Directions in Summer

doi: 10.12172/202208310001
  • School of Life Sciences, China West Normal University, Nanchong 637009, China
  • Corresponding author: jpgg2000@163.com

Abstract: The design and construction of sunken water body was a classic method to create garden landscape and improve ecological function. In order to study the impact of sunken landscape water on the temperature and humidity of offshore sites in different slope directions in summer, an artificial lake about 11940 m2 area in subtropical climate was taken as the object. The observation sites of 0 m, 5 m, 10 m, 15 m and 20 m offshore were set in the four slope directions of the southeast and northwest of the water slope protection. In summer (39℃/25℃), the temperature and humidity of the sites were measured at 9:30, 11:30, 13:30, 15:30 and 17:30 respectively, and the differences among sites, slope directions and times were analyzed. The results showed that: (1) There were significant differences in temperature and humidity at 20 sites in 4 slope directions around the landscape water body (P < 0.05). The maximum temperature difference was 6.54 ℃ at 17:30, and the maximum humidity difference was 18.73% at 9:30. (2) The temperature and humidity showed significant differences among directions, among sites and among times (P < 0.05). Among directions, the maximum temperature difference at 15:30 and the maximum humidity difference at 11:30. Among sites, the maximum temperature difference at 17:30 and the maximum humidity difference at 9:30. (3) The temperature and humidity were significantly affected by slope direction, location and time (P < 0.05). The influence of landscape water on humidity was greater than that of temperature. The first influence factor on temperature was time, and the first influence factor on humidity was site, but the second influence factor on temperature and humidity was slope direction similarly. (4) The influence of landscape water on temperature and humidity of slope direction was east > west > north > south, and the influence on offshore site was site0 > site20 > site5 > site15 > site10. In conclusion, the cooling and humidification effects of water body on offshore sites with different slope directions were significantly different, so the plant community of ecological slope protection of sunken landscape water should be constructed according to the slope directions and sites.

  • 景观水体指天然形成或人工建造,具有外观形状、分布状态、文化意境、气候调节等特点,给人以美感的观赏性水体[1]。随着园林城市、海绵城市、生态城市等理念推广与实践,营造与应用景观水体成为城市绿化、乡村美化及生态治理的重要技术手段。水体和植物合理布局和配置,对提高景观丰富度和改善绿地生态环境有着重要的作用[2]。景观水体不仅是增加园林景观空间感、流动感、柔美感、参与感、娱乐感和自然感的造景手法,水体因热容量大、蒸发潜热大及水面反射率小的特殊物理性质[3],是城市开放空间性能最好的辐射散热器和蒸发增湿器[4],充分利用水体的区域气候调节性与自然通风能力[5],是缓解城市制冷与供热需求、降低城市温室效应、减少碳排放和实现碳中和的必然要求。

    研究景观水体降温增湿规律及其导致微生境异质性大小,对水体周围绿化植物选择、配置及栽培养护具有指导意义。诸多学者对水体日间、夜间及季节性的温湿度调节能力进行了研究[6-8],结果均表明水体具降温增湿功能。受水体形状、面积、状态和分布的限制[2],及研究尺度、度量方式、测定时间和测定持续期的干扰[9],水体降温增湿幅度和影响范围的研究结果不尽相同[10-11]。100 m宽水体可使周围水平方向约200 m环境温度降低5—7℃,仅0.036 km2 的面状水域使城市热岛区域温度降低3.65℃[12],夏季最大增湿10%~20%,且可增加水体周围的风速[13]。建设下沉式景观水体是打造坡地景观、错层式景观和架空层景观,增加园林景观丰富度和层次感的常用手段,目前极少研究关注下沉式水体的降温增湿效应。

