WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 43 Issue 6
Dec.  2022
Article Contents
Turn off MathJax

DU Y, BAO W K. Research progress on nature geographic distribution, growth law and ecological adaptability of Pinus densata[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(6): 1−10 doi: 10.12172/202208220001
Citation: DU Y, BAO W K. Research progress on nature geographic distribution, growth law and ecological adaptability of Pinus densata[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(6): 1−10 doi: 10.12172/202208220001

Research Progress on Nature Geographic Distribution, Growth Law and Ecological Adaptability of Pinus densata


doi: 10.12172/202208220001
More Information
  • Corresponding author: baowk@cib.ac.cn
  • Received Date: 2022-08-22
    Available Online: 2022-09-22
  • Publish Date: 2022-12-30
  • Pinus densata initial from natural hybridization between P. yunnanensis and P. tabuliformis. It is an endemic species distributed in the mountainous areas of southwest China, and has great ecological and economic value. We synthesized the natural geographical distribution pattern, species origin and evolution mechanism, individual growth law and environmental impact mechanism of Pinus densata based on 74 literatures published from 1956 to 2021. The results showed that: (1) The distribution area of Pinus densata was centered on southwestern Sichuan, bounded by Jianzha County in Qinghai in the north, Songpan County in Sichuan in the east, Lijiang City in Yunnan in the south, and Sangri County in Tibet in the west, and in western Sichuan and northwestern Yunnan, the elevation distribution range in the south was higher than in the north, and in the west was higher than in the east; (2) Based on molecular biological evidence, it has been inferred that Pinus densata originated in the northwestern Sichuan in the late Miocene, the population differetiation began in the late Pliocene, and migrated westward to the Qinghai-Tibet Plateau, ecological selection was the main driver of speciation, and the uplift of the southeastern Qinghai-Tibet Plateau promoted the species formation; (3) Previous studies have discussed the growth process of height, diameter at breast height, and volume of Pinus densata, and constructed models related to height, diameter at breast height, biomass, and volume, but lack of comprehensive understanding of the differences due to ecological factors in the growth process, such as climate, light, and geographic gradient. And clarified the research contents that need further attention to clarify the ecological adaptation strategy of Pinus densata: (1) Current distribution areas and complete geographic distribution patterns; (2) Specific origin place, migration routes and evolutionary laws; (3) Biomass estimation model for young trees with diameter at breast height lower than 6 cm; (4) The trade-off relationship, response patterns and physiological mechanisms to different ecological factors of growth and reproductive organs at different stages.
  • 加载中
  • [1] 郑万钧, 傅立国. 中国植物志: 第7卷[M] 北京: 科学出版社, 1978: 253−255.
    [2] 刘永良,毛建丰,王晓茹,等. 同倍杂交种高山松与亲本种云南松的地理隔离研究[J]. 植物分类与资源学报,2011,33(3):269−274.

    Liu Y L, Mao J F, Wang X R, et al. Geographic isolation between the homoploid hybrid <italic>Pinus densata</italic> and its parental <italic>Pinus yunnanensis</italic>[J]. Plant Diversity and Resources., 2011, 33(3): 269−274.
    [3] 陈端. 西藏高原上的优良绿化树种—高山松[J]. 植物杂志,1994,2:17.
    [4] 范自强,徐凤翔. 高山松针叶粉的成分分析[J]. 生物质化学工程,1987,10:20−21.
    [5] 徐凤翔. 西藏高原森林生态研究[M]. 沈阳: 辽宁大学出版社, 1995: 256−303.
    [6] 尤纪雪,纪文兰,刘学斌,等. 西藏高山松制浆性能的评价[J]. 中华纸业,1998,4:21−23.

    You J X, Ji W L, Liu X B, et al. Preliminary evaluation of pulping properties of Xizang alpine pine[J]. China Pulp & Paper Industry, 1998, 4: 21−23.
    [7] Yue R C, Li B, Shen Y H, et al. 6-C-Methyl Flavonoids Isolated from Pinus densata Inhibit the Proliferation and Promote the Apoptosis of the HL-60 Human Promyelocytic Leukaemia Cell Line[J]. Planta Medica, 2013, 79(12): 1024−1030. doi: 10.1055/s-0033-1350617
    [8] 四川植物编辑委员会. 四川植物志: 第2卷[M]. 成都: 四川人民出版社, 1983: 115.
    [9] 刘务林. 西藏主要用材林概况[J]. 西藏研究,1986,2:20−22.
    [10] 陈伟烈,张经炜,王金亭,等. 西藏的松树和松林[J]. 植物学报,1980,22(2):170−176.

    Chen W L, Zhang J W, Wang J T, et al. The pines an pine forests of Xizang[J]. Acta Botanica Sinica, 1980, 22(2): 170−176.
    [11] 刘中天. 滇西北高山针叶林区高山松的发展趋势[J]. 林业资源管理,1981,1:32−34.
    [12] 郭立群. 滇西北地区高山松的林学特性及更新过程的研究[J]. 云南林业科技,1982,1:1−19.
    [13] 吴兆录. 云南松属植物地理分布和叶形变化[J]. 云南林业科技,1990,4:19−22.
    [14] Mao J F, Wang X R. Distinct Niche Divergence Characterizes the Homoploid Hybrid Speciation of <italic>Pinus densata</italic> on the Tibetan Plateau[J]. The American Naturalist, 2011, 177(4): 424−439. doi: 10.1086/658905
    [15] 陆双飞,陈禹衡,周斯怡,等. 西南地区松属乔木对气候变化的响应[J]. 森林与环境学报,2020,40(5):466−477.

    Lu S F, Chen Y H, Zhou S Y, et al. Responses of Pinus species to climate change in southwestern China[J]. Journal of Forest and Environment, 2020, 40(5): 466−477.
    [16] 吴中伦. 中国松属的分类与分布[J]. 植物分类学报,1956,5(3):131−164.

    Wu Z L. The taxonomic revision and phytogeographical study of Chinese Pines[J]. Acta Phytotaxonomica Sinica, 1956, 5(3): 131−164.
    [17] 桂耀林,李正理. 中国松属(<italic>Pinus</italic>)针叶的比较解剖观察[J]. 植物学报,1963,11(1):44−66.

