WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 43 Issue 4
Aug.  2022
Article Contents
Turn off MathJax

HUANG Q, HE J L, GUO H M, et al. Study on spatio-temporal evolution characteristics and ecological effect driving of urban landscape pattern in Chengdu[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(4): 31−37 doi: 10.12172/202204110003
Citation: HUANG Q, HE J L, GUO H M, et al. Study on spatio-temporal evolution characteristics and ecological effect driving of urban landscape pattern in Chengdu[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(4): 31−37 doi: 10.12172/202204110003

Study on Spatio-temporal Evolution Characteristics and Ecological Effect Driving of Urban Landscape Pattern in Chengdu


doi: 10.12172/202204110003
More Information
  • Corresponding author: 1127553516@qq.com
  • Received Date: 2022-04-11
    Available Online: 2022-06-23
  • Publish Date: 2022-08-23
  • Landscape change is a complex dynamic process of mutual interference and interaction between human socio-economic activities and regional environment. With the development of economy and society and the continuous enhancement of human activities, the evolution of natural ecological environment is becoming more and more intense. This study analyzes and evaluates the temporal and spatial characteristics of landscape pattern in Chengdu and the impact of landscape pattern change on ecological environment quality, in order to promote the harmony between man and nature, maintain the stability of urban ecosystem, optimize land spatial pattern and provide scientific basis for park city construction. Based on the historical remote sensing data of Chengdu from 2000 to 2020, using remote sensing, GIS technology and FRAGSTATS software, this paper systematically analyzes the land use / cover types in the study area, and quantitatively studies the changes of landscape pattern and its ecological effects in Chengdu. (1) In the past 20 years, the land use structure of Chengdu has changed significantly. The land use pattern dominated by agricultural land has gradually changed to the situation dominated by cultivated land, forest land and man-made surface, accounting for about 94.71% of the total area of the study area, becoming the leading land use / surface cover type of Chengdu. And, man-made surface has the fastest growth rate, with a single dynamic degree of 44.58%, followed by water and forest land; The slowest growth rate is grassland and wetland. (2) In the past 20 years, the spatial change area of land use in Chengdu has reached 237303.17hm2, accounting for 16.56% of the total area of the study area, showing the characteristics of a large number of transfer out of cultivated land, grassland and forest land and a large number of transfer in of man-made surface and forest land. (3) The landscape type of the study area is mainly cultivated land, and the man-made surface landscape type is the landscape type with the greatest change in the past 