    本文以南北长200±12 m、东西宽60±8 m,水域周长约528.86 m,面积约11 940 m2的下沉式静水湖为对象,于夏季9:30、11:30、13:30、15:30、17:30,通过测定东西南北4个坡向上,距离驳岸0 m、5 m、10 m、15 m、20 m等位点的温度和湿度,分析时间间、坡向间、位点间的温湿度差异,摸索下沉式景观水体周围微生境中温湿度变化规律,研究景观水体对不同坡向位点夏季降温增湿效应的影响。以期为下沉式景观水体周围生态护坡设计、观赏植物选择配置、一体化生态景观营造及森林城市建设提供依据。

    • 试验水体为位于四川省南充市西华师范大学校园内的人工下沉式静水湖的迎曦湖,属亚热带湿润季风气候,北纬30°49′、东经106°08′,四季分明,雨热同季,年平均气温17.4 ℃,最高气温40.1 ℃,最低气温−2.8 ℃,年日照时间1266.7 h。水体四周护坡中部,距水面垂直高度2.11±0.05 m,设景观步道,护坡植被为草坪+灌木球+矮乔木。用指南针确定正南方向,正向±1.00°测坡度、坡长和盖度,湖周坡度情况见表1

      坡向
      Slope direction
      坡度
      Aspect slope/°
      坡长
      Slope length/m
      植被盖度
      Vegetation coverage/%
      东East39.95±1.85b32.36±0.22a65.25±0.25b
      南South40.78±1.55b20.81±0.05d54.32±0.12c
      西West44.40±2.25a26.23±0.81b69.37±0.15a
      北North39.53±1.64b22.87±0.03c40.16±0.31d

      Table 1.  Basic information of slope protection around the lake

    • MJ-1360A温湿度计,温度精度±1℃,分辨率0.1℃,范围−30℃~85℃。湿度精度±3%RH,分辨率0.1%RH,范围0%RH~100%RH。取样时间1次/秒。

    • 在湖周的东南西北4个方向上,各沿坡向设置距驳岸0 m、5 m、10 m、15 m、20 m等5个观测位点,位点若遇乔灌木遮阴,则水平横移距冠幅3 m,避免植被的影响。

      分别在晴朗无风的2021年8月1日(37℃/25℃)、2日(38℃/27℃)和3日(39℃/26℃)的9:30、11:30、13:30、15:30、17:30等5个时间点,测定位点离地1.50 m的温度和湿度,3次读数。

    • 采用SPSS20.0进行了多重比较、方差分析等数据统计,并用Duncan法对各参数进行显著性检验和利用线性模型进行回归性分析。

    2.   结果与分析
    • 景观水体周围4个坡向20个位点的温度有显著差异(P<0.05)(见表2),4个坡向离湖面越远位点的温度均越高。9:30、11:30、13:30、15:30、17:30最高温度位点分别为E20、N20、 E20、W20、W20,最低温度位点分别为S0、W0、S0、S0、E0,最大温差分别为3.81℃、5.94℃、3.73℃、4.60℃、6.54℃,20个位点的温度在17:30时差异最大,9:30时差异最小。E0、S0、W0、N0一天中温差分别为5.07℃、4.67℃、5.00℃、2.73℃,E20、S20、W20、N20一天中温差分别为3.45℃、5.17℃、7.18℃、4.76℃。