    Gui Y L, Li Z L. Anatomical studies of the leaf structure of Chinese Pines[J]. Acta Botanica Sinica, 1963, 11(1): 44−66.
    [18] 石大兴,王米力. 中国西部六种特有松科植物核型及细胞地理学研究[J]. 四川农业大学学报,1994,12(1):84−91.

    Shi D X, Wang M L. The studies on the karyotype and cytogeograph of the 6 endemic species of Pinaceae plants in China[J]. Journal of Sichuan Agricultural University, 1994, 12(1): 84−91.
    [19] Wang X R, Szmidt A E. Evolutionary analysis of Pinus densata Masters, a putative tertiary hybrid. 2. a study using species-specific chloroplast DNA markers. Theoretical and Applied Genetics, 1990, 80, 641-647.
    [20] Song B H, Wang X Q, Wang X R, et al. Maternal lineages of <italic>Pinus densata</italic>, a diploid hybrid[J]. Molecular Ecology, 2002, 11: 1057−1063. doi: 10.1046/j.1365-294X.2002.01502.x
    [21] Liu Z L, Zhang D, Hong D Y, et al. Chromosomal localization of 5S and 18S–5.8S–25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization[J]. Theoretical and Applied Genetics, 2003, 106(2): 198−204. doi: 10.1007/s00122-002-1024-z
    [22] Wang X R, Szmidt A E, Lewandowski A, et al. Evolutionary analysis of Pinus densata Masters, a putative tertiary hybrid. 1. Allozyme variation. Theoretical and Applied Genetics, 1990, 80, 635-640.
    [23] 洑香香,赵虎,王玉. 松属近缘种形态和分子鉴定及其亲缘关系探讨[J]. 林业科学,2011,47(10):51−58. doi: 10.11707/j.1001-7488.20111008

    Fu X X, Zhao H, Wang Y. Species identification and genetic relationship assessment of <italic>Pinus</italic> (Sect. Pinus) related species based on morphological and molecular markers[J]. Scientia Silvae Sinicae, 2011, 47(10): 51−58. doi: 10.11707/j.1001-7488.20111008
    [24] Chen X Y, Yuan H W, Hu X, et al. Variations in electrical impedance and phase angle among seedlings of <italic>Pinus densata</italic> and parental species in Pinus tabuliformis habitat environment[J]. Journal of Forestry Research, 2015, 26(3): 777−783. doi: 10.1007/s11676-015-0065-5
    [25] Song B H, Wang X Q, Wang X R, et al. Cytoplasmic composition in <italic>Pinus densata</italic> and population establishment of the diploid hybrid pine[J]. Molecular Ecology, 2003, 12(11): 2995−3001. doi: 10.1046/j.1365-294X.2003.01962.x
    [26] Ma X F, Szmidt A E, Wang X R. Genetic Structure and Evolutionary History of a Diploid Hybrid Pine Pinus densata Inferred from the Nucleotide Variation at Seven Gene Loci[J]. Molecular Biology and Evolution, 2006, 23(4): 807−816. doi: 10.1093/molbev/msj100
    [27] Wang B S, Mao J F, Gao J, et al. Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata[J]. Molecular Ecology, 2011, 20(18): 3796−3811. doi: 10.1111/j.1365-294X.2011.05157.x
    [28] Gao J, Wang B S, Mao J F, et al. Demography and speciation history of the homoploid hybrid pine Pinus densata on the Tibetan Plateau[J]. Molecular Ecology, 2012, 21(19): 4811−4827. doi: 10.1111/j.1365-294X.2012.05712.x
    [29] 张立沙,代剑峰,高琼,等. 高山松与亲本种多种群在高海拔生境下的苗期适应性研究[J]. 北京林业大学学报,2012,34(5):15−24.

    Zhang L S, Dai J F, Gao Q, et al. Seedling adaptation of hybrid pine Pinus densata and its parental species in the high elevation habitat[J]. Journal of Beijing Forestry University, 2012, 34(5): 15−24.
    [30] 蔡年辉,许玉兰,白青松,等. 不同种群高山松1年生播种苗木生长节律及其变异[J]. 东北林业大学学报,2013,41(5):11−15+74. doi: 10.3969/j.issn.1000-5382.2013.05.003

    Cai N H, Xu Y L, Bai Q S, et al. Annual seedling growth dynamic rhythm and variation of one-year <italic>Pinus densata</italic> among populations[J]. Journal of Northeast Forestry University, 2013, 41(5): 11−15+74. doi: 10.3969/j.issn.1000-5382.2013.05.003
    [31] 蔡年辉,张瑞丽,许玉兰,等. 高山松不同居群种子萌发及其分化研究[J]. 云南大学学报(自然科学版),2013,35(2):225−232.

    Cai N H, Zhang R L, Xu Y L, et al. Seed germination characteristics and divergence of homoploid hybrid pine <italic>Pinus densata</italic> among populations[J]. Journal of Yunnan University (Natural Sciences Edition), 2013, 35(2): 225−232.
    [32] 梁冬,毛建丰,赵伟,等. 高山松及其亲本种群在油松生境下的苗期性状[J]. 植物生态学报,2013,37(2):150−163. doi: 10.3724/SP.J.1258.2013.00016

    Liang D, Mao J F, Zhao W, et al. Seedling performance of <italic>Pinus densata</italic> and its parental population in the habitat of <italic>P. tabuliformis</italic>[J]. Chinese Journal of Plant Ecology, 2013, 37(2): 150−163. doi: 10.3724/SP.J.1258.2013.00016
    [33] Meng J X, Mao J F, Zhao W, et al. Adaptive differentiation in seedling traits in a hybrid Pine species complex, <italic>Pinus densata</italic> and its parental species, on the Tibetan Plateau[J]. PLOS ONE, 2015, 10(3): e0118501. doi: 10.1371/journal.pone.0118501
    [34] 周丽,陈诗,朱存福,等. 高山松不同种源苗木在云南松生境下的生物量与生长分析[J]. 广东农业科学,2017,44(2):68−75.