20 years, forming a large agglomeration patch and expanding year by year. The degree of human disturbance to the overall landscape pattern has increased year by year, the diversity and heterogeneity of landscape have increased, the dominant landscape has weakened, and the landscape components tend to develop more evenly. In the future, with the transformation of economic and industrial structure, the enhancement of ecological and environmental protection awareness and the construction of Park City, the influence of human factors on landscape pattern will gradually increase in a short time scale.
  • 加载中
  • [1] 王桥,刘思含. 国家环境遥感监测体系研究与实现[J]. 遥感学报,2016,20(5):1161−1169.
    [2] 管祥友. 城镇化与生态环境质量之间的关系研究——基于我国城镇化进程的实证研究[D]. 武汉: 华中师范大学, 2013.
    [3] 张保卫. 基于RSEI模型的生态环境质量评价及系统设计——以郑州市为例[D]. 郑州: 郑州大学, 2018.
    [4] 王志杰,代磊. 黔中喀斯特山地城市土地利用/覆被变化及其生态效应评价——以贵阳市花溪区为例[J]. 生态学报,2021,41(9):3429−3440.
    [5] 傅伯杰, 陈利顶, 马克明. 景观生态学原理及应用[M]. 北京: 科学出版社, 2011: 1−396.
    [6] 唐明坤,许戈,冯涌,等. 四川岷山山系大熊猫栖息地景观格局特征及保护策略研究[J]. 四川林业科技,2021,42(4):5−11. doi: 10.12172/202012060003
    [7] 陈利顶,刘洋,吕一河,等. 景观生态学中的格局分析: 现状、困境与未来[J]. 生态学报,2008,28(11):5521−5531. doi: 10.3321/j.issn:1000-0933.2008.11.037
    [8] 阳文锐. 北京城市景观格局时空变化及驱动力[J]. 生态学报,2015,35(13):4357−4366.
    [9] 马亚鑫,丛辉,周维博,等. 西安市土地利用景观格局动态演变及驱动力分析[J]. 西北林学院学报,2017,32(4):186−192. doi: 10.3969/j.issn.1001-7461.2017.04.32
    [10] 田潇然,王锦,余哲修. 1987-2018年丽江坝区景观格局变化轨迹分析[J]. 西部林业科学,2021,50(4):18−25.
    [11] 刘凯,任建兰,张宝雷. 黄河三角洲人地系统脆弱性演化特征及其影响因[J]. 经济地理,2019,39(6):198−204.
    [12] 路广,韩美,王敏,等. 近代黄河三角洲植被覆盖度时空变化分析[J]. 生态环境学报,2017,26(3):422−428.
    [13] 邵周玲,周文佐,李凤,等. 2003-2018年米仓山地区植被物候时空变化及对气候的响应[J]. 生态学报,2021,41(9):3701−3712.
    [14] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报,2013,33(24):7853−7862.
    [15] 杨利,刘勇. 神农架大九湖国家湿地公园景观格局动态变化[J]. 中南林业科技大学学报,2021,41(6):99−111.
    [16] 朱纹君,韩美,孔祥伦,等. 1990-2018年黄河三角洲人类活动强度时空格局演变及其驱动因[J]. 水土保持研究,2021,28(05):287−292+300.
    [17] 吴金华,房世峰,刘宝军,等. 乌裕尔河-双阳河流域湿地景观格局演变及其驱动机制[J]. 生态学报,2020,40(13):4279−4290.
    [18] 刘玉卿, 张华兵, 孙小祥, 等. 1980-2018年江苏里下河平原景观格局时空变化及其热点分析[J/OL]. 浙江农林大学学报: 1-10[2021-11-30]. http://kns.cnki.net/kcms/detail/33.1370.S.20210811.1610.002.html.
    [19] 易阿岚,王钧. 上海市湿地景观格局时空演变与驱动机制的量化研究[J]. 生态学报,2021,41(7):2622−2631.
    [20] 张潇,张晓瑶,陆林,等. 旅游干扰下流域多尺度景观格局演化特征及驱动因素——以新安江流域为例[J]. 生态学报,2021,41(9):3415−3428.
    [21] 冯琰玮,甄江红,马晨阳. 城市用地扩展对生态风险影响的多情景模拟——以内蒙古呼和浩特市为例[J]. 生态学报,2021,41(3):1199−1208.
    [22] 郭少壮,白红英,孟清,等. 1980—2015年秦岭地区景观格局变化及其对人为干扰的响应[J]. 应用生态学报,2018,29(12):4080−4088.
    [23] 彭建,吴见,徐飞雄,等. 基于价值评估的黄山市生境质量时空演变特征分析[J]. 生态学报,2021,41(2):665−679.
    [24] 徐丽, 彭浩贤, 潘萍, 等. 江西省兴国县植被覆盖度及其空间格局变化[J/OL]. 浙江农林大学学报: 1−10[2021−11−30]. http://kns.cnki.net/kcms/detail/33.1370.S.20210812.1108.002.html.
    [25] 张蓬涛,刘双嘉,周智,等. 京津冀地区生态系统服务供需测度及时空演变[J]. 生态学报,2021,41(9):3354−3367.
    [26] 袁轶男,金云峰,聂晓嘉,等. 基于Fragstats4的上海市城市景观格局指数动态研究[J]. 山东农业大学学报(自然科学版),2020,51(6):1−6. doi: 10.3969/j.issn.1000-2324.2020.06.033
    [27] 吴梦红,冯雨林,杨佳佳. 三十年来西辽河流域湿地景观格局演变分析[J]. 测绘与空间地理信息,2019,42(12):71−75.