      坡向
      Slope direction
      位点
      Distance /m
      温度 Temperature /℃
      9:3011:3013:3015:3017:30
      东East029.73±0.32c33.20±0.62b34.01±0.57c34.80±0.56c32.41±0.71d
      530.60±1.14bc34.20±0.36ab34.29±0.28c34.82±0.36c32.92±0.62cd
      1031.37±1.30bc34.57±0.22ab35.47±0.43abc37.85±0.57b34.14±0.56cd
      1532.36±1.29ab35.38±0.21a36.90±1.81ab36.20±0.27bc34.22±0.98c
      2033.52±0.27a34.65±0.56ab36.97±1.46a36.41±0.20bc34.57±0.59c
      南South029.71±0.69c31.16±0.65c33.24±0.32c34.38±0.23c32.86±0.64d
      529.98±0.58c32.10±0.39bc33.93±0.51bc35.14±0.59c33.67±0.39cd
      1030.32±0.39c31.93±0.28bc34.53±0.67b35.27±0.63c34.46±0.17c
      1530.76±1.08c31.60±0.79c34.70±0.44b36.52±0.85bc34.62±0.91c
      2031.66±0.42c32.71±0.45b34..54±0.52b36.83±0.85bc34.13±0.21c
      西West029.88±0.28c29.80±0.34c33.42±0.23c34.80±0.56c35.03±1.01c
      530.71±0.89bc31.20±0.66c33.63±1.00c34.82±0.36bc34.45±0.28c
      1031.27±0.92bc31.41±0.94bc34.84±1.05bc37.85±0.56b36.06±0.44bc
      1531.23±0.41bc32.05±0.67bc35.73±1.31ab38.97±0.21a38.38±0.81a
      2031.80±0.65bc33.01±0.27bc36.70±0.40a38.98±1.25a38.95±0.61a
      北North032.07±0.49bc33.20±0.62b34.03±0.57c34.80±0.56c34.54±0.33c
      531.93±0.25bc33.87±0.75bc34.29±0.28c34.82±0.36c34.71±0.62c
      1031.43±0.99c34.75±0.39ab35.47±0.43b37.85±0.57b36.06±0.44bc
      1531.89±0.79bc35.38±0.21a35.11±1.10bc37.65±1.25b34.99±1.06c
      2032.66±0.53b35.74±0.17a34.52±0.29bc37.42±0.50b36.58±0.56b
        注:同列不同小写字母表示位点间温度的显著性差异(P<0.05),下同。
        Note: Different small letters in the same column indicate the significant difference of temperature between distance points (P<0.05), the same below.

      Table 2.  Multiple comparison of effects of water body on temperature of slope direction and distance site

      水体对坡向温度影响表现出时间尺度上的差异(见表3),9:30的温度差异大小为东>南>北>西,11:30为北>东>西>南,13:30为东>南>西>北,15:30为北>东>南>西,17:30为东>西>北>南。东向坡温度最易受水体影响,受影响大小为15:30>11:30>9:30>17:30>13:30。15:30时坡向间温度差异最大,13:30时坡向间温度差异最小。

      坡向
      Slope direction
      温度 Temperature/℃
      9:3011:3013:3015:3017:30
      东EastF27.07228.71418.02736.30118.977
      P<0.001<0.0010.002<0.0010.002
      南SouthF14.1426.87313.26726.26012.616
      P0.0040.0260.005<0.0010.005
      西WestF3.42910.6127.26216.87115.419
      P0.0520.0010.005<0.001<0.001
      北NorthF3.61128.7553.54237.95313.419
      P0.046<0.0010.049<0.0010.004
        注:F值表示F检验的显著性,F越大表示越显著,P值表示概率值,下同。
        Note: F value indicates the significance of F test, the larger F value indicates the more significant, and P value indicates the probability value, the same below.

      Table 3.  Analysis of variance of influence of water body on slope temperature

      水体对位点温度影响表现出时间尺度上的差异(见表4),9:30温度差异大小为位点20>位点15>位点0>位点10>位点5,11:30温度差异大小为位点20>位点15>位点10>位点5>位点0,13:30温度差异大小为位点20>位点10>位点15>位点5>位点0,15:30温度差异大小为位点20>位点15>位点10>位点5>位点0,17:30温度差异大小为位点10>位点15>位点20>位点0>位点5。5个位点温度在11:30时均有显著差异,位点5除11:30外均无差异,位点20在5个时间上均有显著差异,位点0在13:30和15:30时无差异,位点10在9:30无差异,位点15在13:30无差异。

      位点
      Distance /m
      温度 Temperature/℃
      9:3011:3013:3015:3017:30
      0F4.8125.6342.0871.8244.954
      P0.0440.0300.2420.3610.032
      5F3.3576.3753.5613.6423.624
      P0.0820.0280.0760.0560.062
      10F3.4326.5815.2134.83114.417
      P0.0610.0220.0290.0410.001
      15F5.1917.7693.55911.92313.144
      P0.0320.0130.0720.0090.005
      20F6.9257.8336.85213.24511.216
      P0.0230.0110.0190.0020.018
        注:F值表示F检验的显著性,F越大表示越显著,P值表示概率值,下同。
        Note: F value indicates the significance of F test, the larger F value indicates the more significant, and P value indicates the probability value, the same below.