    Zhou L, Chen S, Zhu C F, et al. Biomass and growth analysis of different provenances of <italic>Pinus densata</italic> seedling in <italic>P. yunnanensis</italic> habitat site[J]. Guangdong Agricultural Sciences, 2017, 44(2): 68−75.
    [35] 马凤翔,陈晓阳,李悦. 高山松与油松×云南松人工杂种损耗谱参数研究[J]. 森林与环境学报,2016,36(1):86−91.

    Ma F X, Chen X Y, Li Y. Study on loss spectrum parameters in <italic>Pinus densata</italic> and artificial hybrid of <italic>P. tabuliformis</italic> × <italic>P. yunnanensis</italic>[J]. Journal of Forest and Environment, 2016, 36(1): 86−91.
    [36] Gao D H, Gao Q, Xu H Y, et al. Physiological responses to gradual drought stress in the diploid hybrid <italic>Pinus densata</italic> and its two parental species[J]. Trees, 2009, 23(4): 717−728. doi: 10.1007/s00468-009-0314-3
    [37] Ma F, Zhang X W, Chen L T, et al. The alpine homoploid hybrid <italic>Pinus densata</italic> has greater cold photosynthesis tolerance than its progenitors[J]. Environmental and Experimental Botany, 2013, 85: 85−91. doi: 10.1016/j.envexpbot.2012.08.005
    [38] Yao B Q, Cao J, Zhao C M, et al. Influence of ammonium and nitrate supply on growth, nitrate reductase activity and N-use efficiency in a natural hybrid pine and its parents[J]. Journal of Plant Ecology, 2011, 4(4): 275−282. doi: 10.1093/jpe/rtq033
    [39] Zhao W, Meng J X, Wang B S, et al. Weak crossability barrier but strong juvenile selection supports ecological speciation of the hybrid pine <italic>Pinus densata</italic> on the Tibetan Plateau[J]. Evolution, 2014, 68(11): 3120−3133. doi: 10.1111/evo.12496
    [40] 吴兆录. 云南松、高山松、思茅松相互关系的初步分析[J]. 山西师范大学学报(自然科学版),1993,S2:45−49.

    Wu Z L. The preliminary study on the relationships of <italic>Pinus yunnanensis, Pinus densata</italic> and <italic>Pinus kesiya</italic> var. <italic>lanbianensis</italic>[J]. Journal of Shanxi Normal University (Natural Science Edition), 1993, S2: 45−49.
    [41] Zeng Q Y, Wang X R. Divergence in structure and function of tau class glutathione transferase from <italic>Pinus tabuliformis, P. yunnanensis</italic> and <italic>P. densata</italic>[J]. Biochemical Systematics and Ecology, 2006, 34(9): 678−690. doi: 10.1016/j.bse.2006.04.004
    [42] 考洪娜,兰婷,王晓茹,等. 高山松及其亲本种油松和云南松DHAR基因的功能分化[J]. 植物学报,2012,47(1):1−10. doi: 10.3724/SP.J.1259.2012.00001

    Kao H N, Lan T, Wang X R, et al. Functional divergence of dehydroascorbate reductase genes in P<italic>inus densata, P. tabulaeformis</italic> and <italic>P. yunnanensis</italic>[J]. Chinese Bulletin of Botany, 2012, 47(1): 1−10. doi: 10.3724/SP.J.1259.2012.00001
    [43] Wan L C, Zhang H Y, Lu SF, et al. Transcriptome-wide identification and characterization of miRNAs from Pinus densata. BMC Genomics, 2012, 13: 132.
    [44] Hai B Z, Qiu Z B, He Y Y, et al. Characterization and primary functional analysis of <italic>Pinus densata</italic> miR171[J]. Biologia Plantarum, 2018, 62(2): 318−324. doi: 10.1007/s10535-018-0774-7
    [45] 陈起忠,李承彪,王少昌. 四川省主要森林建群种生长规律的初步研究[J]. 林业科学,1984,20(3):242−251.

    Chen Q Z, Li C B, Wang S C. Studies on the growth main dominant forest species in Sichuan Province[J]. Scientia Silvae Sinicae, 1984, 20(3): 242−251.
    [46] 四川森林编辑委员会. 四川森林[M]. 北京: 中国林业出版社, 1992: 435-447.
    [47] 谭先奇,蒲永波. 地径一元立木材积表编制探讨[J]. 四川林勘设计,2007,4:21−23.
    [48] 赵文智,荔克让. 西藏雅鲁藏布江中游下段沙地高山松林研究[J]. 西北林学院学报,1994,9(3):21−25.

    Zhao W Z, Li K R. Studies on sandy land <italic>Pinus densata</italic> forest in the bottom of middle reaches of Yaluzangbu River in Tibet[J]. Journal of Northeast Forestry College, 1994, 9(3): 21−25.
    [49] 陈甲瑞,王小兰. 藏东南尼洋河流域高山松树高曲线的研究[J]. 中南林业科技大学学报,2019,39(8):16−20.

    Chen J R, Wang X L. Height-diameter curves for <italic>Pinus densata</italic> in Niyang river in southeast Tibet[J]. Journal of Central South University of Forestry & Technology, 2019, 39(8): 16−20.
    [50] 张焱,舒清态,徐云栋,等. 香格里拉高山松天然林最优树高曲线研究[J]. 林业资源管理,2016,1:46−51.

    Zhang Y, Shu Q T, Xu Y D, et al. Study on optimal height - curve model of natural <italic>Pinus densata</italic> forest in Shangri-La[J]. Forest Resources Management, 2016, 1: 46−51.
    [51] 魏安超. 香格里拉市高山松天然林生物量生长模型构建[D]. 昆明: 西南林业大学, 2017.
    [52] 王立勤,季发秀. 滇西北高山针叶林中高山松生长情况的探讨[J]. 云南林业调查规划,1980,3:8−12.
    [53] 杨玉坡, 徐润清, 钟荣松. 高山松的树种特性及其采伐与更新[C]//四川省林业科学研究所. 四川高山林业研究资料集刊, 第2集. 1979: 128−137.
    [54] 中国科学院青藏高原综合科学考察队. 西藏森林[M]. 北京: 科学出版社, 1985: 110−275.
    [55] 云南森林编写委员会. 云南森林[M]. 北京: 中国林业出版社, 云南科技出版社, 1986: 118−124.
    [56] 廖志云,曾伟生. 西藏自治区主要树种生长率模型的研建[J]. 林业资源管理,2006,3:36−38+43. doi: 10.3969/j.issn.1002-6622.2006.02.009