    WU M H, FENG Y L, YANG J J. Study on Wetland Landscape Pattern Evolution in West Liao River Basin for Thirty Years[J]. Geomatics & Spatial Information Technology, 2019, 42(12): 71−75.
    [28] 王徐凡. 土地覆被时空变化的可视化表达研究与实现[D]. 北京: 中国地质大学, 2019.
    [29] K McGarigal, SA Cushman, E Ene (2012). FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site: [2021−08−22]. http://www. umass. edu/landeco/research/fragstats/fragstats. html.
    [30] 仇三军. 退耕还林、天保工程的历史观[J]. 中国林业,2002(19):1−1.
    [31] 邓绍辉. 四川省实施天然林资源保护工程和退耕还林工程[J]. 当代中国史研究,2000(5):74−83.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(4)

Article views(623) PDF downloads(50) Cited by()

Related
Proportional views

Study on Spatio-temporal Evolution Characteristics and Ecological Effect Driving of Urban Landscape Pattern in Chengdu

doi: 10.12172/202204110003
  • 1. Sichuan Academy of Forestry, Chengdu 610081, China
  • 2. Chengdu Zhongcheng Kechuang Environmental Protection Technology limited company, Chengdu 610081, China
  • 3. Linshui Wanfengshan state owned Forest Farm, Guangan 638500, China
  • Corresponding author: 1127553516@qq.com

Abstract: Landscape change is a complex dynamic process of mutual interference and interaction between human socio-economic activities and regional environment. With the development of economy and society and the continuous enhancement of human activities, the evolution of natural ecological environment is becoming more and more intense. This study analyzes and evaluates the temporal and spatial characteristics of landscape pattern in Chengdu and the impact of landscape pattern change on ecological environment quality, in order to promote the harmony between man and nature, maintain the stability of urban ecosystem, optimize land spatial pattern and provide scientific basis for park city construction. Based on the historical remote sensing data of Chengdu from 2000 to 2020, using remote sensing, GIS technology and FRAGSTATS software, this paper systematically analyzes the land use / cover types in the study area, and quantitatively studies the changes of landscape pattern and its ecological effects in Chengdu. (1) In the past 20 years, the land use structure of Chengdu has changed significantly. The land use pattern dominated by agricultural land has gradually changed to the situation dominated by cultivated land, forest land and man-made surface, accounting for about 94.71% of the total area of the study area, becoming the leading land use / surface cover type of Chengdu. And, man-made surface has the fastest growth rate, with a single dynamic degree of 44.58%, followed by water and forest land; The slowest growth rate is grassland and wetland. (2) In the past 20 years, the spatial change area of land use in Chengdu has reached 237303.17hm2, accounting for 16.56% of the total area of the study area, showing the characteristics of a large number of transfer out of cultivated land, grassland and forest land and a large number of transfer in of man-made surface and forest land. (3) The landscape type of the study area is mainly cultivated land, and the man-made surface landscape type is the landscape type with the greatest change in the past 20 years, forming a large agglomeration patch and expanding year by year. The degree of human disturbance to the overall landscape pattern has increased year by year, the diversity and heterogeneity of landscape have increased, the dominant landscape has weakened, and the landscape components tend to develop more evenly. In the future, with the transformation of economic and industrial structure, the enhancement of ecological and environmental protection awareness and the construction of Park City, the influence of human factors on landscape pattern will gradually increase in a short time scale.

  • 随着经济社会、城镇化的快速发展,加速了对地表环境造成的破坏程度,导致城市生态环境问题日益凸显,严重威胁城市的生态安全[1-4]。景观格局是景观异质性的具体体现,又是各种生态过程在不同尺度上作用的结果。它影响着生物动态和物质交换等多方面的生态过程[5,6]。陈利顶等[7]研究认为景观变化是人类社会经济活动与地域环境间相互干扰、相互作用的复杂动态过程。土地利用是人类活动最直接的表现形式,产业结构的转变、新兴经济的进入、地方政策等都能促使人类对土地的利用类型发生转变,直接影响景观格局的空间结构[8-10]。随着经济社会的发展和人类活动的不断增强,自然生态环境演变越来越剧烈[11-13]。徐涵秋研究发现近年来,利用多时期遥感影像研究分析城市景观格局演变以及驱动机制已成为主流[14]

    杨利,易阿岚和王钧等分别研究了湿地景观格局时空演变与驱动机制[15-19]。张潇,郭少壮等研究了景观格局变化对旅游等人为干扰的响应[20-22]。GIS技术和景观结构分析软件Fragstats的发展应用,为研究者从大尺度掌握区域生态质量、制定生态管理策略提供了有力的技术手段。