      Table 4.  Analysis of variance of influence of water body on site temperature

    • 景观水体周围4个坡向20个位点的湿度有显著差异(P<0.05) (见表5),4个坡向离湖面越近位点的湿度均越高。9:30、11:30、13:30、15:30、17:30最高湿度位点均为S0,最低湿度位点分别为E20、E20、E15、N10、N5,最大湿度差分别为17.04%、18.73%、10.72%、16.59%、16.44%。20个位点的湿度在9:30时差异最大,13:30时差异最小。E0、S0、W0、N0一天中湿度差分别为4.62%、9.16%、11.24%、7.50%,E20、S20、W20、N20一天中湿度差分别为10.94%、9.03%、14.96%、4.71%。

      坡向
      Slope direction
      位点
      Distance/m
      湿度 Humidity/%
      9:3011:3013:3015:3017:30
      东East046.04±0.00e50.00±0.10c45.87±0.01e47.66±0.01bc45.38±0.01e
      545.10±0.00f47.90±0.01de42.23±0.02g45.29±0.01c44.67±0.00ef
      1044.13±0.00g44.14%±0.17f39.97±0.01h45.35±0.01c42.37±0.01f
      1543.68±0.00g38.03±0.02h39.96±0.00h48.97±0.01b42.45±0.01f
      2043.00±0.01h36.43±0.10i40.16±0.10h47.37±0.04bc42.21±0.01f
      南South060.04±0.01a55.16±0.01a50.88±0.01a55.26±0.14a56.03±0.02a
      547.55±0.01de53.25±0.01b49.65±0.01ab49.57±0.03b48.50±0.01d
      1045.59±0.01f50.90±0.00c48.70±0.00b44.97±0.02c49.45±0.01c
      1543.59±0.01g48.25±0.00d48.06±0.01c45.83±0.02c53.16±0.01b
      2048.24±0.06d46.33±0.00e46.26±0.00d51.73±0.03b55.29±0.01a
      西West054.79±0.00b51.05±0.00c50.87±0.02a43.55±0.01d44.78±0.00ef
      552.22±0.00c49.55±0.02cd48.54±0.03b40.15±0.02e42.49±0.02f
      1048.88±0.03d47.89±0.01de48.67±0.01b39.80±0.02e44.83±0.02ef
      1554.28±0.00b49.07±0.00d45.30±0.00e40.77±0.01e42.69±0.00f
      2055.43±0.01b55.97±0.06a48.30±0.02b39.97±0.02e41.01±0.00g
      北North045.27±0.01f48.97±0.01d41.47±0.02g41.57±0.02de43.87±0.00f
      543.23±0.01h45.41±0.10e41.03±0.00gh38.73±0.01e39.59±0.01g
      1044.16±0.01g43.20±0.01f43.6-±0.01f38.67±0.01e40.48±0.01g
      1543.66±0.11h42.16±0.01g40.31±0.01h39.82±0.02de42.07±0.00f
      2046.49±0.01e46.93±0.01e43.64±0.01f42.20±0.01de44.94±0.00e

      Table 5.  Multiple comparison of effects of water body on t humidity of slope direction and distance site in summer

      水体对坡向湿度影响表现出时间尺度上的差异(见表6),9:30的湿度差异大小为南>西>东>北,11:30和13:30为东>南>北>西,15:30和17:30为南>北>西>东。东向坡湿度最易受水体影响,受影响大小为11:30>13:30>9:30>15:30>17:30。9:30时坡向间湿度差异最大,15:30时坡向间湿度差异最小。