    Liao Z Y, Zeng W S. Establishment of growth -rate models for main tree species in Tibet[J]. Forest Resources Management, 2006, 3: 36−38+43. doi: 10.3969/j.issn.1002-6622.2006.02.009
    [57] 吴普,王丽丽,黄磊. 五个中国特有针叶树种树轮宽度对气候变化的敏感性[J]. 地理研究,2006,25(1):43−52. doi: 10.3321/j.issn:1000-0585.2006.01.006

    Wu P, Wang L L, Huang L. A preliminary study on the tree-ring sensitivity to climate change of five endemic conifer species in China[J]. Geographical Research, 2006, 25(1): 43−52. doi: 10.3321/j.issn:1000-0585.2006.01.006
    [58] 王昌命,王锦,姜汉侨. 不同生境下云南松及其近缘种林木茎干的形态结构特征[J]. 西部林业科学,2009,38(1):23−27+125. doi: 10.3969/j.issn.1672-8246.2009.01.004

    Wang C M, Wang J, Jiang H Q. Morphological characteristics of stem of <italic>Pinus yunnanensis</italic> and its related species in different habitat[J]. Journal of West China Forestry Science, 2009, 38(1): 23−27+125. doi: 10.3969/j.issn.1672-8246.2009.01.004
    [59] 王小兰,陈甲瑞,邢震,等. 藏东南高山松胸径与冠径的相关性分析及应用研究[J]. 林业资源管理,2019,1:63−69.

    Wang X L, Chen J R, Xing Z, et al. Study on relationship between DBH and crown diameter of <italic>Pinus densata</italic> and its application in southeastern Tibet[J]. Forest Resources Management, 2019, 1: 63−69.
    [60] 王玉涛. 川西高山松林火烧迹地天然更新研究[D]. 北京: 北京林业大学, 2005.
    [61] Ran F, Chang R Y, Yang Y, et al. Allometric equations of select tree species of the Tibetan Plateau, China[J]. Journal of Mountain Science, 2017, 14(9): 1889−1902. doi: 10.1007/s11629-016-4082-4
    [62] 吴兆录,党承林,王崇云,等. 滇西北高山松林生物量的初步研究[J]. 云南大学学报(自然科学版),1994,16(3):220−224.

    Wu Z L, Dang C L, Wang C Y, et al. A preliminary study on biomass of <italic>Pinus densata</italic> forests in northwest Yunnan Province, China[J]. Journal of Yunnan University, 1994, 16(3): 220−224.
    [63] 王柯人,舒清态,赵洪莹,等. 高山松单木地上生物量模型不确定性研究[J]. 西南林业大学学报,2021,41(2):100−106. doi: 10.11929/j.swfu.202006071

    Wang K R, Shu Q T, Zhao H Y, et al. Model uncertainty analysis of aboveground biomass estimation of <italic>Pinus densata</italic>[J]. Journal of Southwest Forestry University, 2021, 41(2): 100−106. doi: 10.11929/j.swfu.202006071
    [64] 中华人民共和国农林部. LY 208-77, 立木材积表[S]. 北京: 中国标准出版社, 1978.
    [65] 罗天祥. 中国主要森林类型生物生产力格局及其数学模型[D]. 北京: 中国科学院研究生院(国家计划委员会自然资源综合考察委员会), 1996.
    [66] 曾伟生. 我国主要树种二元立木材积表的检验[J]. 林业资源管理,2018,5:35−41.

    Zeng W S. Validation of two-variable tree volume tables for main tree species in China[J]. Forest Resources Management, 2018, 5: 35−41.
    [67] 曾伟生. 西藏自治区一元立木材积模型的研究[J]. 中南林业调查规划,2003,22(2):17−20. doi: 10.3969/j.issn.1003-6075.2003.02.006

    Zeng W S. Establishment of one-way tree volume models for Tibet[J]. Central South Forestry Inventory and Planning, 2003, 22(2): 17−20. doi: 10.3969/j.issn.1003-6075.2003.02.006
    [68] 刘建帮,曾启相,罗文礼. 高山松(<italic>Piuns densata</italic> Mast. )生物学特性及人工直播更新试验观察[J]. 四川林业科技,1981,4:25−28.
    [69] Bräuning A. Dendroclimatological potential of drought-sensitive tree stands in southern Tibet for the reconstruction of monsoonal activity[J]. IAWA Journal, 1999, 20(3): 325−338. doi: 10.1163/22941932-90000695
    [70] Zhang Y, Yin D C, Sun M, et al. Variations of climate-growth response of major conifers at upper distributional limits in Shika Snow Mountain, Northwestern Yunnan Plateau, China[J]. Forests, 2017, 8: 377. doi: 10.3390/f8100377
    [71] 王荷,周军,覃鑫浩,等. 哈巴雪山高山松径向生长对气候变化的响应[J]. 林业资源管理,2019,2:67−72+158.

    Wang H, Zhou J, Qin X H, et al. Radial growth responses of Pinus densata to climate change in Haba Snow Mountain, southwest China[J]. Forest Resources Management, 2019, 2: 67−72+158.
    [72] 李宝,程雪寒,吕利新. 西藏朗县地区不同龄级高山松林木径向生长对火干扰的响应[J]. 植物生态学报,2016,40(5):436−446. doi: 10.17521/cjpe.2015.0440

    Li B, Cheng X H, Lv L X. Responses of radial growth to fire disturbance in alpine pine (<italic>Pinus densata</italic>) of different age classes in Nang County, Xizang, China[J]. Chinese Journal of Plant Ecology, 2016, 40(5): 436−446. doi: 10.17521/cjpe.2015.0440
    [73] 毛建丰,李悦,刘玉军,等. 高山松种实性状与生殖适应性[J]. 植物生态学报,2007,31(2):291−299. doi: 10.3321/j.issn:1005-264X.2007.02.012

    Mao J F, Li Y, Liu Y J, et al. Cone and seed characters of <italic>Pinus densata</italic> and their adaptive fitness implications[J]. Chinese Journal of Plant Ecology, 2007, 31(2): 291−299. doi: 10.3321/j.issn:1005-264X.2007.02.012
    [74] 陈甲瑞,王小兰. 藏东南高山松异速生长关系的海拔差异性[J]. 湖南农业科学,2021,2:29−32.