    运用GIS技术,在分析土地利用/覆被格局时空变化特征的基础上,利用Fragstats评价中国西部地区重要的中心城市成都市景观格局的时空特征,剖析土地利用/覆被变化对生态环境质量的影响,揭示土地利用/覆被变化的生态效应,以期促进人与自然和谐,维护城市生态系统稳定性、国土空间格局优化和公园城市建设提供科学依据[23-25]

1.   材料和方法
  • 主要数据包括:①全球地表覆被数据GlobeLand30(30 m分辨率)来源于国家基础地理信息中心(http://http://www.ngcc.cn)提供的(2000年、2010年、2020年)3期土地利用/地表覆被解译数据。根据研究需要,将土地利用数据分类为耕地、林地、草地、水体湿地、人造地表、冰川和永久积雪6类;②其他数据包括研究区行政边界矢量数据、气象情况、社会经济统计资料等。

    在ArcGIS10.7中将矢量图层转出为30 m×30 m的栅格图层待用。再利用Fragstats4.2.1计算景观格局指数,将计算出的结果采用Excel2020软件处理,提高结果的可视化。

  • 选取主要反映破碎化、形状和异质性特征等方面的相关指数,在类型水平上选取5种景观格局指数,包括平均形状指数(SHAPE_MN)、平均斑块分维数(FRAC_MN)、聚集指数(AI)、整体性指数(COHESION)、分离度指数(SPLIT);景观水平上选取5种景观格局指数,包括蔓延度(CONTAG)、散布与并列指数(IJI)、分离度指数(SPLIT)、香浓多样性(SHDI)、香浓均匀度(SHEI)[26]。软件为Fragstats4.2.1,基于ArcGIS10.7,采用景观转移矩阵分析研究区各景观类型的面积转移关系 [26-29]

2.   结果与分析
  • 从不同时期土地利用/地表覆被类型面积特征可以看出(见表1图1)。20年间成都市土地利用结构发生明显变化,农业用地占主导的土地利用格局逐渐转变为耕地、林地和人造地表占优势的局面。2000年成都市土地利用/地表覆被类型以耕地、林地占绝对优势,分别占研究区总面积的66.96%和21.42%;其次为草地和人造地表,分别占研究区总面积的6.26%和4.04%。到2010年,耕地、林地依然占绝对优势,分别占研究区总面积的66.17%和23.41%,林地面积较2000年增长了9.33%;其次为人造地表和草地,分别占研究区总面积的5.41%和3.84%,人造地表面积上升为第三位。到2020年,人造地表面积进一步扩大,土地利用格局转变为耕地、林地和人造地表占绝对优势,分别占研究区总面积的58.41%、23.28%和13.03%,草地面积进一步缩小,占研究区总面积的3.59%。20年间成都市土地利用结构由耕地>林地>草地>人造地表>水体>湿地>冰川和永久积雪>灌木地转变为耕地>林地>人造地表>草地>水体>湿地>灌木地>冰川和永久积雪,耕地、林地和人造地表约占94.71%,成为成都市的主导土地利用/地表覆被类型。从土地利用/地表覆被类型的变化速度来看,20年间增速最快的是人造地表,单一动态度达44.58%,其次为水体和林地;增速最慢的为草地和湿地。

    类型
    Types
    2000年2010年2020年单一动态度/%
    Single dynamic degree
    面积
    Area/hm2
    比例
    Ratio/%
    面积
    Area/hm2
    比例
    Ratio/%
    面积
    Area/hm2
    比例
    Ratio/%
    2000—20102010—20202000—2020
    耕地 Croplands959529.8766.96948190.6866.17837013.9558.41−0.24−2.35−2.55
    林地 Woodland306893.0721.42335536.2923.41333545.9423.281.87−0.121.74
    草地 Grassland89652.696.2655059.483.8451471.453.59−7.72−1.30−8.52
    灌木地 Shrubland0.000.00130.590.01103.410.01/−4.16/
    湿地 Wetland3934.170.27789.300.062779.110.19−15.9950.42−5.87
    水体 Water body15152.221.0615727.141.1021369.691.490.767.188.21
    人造地表 Artificial surface57823.564.0477554.175.41186702.0313.036.8228.1544.58
    冰川和永久积雪
    Glaciers and permanent snow cover
    44.460.0042.390.0044.460.00−0.930.980.00

    Table 1.  Area ratio and change of different land use/cover types in Chengdu (2000, 2010, 2020)