      坡向
      Slope direction
      湿度Humidity/%
      9:3011:3013:3015:3017:30
      东EastF13.24136.11218.3776.8126.741
      P0.003<0.0010.0010.0480.049
      南SouthF34.12516.6379.25421.15711.217
      P<0.0010.0020.033<0.0010.023
      西WestF17.6529.6887.3746.9317.154
      P0.0020.0180.0410.0430.039
      北NorthF9.27816.8428.5247.1428.314
      P0.0320.0030.0340.0410.036

      Table 6.  Variance analysis of influence of slope direction on humidity at different times

      水体对位点湿度影响表现出时间尺度上的差异(见表7),9:30湿度差异大小为位点0>位点5>位点20>位点10>位点15,11:30差异大小为位点0>位点15>位点20>位点5>位点10,13:30差异大小为位点0>位点5>位点20>位点15>位点10,15:30差异大小为位点0>位点5>位点20>位点10>位点15,17:30差异大小为位点0>位点20>位点5>位点15>位点10。5个位点湿度在5个时间均有显著差异(P<0.05),位点0、位点5、位点20湿度在5个时间均有极显著差异(P<0.01)。

      位点
      Distance /m
      湿度Humidity /%
      9:3011:3013:3015:3017:30
      0F34.34718.65422.13421.32426.312
      P<0.001<0.001<0.001<0.001<0.001
      5F23.31416.37419.50517.60913.078
      P<0.001<0.001<0.001<0.0010.002
      10F9.8629.8518.1326.6749.464
      P0.0050.0050.0170.0340.012
      15F7.69317.2178.5636.54113.112
      P0.023<0.0010.0120.0410.004
      20F16.67517.1429.89611.22416.765
      P<0.001<0.0010.0040.002<0.001

      Table 7.  Variance analysis of influence of position on humidity at different times

    • 水体周围的温度和湿度受坡向、位点和时间的显著影响,也显著受坡向、位点和时间的交互影响(P<0.05) (见表8)。温度在时间间有极显著差异,湿度在坡向间、位点间和坡向∙位点有极显著差异(P<0.01)。坡向、位点、坡向∙位点、坡向∙时间、位点∙时间对湿度的影响大于温度。影响温度因子大小为时间>坡向>坡向∙时间>位点>位点∙时间>坡向∙位点∙时间>坡向∙位点,影响湿度因子为位点>坡向∙位点>位点∙时间>坡向>坡向∙时间>时间>坡向∙位点∙时间。时间是影响温度第一因子,位点是影响湿度第一因子,坡向是影响温度和湿度的第二因子。

      坡向
      Direction
      位点
      Position
      时间
      Time
      坡向∙位点
      Direction∙Position
      坡向∙时间
      Direction∙Time
      位点∙时间
      Position∙Time
      坡向∙位点∙时间
      Direction∙Position∙Time
      温度
      Temperature
      F7.3326.73425.0126.1318.1127.1275.706
      P0.0180.032<0.0010.0430.0270.0340.035
      湿度
      Humidity
      F11.34717.2349.21415.1248.34113.1246.234
      P0.002<0.0010.023<0.0010.021<0.0010.042

      Table 8.  Cause analysis of temperature and humidity difference

    3.   讨论
    • 下沉式水体的护坡高度与坡度,决定着坡面截留雨水和水土保持能力,迎曦湖四周坡度为39.53°~44.40°,坡长为20.81 m~32.36 m,亚热带湿润季风气候特征使护坡夏季易出现季节性高温与干旱[14]。坡向决定着坡面的受光方向、光照强度及光照时数,引起生境中光照、温度、雨量、风速、土壤质地等非生物因子的异质性[15],常将坡向划分为九个方位或四个方向开展相关研究。本文以东、南、西、北4方位研究水体的降温增湿效应,表明水体对温湿度影响呈现出显著时空分布特点。水体日间温湿度呈单峰曲线状趋势,14:00~16:00降温增湿效应达峰值,降温1.6℃~3.0℃,增湿6%~14%[2,13]。本文中水体对不同坡向降温增湿效应影响不同表现,坡向间温湿度差异随着时间而变化,1 d中湖周温度差为2.73℃~7.18℃,湿度差为4.62%%~18.73%。不同坡向温湿度峰值由太阳直射度决定,上午东坡温度高而下午西坡温度高,整个白天南坡湿度均高于其他坡向,但析因分析说明时间是影响湖周温度的第一因子,位点是影响湿度的第一因子,而坡向是影响温湿度的第二因子。坡向间温度差在15:30最大为4.60℃而13:30时最小为3.71℃,坡向间湿度差在9:30时最大17.04%而15:30时最小为11.71%。可见温湿度受坡向与测定时间的影响,故评价水体降温增湿效应要注意监测方位与数据采集连续性。