    Chen J R, Wang X L. Altitude differences of allometric growth relationship of <italic>Pinus densata</italic> in southeast Tibet[J]. Hunan Agricultural Sciences, 2021, 2: 29−32.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article views(612) PDF downloads(99) Cited by()

Related
Proportional views

Research Progress on Nature Geographic Distribution, Growth Law and Ecological Adaptability of Pinus densata

doi: 10.12172/202208220001
  • 1. Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Corresponding author: baowk@cib.ac.cn

Abstract: Pinus densata initial from natural hybridization between P. yunnanensis and P. tabuliformis. It is an endemic species distributed in the mountainous areas of southwest China, and has great ecological and economic value. We synthesized the natural geographical distribution pattern, species origin and evolution mechanism, individual growth law and environmental impact mechanism of Pinus densata based on 74 literatures published from 1956 to 2021. The results showed that: (1) The distribution area of Pinus densata was centered on southwestern Sichuan, bounded by Jianzha County in Qinghai in the north, Songpan County in Sichuan in the east, Lijiang City in Yunnan in the south, and Sangri County in Tibet in the west, and in western Sichuan and northwestern Yunnan, the elevation distribution range in the south was higher than in the north, and in the west was higher than in the east; (2) Based on molecular biological evidence, it has been inferred that Pinus densata originated in the northwestern Sichuan in the late Miocene, the population differetiation began in the late Pliocene, and migrated westward to the Qinghai-Tibet Plateau, ecological selection was the main driver of speciation, and the uplift of the southeastern Qinghai-Tibet Plateau promoted the species formation; (3) Previous studies have discussed the growth process of height, diameter at breast height, and volume of Pinus densata, and constructed models related to height, diameter at breast height, biomass, and volume, but lack of comprehensive understanding of the differences due to ecological factors in the growth process, such as climate, light, and geographic gradient. And clarified the research contents that need further attention to clarify the ecological adaptation strategy of Pinus densata: (1) Current distribution areas and complete geographic distribution patterns; (2) Specific origin place, migration routes and evolutionary laws; (3) Biomass estimation model for young trees with diameter at breast height lower than 6 cm; (4) The trade-off relationship, response patterns and physiological mechanisms to different ecological factors of growth and reproductive organs at different stages.

  • 高山松(Pinus densata Mast.)隶属于松科(Pinaceae)松属(Pinus),是云南松(P. yunnanensis Franch.)和油松(P. tabuliformis Carrière)的天然杂交种,产于四川西部、青海南部、西藏东部及云南西北部,是我国西部高山地区的特有树种[1]。高山松是木本裸子植物中目前唯一被分子生物学证明的天然同倍体杂交种[2],是研究木本植物同倍体杂交种形成机制的模式物种之一,具有很高的科研价值。同时,高山松也是可用于植被恢复和绿化的优良树种[3],其枝干、针叶及松脂在畜牧、造纸和医学等行业具有较好的应用前景[4-7],具有较高的生态和经济价值。

    本文作者系统查阅了1956—2021年发表的高山松个体研究相关文献资料,包括文献66篇,专著6本,研究资料集(刊)1本,行业标准1部,综述以下3个方面的研究现状:(1)高山松地理分布格局特征;(2)高山松物种的起源与演化;(3)高山松个体生长规律及其环境影响机制;并进一步梳理出当前需要聚焦的方向,为高山松的深入研究提供基础。

    • 根据相关植物志记录,高山松的分布区以四川西南部为中心,北达青海尖扎,南至云南丽江,西起西藏工布江达太昭,东界四川松潘贡冈岭,约为北纬27°~36°,东经92°~104°[1, 8],而后续的文献[9]和标本记录(数据来源于中国数字植物标本馆https://www.cvh.ac.cn)表明其分布区域较之前的记录更广,西界桑日,在加查、隆子、墨脱等地也有分布。其在水平分布上并不连续,在然乌至怒江间有一中断[10]。海拔分布范围一般在2600~3500 m,是松属中分布海拔最高的物种[1],最高上限可达4350 m,见于得荣,最低下限海拔1700 m,见于宝兴赶羊沟[8]。在川西和滇西北地区,从东到西,由北向南,海拔分布范围逐渐升高[8, 11-13]

      近年来,有研究对当前气候变化背景下高山松的适宜分布区进行了分析,结果均表明高山松的适宜分布区呈扩张趋势,Mao等[14]基于生态位模型,认为青藏高原地区的高山松可沿东南部的平行山谷进行扩张;陆双飞等[15]基于最大熵模型的预测结果表明,在2070 RCP4.5 气候情景下,高山松适宜区和最适宜区面积分别增加了26.86%和19.74%,适宜区质心向西偏北的高海拔高纬度地区移动。

    2.   高山松物种的起源与演化
    • 高山松的起源存在着大量研究,获得了多方面的证据,结束了多年的争论。吴中伦[16]最早提出高山松起源的两个假设,一是高山松为云南松和油松的杂交种,二是高山松为云南松和油松的祖先,由其向南演变为云南松,向北演变为油松。综合针叶形态与解剖结构[17]、染色体构型[18]、线粒体与叶绿体DNA[19, 20]、5S rDNA基因序列[21]、同工酶技术[22]、SSR标记技术[23]以及电阻抗测量[24]等多方面的相关研究证据,表明了高山松是油松和云南松的天然同倍体杂交种,证实了吴中伦的假设:高山松是云南松和油松的杂交种。进一步的研究表明,高山松起源于中新世晚期,最初的杂交起源地位于当前分布区的东北边缘,向西迁移扩散至青藏高原,群体分化开始于上新世晚期,青藏高原东南部的隆升促进了种的形成[25-28]