    Figure 1.  Spatial distribution of land use/land cover types in Chengdu (2000, 2010, 2020)

  • 叠加分析成都市3期土地利用的空间变化特征可以看出(见表2图2):2000—2020年间,成都市土地利用空间变化面积达237303.17 hm2,占研究区总面积的16.56%,表现出耕地、草地和林地的大量转出和人造地表和林地大量转入的特征。其中:耕地主要转出为人造地表、林地和草地,分别占耕地总转出面积的84.06%、6.31%和4.99%;草地主要转出为林地、耕地和人造地表,分别占草地总转出面积的59.26%、18.92%和13.64%;林地主要转出为草地和耕地,分别占林地总转出面积的54.73%和39.87%。人造地表主要由耕地和草地转入,分别占人造地表总转入面积的92.94%和5.65%;林地主要由草地和耕地转入,分别占林地总转如面积的77.20%和21.94%。其他土地利用类型之间也有不同程度的转入转出,但转换率均相对较低。林地的正增长与草地的负增长可能与出台的政策有关[30,31]

    2020年
    耕地
    Croplands
    林地
    Woodland
    草地
    Grassland
    灌木地
    Shrubland
    湿地
    Wetland
    水体
    Water body
    人造地表
    Artificial surface
    冰川和永久积雪
    Glaciers and permanent
    snow cover
    2000年总计
    2000 Total
    流出合计
    Total outflow
    2000年耕地Croplands809433.899456.877477.7629.06272.986639.13125922.180.00959231.86149797.97
    林地Woodland6562.92290338.459008.004.688.28267.04608.390.00306797.7616459.31
    草地Grassland10621.7433274.8133473.3868.111143.273386.557656.980.0089624.8556151.47
    灌木地Shrubland0.000.000.000.000.000.000.000.000.000.00
    湿地Wetland1533.5718.71347.380.00969.63903.14160.510.003932.952963.32
    水体Water body3065.17264.52429.891.53369.529871.461145.430.0015147.515276.05
    人造地表Artificial surface5536.7088.98719.060.0014.58295.7451150.550.0057805.606655.05
    冰川和永久积雪
    Glaciers and permanent snow cover
    0.000.000.000.000.000.000.0044.4544.450.00
    2020年总计Total836753.99333442.3551455.46103.382778.2521363.05186644.0544.45
    流入合计Total inflow27320.1043103.9017982.08103.381808.6211491.59135493.500.00
    净流入Net inflow−122477.8726644.59−38169.38103.38−1154.706215.54128838.440.00

    Table 2.  Transition matrix of different land use/cover types in Chengdu from 2000 to 2020

    Figure 2.  Transfer map of land use/land cover types in Chengdu (2000, 2010, 2020)

  • 研究区域景观类型以耕地为主,2000—2020年整体占比均超过50%,但耕地面积总体上呈现波动下降趋势;林地为区域内第二大景观类型,2000—2020年整体占比均超过20%;草地、人造地表、水体、湿地、灌木地及冰川和永久积雪景观类型占比均较小。人造地表景观类型是2000—2020年变化最大的景观类型,以市内5区为中心向周边15区县辐射带动,形成了较大的集聚斑块且逐年扩大。水体、草地和湿地受气候与人类活动影响较大,占比波动幅度显著,斑块分布较为零散。

  • 从类型水平景观格局指数计算结果来看(见表3),耕地的COHESION和AI最高,SPLIT最低,体现出耕地作为区域内的优势景观分布最为集中、连片,但COHESION和AI均呈下降趋势,说明耕地的景观优势度和完整性受到一定破坏;林地和草地的SHAPE_MN和FRAC_MN值最低,表明其形状最为简单,这与其人工起源性质有很大关系,另外草地的COHESION和AI最低,SPLIT较高,反映出草地景观斑块较为破碎,易受外界环境影响;由于市域内有岷江、沱江等12条干流及几十条支流及都江堰水利工程等,湿地水体的SHAPE_MN和FRAC_MN值最高,表明其斑块形状最为复杂,另外湿地水体的SPLIT最高,反映出湿地水体景观斑块最为破碎,库、塘、堰、渠星罗棋布。人造地表的COHESION和AI曲线上升,SPLIT下降趋势显著,表明其在近20年中迅速扩张,且表现为集聚化、连片化的发展趋势。