      诸多研究表明,水体面积、水体形状、水体深度均影响降温增湿效应[16],面积越大效应越好[17],线状水域优于面状水域,动态水体优于高于静态,分散式水体优于集中分布,深水体优于浅水体[18-19]。下沉式静态单一景观水体受护坡坡度和坡长的限制,形成相对封闭的水热空间。不同坡向不同时间温湿度效应传播距离不同,水体温湿度效应总体水平辐射较窄,离岸5~20 m温湿度多表现出较大差异,但对水体四周离岸20 m降温增湿效应较低,尤其W20位点13:30~17:30温度影响很小。4个坡向所有测试时间的位点温度随离岸距离而增高,符合距水体中心越近热缓解效益或冷却能力越强的观点[20],但温度在特定坡向和时间与离岸距离无关,表明温度和湿度并且严格的负相关。有研究认为水体温湿度效应呈“舌状”传播,水体降温增湿效应随距离增大而逐渐减弱[2],垂直辐射范围为200~400 m,水平辐射范围为上风向2 km至下风向9 km[21],风向与风速是影响效应传播重要因素[22]。本文仅分析了下沉式静态水体对护坡坡面5~20 m小尺度下温湿度的影响,关于迎曦湖的大尺度垂直和水平方向小气候调节能力,待于深入研究。

      景观水体对温湿度、风速产生昼夜性、季相性与地域性的弹性变化,以独立或叠加作用于人体热感知,从物理与心理双重层面满体现景观效益[2,10]。通过宏观层面建构完善城市水网和水体空间系统,中观层面利用线状水体和顺风优势扩大气候调节性传播,微观层面利用坡向等地形特征,优化水域空间植被配置,增加植被覆盖率及郁闭度,营造局地风场和景观丰富度[2],从多空间尺度提升水体景观的气候调节效益和景观效益。研究发现,水体与植被温湿度效应随着城市发展密度和规模而变化,在中高密度城市中植被占温湿度效应主导地位。下沉式水体对湖周5 m~15 m降温增湿效应较为明显,是设置休憩实施和配置植物景观的适宜空间[11]。充分利用下沉式静态水体坡向和位点降温增湿效应的大小和变化规律,通过合理选择和配置植物,建设兼具观赏和水保功能的生态护坡植被,逐步形成植被与水体相互作用、协同发展的降温增湿景观系统。

    4.   结论
    • 下沉式景观水体对周围微生境的温湿度有显著影响,降温增湿效应随着时间、坡向和位点变化。17:30时20个位点的温度差最大而9:30时湿度差最大,9:30、11:30、13:30、15:30、17:30位点的温度差为3.81℃、5.94℃、3.73℃、4.60℃、6.54℃,湿度差为17.04%、18.73%、10.72%、16.59%、16.44%。水体对坡向温湿度影响表现出显著时间尺度差异,15:30时坡向间温度差最大而11:30时坡向间湿度差最大,1 d中东坡温湿度最易受水体影响,西坡次之。位点温湿度表现时间尺度和空间尺度差异,时间、坡向、离岸位点距离单一或交互影响水体周围温湿度,温度主要受时间影响,湿度主要受位点影响,坡向是影响温度和湿度的次要因子。

Reference (22)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return