    • 目前关于高山松物种进化机制的研究,实质上是探讨高山松为什么能分布在亲本种无法正常生长的高海拔生境。已有研究从苗期适应性、生殖隔离、基因与酶的结构和功能等方面开展了研究。苗木异生境萌发与栽培试验表明,在高山松生境下,高山松具有明显高于亲本的适合度优势,且亲本种不可能侵入高山松生境;高山松在亲本种生境下苗期均表现出正常的适应性,大部分性状居于亲本种之间,且不同种源间萌发与生长特征存在明显的分化,来自起源中心的种群适应性较好,表明生态选择在高山松的同倍性杂交物种形成中起到了关键作用[29-34]。从苗木生理生态特征看,高山松储备光能的能力远大于亲本种,而消耗光能的能力最小[35];在干旱和低温胁迫下,高山松在光能的吸收、传递和利用,水分利用效率和干物质积累等方面均表现出超亲优势[36, 37];氮添加试验表明高山松的氮利用效率和光合氮利用效率均高于亲本种[38]。有研究表明,高山松与其亲本种尚未形成完全的生殖隔离,种间人工授粉成功率较高[39];在横断山区对云南松和高山松花期的观测发现,气象因子的不同导致云南松的散粉期明显早于高山松,花期不遇阻碍了两个物种间的基因交流,进而隔离开来[2, 40]。还有研究以miRNA,DHAR等基因以及tau型谷胱甘肽转移酶的结构和功能探讨高山松的生态适应性和进化机制[41-44]

    3.   生长规律及其环境影响机制
    • 陈起忠等[5, 45-51]先后构建了高山松高生长拟合方程(见表1),蔡年辉等[30]建立了不同种源的高山松在1年内的高生长Logistics拟合曲线。陈端[3]发现林芝地区的高山松一年中高生长期在3—6月,约100 d。根据已有文献资料记载,高山松高生长在前5年比较缓慢,连年生长量在2.5~18.0 cm,6年开始增快,连年生长量在20年左右达到最高值,为50~61 cm,30年后处于相对稳定状态并开始减缓,170年时树高生长基本停止[12, 46, 53-56]

      研究区域拟合方程样本量适用范围相关系数文献来源
      四川lg(H) = −4.75316 + 0.31554A + 4.44690lg(A263910~16.8R = 0.96陈起忠等[45]
      lg(H) = −35.72044 + 0.00573A + 31.64481lg(A16.8~275
      H = e3.240751−19.32151/A//R = −0.98700四川森林编辑委
      员会[46]
      丹巴H = 34.432 − 894.400/(D + 24)90/R = 0.9274谭先奇和蒲永波[47]
      加查、朗
      县、米林、
      林芝
      Y1=7.68 + 3.99A/1~7R = 0.99赵文智和荔克让[48]
      Y2=8.61 + 2.02A/1~10R = 0.99
      林芝H = −1.2072 + 0.48569A − 0.00311A2602~30R = 0.9943徐凤翔[5]
      H1 = −0.85276 + 0.3518A − 0.00095A2/2~30R = 0.9987
      H2 = −1.04499 + 0.46648A − 0.00203A2/2~30R = 0.9969
      H3 = 0.13098 + 0.0347A + 0.235A2/2~30R = 0.9943
      H4 = −0.78844 + 0.33587A + 0.000935A2/2~30R = 0.9909
      H5 = −0.9692 + 0.24656A − 0.000377A2/2~30R = 0.9966
      H = 23.6384/(1−6.80390e−0.1082D4571.4~60.4R2=0.9003陈甲瑞和王小兰[49]
      香格里拉H = 1. 699 + 0. 6847D − 0.0107D25635.0~33.8R2 = 0. 6073张焱等[50]
      H = 41.133/ [1 + 5.809exp(−0.048D)]75/R2 = 0. 877魏安超[51]
        注:H代表树高(m), H1, H2, H3, H4, H5分别代表生于林冠下、幼密林、空旷地、坡中和坡下的树高(m),Y1, Y2分别代表阶地覆沙地和山坡覆沙地的树高生长量(cm),A代表年龄,D代表胸径(cm)。

      Table 1.  Fitting equation of height of Pinus densata

    • 陈起忠等[45, 46, 56]等先后构建了胸径及其生长率拟合方程(见表2),蔡年辉等[30]建立了不同种源的高山松1年内的地径生长Logistics拟合曲线。陈端[3]发现林芝地区的高山松一年中径生长期在4~9月,约180 d。部分研究对高山松年均生长轮宽度进行了测定,在西藏地区和金川县分别为3.3 mm和2.14 mm[9, 57],在香格里拉市高山松边材年均生长宽度为0.112 mm[58]。径向生长前期与高生长相似,连年生长量在20年左右达到最高值,为0.45~0.68 cm,70年后连年生长量迅速下降,径向生长可持续至170年以上[46, 52, 54, 55]

      研究区域拟合方程样本量适用范围相关系数文献来源
      四川lg(D) = −4.75316 + 0.31554A + 4.44690lg(A263910~46.10.98陈起忠等[45]
      lg(D) = −35.72044 + 0.00573A + 31.64481lg(A46.1~275
      D = 8.19567ln(A) − 16.19771//0.996177四川森林编辑委
      员会[46]
      西藏Y = 4.4585e−0.030909D790≤67.40.94795廖志云和曾伟生[56]
        注:D, Y, A分别代表胸径(cm)、胸径生长率(%)和年龄。

      Table 2.  Fitting equation of diameter at breast height of Pinus densata

    • 相关研究仅1例,郭立群[12]对滇西北1~10年生高山松苗木调查发现,在6年内,根径、根幅、根分支数数的增长缓慢,年均生长量分别约为0.16 cm,4.58 cm,2.75根,之后生长迅速加快,10年时连年生长量分别为2.00 cm,54.50 cm,23.50根;根深连年生长量在前5年逐渐增加,年均生长量为4.50 cm,第7年连年生长量可达7.50 cm,随后生长量缓慢下降。

    • 相关研究仅1例,王小兰等[59]以林芝地区2041株样木构建了冠径-胸径二次函数关系:Cd = −0.001D2 + 0.244D + 0.184(R2 = 0. 866)。