    类型
    Types
    平均形状指数SHAPE_MN平均斑块分维数FRAC_MN整体性指数COHESION聚集指数AI分离度指数SPLIT
    200020102020200020102020200020102020200020102020200020102020
    cls_101.791.721.671.091.081.0899.9899.9899.9497.9098.0597.424.074.0413.57
    cls_201.311.381.381.051.061.0699.8299.8199.8296.0894.5694.6551.3253.4553.48
    cls_301.361.281.271.061.051.0595.5493.2992.1080.0872.9773.0038124.4649878.3852796.22
    cls_40
    cls_502.232.421.551.101.131.0799.0796.6197.0491.5389.7285.91420864.9428273379.473061336.82
    cls_601.441.511.541.071.071.0795.7396.6698.3872.1177.7282.50316279.96256302.7071670.97
    cls_801.441.581.721.071.071.0798.9999.4999.8393.9897.1596.722782.721410.97144.44
    cls_100
    ①cls_10,耕地Croplands; cls_20,林地Woodland;cls_30,草地Grassland;cls_40,灌木地Shrubland;cls_50,湿地Wetland;cls_60,水体Water body;cls_80,人造地表Artificial surface;cls_100,冰川和永久积雪Glaciers and permanent snow cover;②灌木地划入林地统计,冰川和永久积雪主要集中分布在西岭雪山未纳入统计。Shrub land is classified into forest land, and glaciers and permanent snow cover are mainly distributed in Xiling Snow Mountain, which is not included in the statistics.

    Table 3.  Analysis of landscape pattern index at type level of the study area

  • 从景观水平来看(见表4),蔓延度CONTAG在近10年下降趋势显著,反映出景观多样性提升,景观破碎化程度加剧;散布与并列指数IJI先下降后微升,表明在2000年景观类型间的相邻程度和混合程度最高;分离度指数SPLIT值在2020年最高,表明景观中同类型斑块越来越分散破碎;SHDI和SHEI指数呈升高趋势,表明景观多样性与异质性增高,优势景观减弱,景观组分更趋均衡,这与人类活动增强,人工景观组分增多有关。

    类型 Types蔓延度 CONTAG散布与并列指数 IJI分离度指数 SPLIT香浓多样性 SHDI香浓均匀度 SHEI
    200070.2757.603.770.970.50
    201072.6549.603.750.950.46
    202068.1853.1610.061.110.54

    Table 4.  Analysis of landscape pattern index at landscape level of the study area

3.   结论与讨论
  • (1)2000—2020年,20年间成都市土地利用结构发生明显变化,农业用地占主导的土地利用格局逐渐转变为耕地、林地和人造地表占优势的局面。其中,耕地面积减少约122 516 hm2,林地面积增加约26 653 hm2,人造地表面积增加约128 878 hm2。20年间增速最快的是人造地表,其次为水体和林地;增速最慢的为草地和湿地。

    (2)2000—2020年,20年间成都市土地利用空间变化明显,总体表现为耕地、草地的大量转出和人造地表、林地大量转入的特征。土地利用时空格局的变化体现出生态保护与城市化发展双重驱动的结果。

    (3)成都市域以耕地为主要优势景观,且景观集聚度最高,但总体呈下降趋势;林地和草地复杂性最为简单,且草地景观斑块较为破碎,易受外界环境影响;湿地水体最为复杂,最为破碎;人造地表在近20年中迅速扩张,且表现为集聚化、连片化的发展趋势。总体景观格局受人为干扰的程度逐年加剧,优势景观不断受到侵蚀,景观分离度增加,景观异质性提升,景观组分趋于均衡发展。

    但在景观破碎化、空间异质性趋势以及快速旅游城镇化对景观生态系统的稳定性风险评价等方面的研究还需进一步深入探索。尤其在20年间成都市常住人口由1 110万人增加到1 658万人,城镇化率由53.72%提高到74.41%,建成区面积由208 km2增加到950 km2,旅客运输量由46 459万人增加到164 563万人。同时,本研究区巨大的垂直落差,复杂的小气候效应更加剧了全面揭示影响因子的难度,未来可提高研究精度,考虑人文地理多方面因素,对局部环境指标进行监测等。

Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return