    • 吴兆录等[5, 51, 60-63]先后构建了单木生物量回归方程,周丽等[34]建立了4年生苗木生物量估算模型(见表3)。郭立群[12]对滇西北1~10年生高山松苗木调查发现,4~6年以前地上部分生物量积累相对低于根系,之后地上部分生物量积累急剧增加。对林芝地区高山松解析木的分析发现,胸径在10 cm以内时,地上部分生物量积累缓慢,胸径达10 cm以后,地上部分生物量积累迅速提高;且随着立木胸径的增加,主干生物量所占地上部分生物量的比例增加,枝、叶所占比例下降;植株上留存的叶龄提高,一年生叶的比例逐渐下降,二年生叶的比例增高;主干生物量在垂直空间上由下向上递减,枝条和针叶生物量以树冠中部占比最大[5]

      研究区域回归方程样本量胸径范围/cm高度范围/m相关系数文献来源
      川西lnWS = 2.7765 + 2.8751 lnD73.8~11.0/R= 0.91590550王玉涛[60]
      lnWS = 2.8158 + 1.0052 ln(D2HR= 0.95689002
      lnWB = 2.3210 + 22.4942 lnDR= 0.77849994
      lnWB = 2.9369 + 0.76558 ln(D2HR= 0.70960925
      lnWL = 4.3081 + 1.6194 lnDR= 0.73173229
      lnWL = 5.0885 + 0.4239 ln(D2HR= 0.56874165
      lnWA = 4.1841 + 2.4614 lnDR= 0.91590890
      lnWA = 4.4507 + 0.8212 ln(D2HR= 0.90740816
      林芝WT = 4.647 − 1.56D + 0.26D2/3~18/R = 0.9716徐凤翔[5]
      林芝、昌都lnWL = −4.482 + 2.254 lnD305.7~64.0/R2= 0.823Ran等 [61]
      lnWL = −4.945 + 0.849 ln(D2HR2= 0.813
      lnWB = −6.074 + 0.585 lnDR2= 0.919
      lnWB = −6.715 + 1.178 ln(D2HR2= 0.908
      lnWS = −2.136 + 2.535 lnDR2= 0.993
      lnWS = −2.726 + 0.962 ln(D2HR2= 0.997
      lnWR = −3.315 + 2.447 lnDR2= 0.959
      lnWR = −3.58 + 0.915 ln(D2HR2= 0.934
      lnWT = -1.826 + 2.563 lnDR2= 0.995
      lnWT = −2.384 + 0.968 ln(D2HR2= 0.990
      香格里拉WS = 2.443397 × 102D2.622401///R= 0.98597吴兆录等[62]
      WBA = 1.741721 × 102D2.271812R= 0.98136
      WB = 1.060044 × 102D2.600282R= 0.94199
      WL = −4.847236 + 0.7290146DR= 0.94950
      WRC= 1.646017 × 10−2D2.250535R= 0.97860
      WRS= 8.440256 × 10−3D2.35953R= 0.95229
      WS = 0.0297 × D1.746 × H1.021754.0~41.32.8~24.3R2= 0.990魏安超[51]
      WBA = 0.0034 × D1.222 × H1.640R2= 0.898
      WB = 0.170 × D2.007 × H−0.386R2= 0.831
      WL = 0.045 × D2.498× H−1.143R2= 0.674
      WA= 0.075 × D1.700 × H0.875R2= 0.990
      lnWA = 0.075D2.4391135.6~58.95.0~23.4R2= 0.9691王柯人等[63]
      lnWA = 0.073D2.356 × H0.109R2= 0.9713
      昆明(种源来自
      川西和藏东南)
      WS = 0.0061(D02H2.185672//R2= 0.997周丽等[34]
      WB = 0.0050D02.8157R2= 0.997
      WL = 0.0102D02.7863R2= 0.970
      WR = 0.0430D02.1856R2= 0.985
      WT = 0.0430D02.5516R2= 0.992
        注:D, D0, H, WS, WBA, WB, WL, WRN, WRS, WR, WA, WT分别代表胸径、地径、树高以及树干、树皮、枝、叶、根颈、除根颈外的根系、根系、地上部分和全株生物量。

      Table 3.  Allometric equations relating individual biomass of Pinus densata

    • 1978年,农林部颁布了含高山松在内的主要用材树种的二元材积表[64],曾伟生[65]基于新近采集的立木材积实测数据,对其进行了适用性检验,结果表明原有的高山松二元立木材积方程总相对误差和平均系统误差均超过3%,已不适用于目前的森林资源状况。陈起忠等[45, 47, 54, 64, 66, 67]先后建立了材积、材积连年生长量和生长率相关模型(见表4)。材积连年生长量持续的时间很长,在林芝和朗县等地90年时达到最高点,在波密持续上升的时间达到150年以上[54];在川西地区50~70年最高,为0.0074 m3[46]

      研究区域拟合方程样本量适用范围相关系数文献来源
      四川、云
      南、西藏
      V = 0.000061238922D2.0023969H0.85927542///中华人民共和国农林部[64]
      Y=434.01973*A−1.2452325/R = −0.9416罗天祥[66]
      四川lg(V1) = −5.21832 + 2.72330lg(A263910~41.3R = 0.86陈起忠等[45]
      lg(V1) = −3.22132 + 1.487571lg(A41.3~275
      Y = −0.54371 + 230.85116/(A − 5)10~275R = 0.99
      丹巴V = 0.000042865D02.620987272908.6~90.1R = 0.97738谭先奇和蒲永波[47]
      西藏V = 0.46313693 × 10−4D1.8113661H1.1402303257/Rym = 0.994896中国科学院青藏高原综合科
      学考察队[54]
      V=1.7318 × 10−4D2.422413835.0~107.6R = 0.9995曾伟生[67]
        注:V, V1, Y, D, D0, H, A分别代表材积(m3)、材积连年生长量(m3)、材积生长率(%)、胸径(cm)、地径(cm)、树高(m)和年龄。

      Table 4.  Fitting equation of volume of Pinus densata

    • 根据资料记载,高山松结实早,且结实能力强,5~10年即开始结实,40~60年为盛果期,80~100年结实最好,200年时仍有结实能力;林分疏密度在0.4以下时,结实量较大,而疏密度0.6以上时结实量少[53, 68]

    • 现有研究基于树轮宽度差值年表,采用滑动响应分析方法,分析高山松径向生长对气候的响应,结果表明其径向生长主要受生长季气候的影响,且在海拔分布上限,夏季气温是主要限制因子,海拔下限限制因子则为降水。在西藏南部地区主要受夏季降水的限制,年轮宽度与上年6—8月降水正相关[69];在金川县则主要受当年夏季气温和5月降水的影响,与当年5月降水和当年6—8月温度正相关,与当年6—7月降水负相关[57]。在石卡雪山海拔分布上限,7月温度是主要的限制因子,与当年7月平均气温和平均最高气温呈显著负相关,与降水未达到显著相关水平[70];在哈巴雪山海拔上限则主要受上年8月水热状况影响,与上年8月降水量显著正相关,与上年8月平均温显著负相关[71]。而对哈巴雪山海拔下限处的高山松研究表明,主要受当年5月水热状况影响,与当年5月降水量显著正相关,与当年5月平均最低气温和平均最高气温显著负相关[71]。还有研究[72]发现,在朗县地区,火干扰后高山松径向生长加快,且改变了对气候的响应模式,过火前幼树(DBH < 10 cm)径向生长与上一年11月平均最低气温显著负相关,成年树(DBH ≥ 10 cm)径向生长与当年9月平均最低气温和平均气温显著正相关,而过火后幼树和成年树的径向生长均与当年1月平均气温和平均最高气温显著负相关。

      气候与高生长的研究仅1例,赵文智和荔克让[48]在雅鲁藏布江中游下段研究发现,阶地覆沙地高山松幼树高生长与4~6月降水量正相关,但不显著,而山坡覆沙地幼树高生长与4月平均气温呈显著正相关。

    • 高山松在4(6)年内耐荫蔽,对光照的需求随年龄的增加而递增[12, 68]。徐凤翔[5]以更张和岗嘎林区60株高山松为研究对象,发现导致不同林分状况(林冠下、幼密林和空旷地)和不同更新年代的高山松生长差异的主导因子均为光照,在生长初期高生长量几乎相等,10年后空旷地生长量明显高于林冠下和幼密林,5年后更新年龄早的高生长领先于更新年龄晚的。郭立群[12](1982)对滇西北地区同一高山松林地上6种不同光照条件下高山松1~7年苗木高生长过程的调查发现,皆伐迹地空旷地高生长最快,年均高生长量可达14.16 cm,择伐迹地林窗中次之,为12.00 cm,其次为林窗边缘和母树树冠下弱度庇荫,分别为7.07 cm和6.69 cm,疏林林木间隙和林冠下生长较差,分别为6.11 cm和4.86 cm。

    • 相关研究仅1例,徐凤翔[5]在更张和岗嘎林区研究发现,导致不同坡位高生长差异的主导因子为立地营养状况,坡下位的连年高生长量大于坡中。

    • 已有研究仅3例。徐凤翔[5]调查发现,从波密-更张-岗嘎,树高、胸径和材积的生长量均呈下降趋势,这是由于自东向西,降水量逐渐减少。毛建丰等[73]对香格里拉、林芝八一镇、林芝尼西乡、波密通麦镇、理县和小金6个样点的高山松球果13个种实性状的研究发现,其平均潜在繁殖能力随纬度的升高有下降的趋势。在海拔梯度上,陈甲瑞和王小兰[74]在林芝地区以海拔2500 m为基点,自下而上分2500~2800、2800~3100、3100~3400 m共3个海拔梯度设置了调查样地,结果表明,随着海拔升高,高山松高生长相对减缓,胸径和冠幅生长速率逐渐增大,这便于提高同化能力,同时将更多的同化产物投入到与植物水分、养分输导有关的系统构建方面。

    4.   结论和展望
    • 关于高山松地理分布的资料年代均较早,受交通限制,可能仍有未知分布点。因此,需继续开展野外调查,明确其分布范围和边界,尤其是在与亲本种油松的分布交错地带白龙江流域,要注意物种的鉴定以免混淆,以形成完整的地理分布格局认识。

    • 现有研究通过叶片形态和解剖结构以及分子生物学证据证明了高山松是油松和云南松的天然同倍体杂交种,推断出其起源和群体分化时间、起源中心以及迁移路线,并通过基因结构与功能、苗期生长性状、针叶形态解剖指标、光合与水分利用生理指标等探讨了其进化机制,结果表明高山松幼苗在形态建成、光能吸收利用、水分利用等方面具有超亲优势,能更好地适应低温、干旱的高海拔生境,生态选择是物种形成的主要驱动力,青藏高原东南部的隆升促进了种的形成。但目前对高山松的物种形成机制研究仍是不全面的,具体的起源地、迁移路线和演化规律尚不清楚。

    • 在生长规律方面,已有研究对高山松的高、胸径和材积生长过程进行了较为详细的论述,树高和胸径连年生长量均在20年左右达到最高值,材积连年生长量持续的时间很长,在50~90达到最高点,还构建了树高、胸径、生物量、材积等相关模型;冠幅和根系生长规律的研究较少;结实方面仅进行了果期年龄段划分,无结实量数据。对高山松冠幅生长规律、10年生以上个体根系和生物量生长规律尚无研究,高山松幼树(DBH≤ 6 cm)缺乏可靠的生物量估测模型。

      目前已有的环境影响因子研究包括气候、光照、坡位、经度、纬度和海拔。气候因子的研究集中在径向生长方面,高山松径向生长对气候的响应存在“滞后效应”,在不同地区以及不同海拔段,影响高山松径向生长的气候因子及其响应模式不同。光照和坡位的研究集中在高生长方面,发现高山松苗木4~6年内耐荫蔽,而后随着年龄的增加对光照的需求增强;而由于立地营养状况的差别,坡下位的连年高生长量高于坡中。在小区域尺度上,高山松的生长量随经度的增加呈上升趋势,平均潜在繁殖能力随纬度的升高呈下降趋势。海拔的研究包括高、胸径、冠幅的生长,结果表明,随着海拔升高,高山松株高生长相对减缓,胸径和冠幅生长速率逐渐增大。当前研究仅对部分生态因子开展了生长过程差异的研究,并无机制方面的深入研究,各器官在生长过程中对不同生态因子的响应模式及其生理学机理、各器官间的权衡关系尚不清楚,在空间区域上的生长差异性缺乏大尺度的研究,高产区域未知。后续可对上述内容展开深入研究,以阐明高山松的生态适应策略。

Reference (74)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return