WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 43 Issue 6
Dec.  2022
Article Contents
Turn off MathJax

JIANG X H, RE S, XIA M, et al. Comparative study on seed traits of Aralia chinensis from 5 provenances[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(6): 103−108 doi: 10.12172/202203290003
Citation: JIANG X H, RE S, XIA M, et al. Comparative study on seed traits of Aralia chinensis from 5 provenances[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(6): 103−108 doi: 10.12172/202203290003

Comparative Study on Seed Traits of Aralia chinensis from 5 Provenances


doi: 10.12172/202203290003
More Information
  • Received Date: 2022-03-29
    Available Online: 2022-07-06
  • Publish Date: 2022-12-30
  • Aralia chinensis is a traditional Chinese edible and medicinal wild herb with high nutritional value and health care function, which is used in the treatment of rheumatoid arthritis, diabetes and many other diseases. Because the market demand is constantly increasing, but at present, Aralia chinensis resources are declining year by year, so it is impossible to meet the market demand only by natural renewal alone. So, it is more and more important to select excellent Aralia chinensis provenance and strengthen good breeding research. Therefore, it is necessary to study the morphological differences of Aralia chinensis seeds, select excellent seeds and provide alternative provenances for Aralia chinensis planting. The seeds of Aralia chinensis from Kangding, Luding, Ganzhou red Aralia chinensis, Ganzhou black Aralia chinensis and Harbin provenances were used as research objects, and the index of seed appearance, 1000-seed weight, seed purity, seed empty seed rate and seed viability of different provenances were determined. There were significant differences in seed size, 1000-seed weight, seed purity, empty seed rate and seed viability among different provenances (P < 0.05). The maximum seed length was C4, 3.45mm, the minimum was C5, 1.92mm, and the maximum coefficient of variation was C1, 13.21%, and the minimum was C4, 5.72%. The maximum width was C4, 2.29mm, the minimum was C3, 1.37mm, and the maximum width variation coefficient was C3, 11.67%, the minimum was C4, 6.15%. The maximum seed thickness was C2 (1.05mm), the minimum was C4 (0.56mm), and the maximum seed thickness variation coefficient was C5 (12.71%), the minimum was C2 (8.65%). The 1000-seed weight ranged from 1.01 to 2.87g, among which C4 seeds had the largest 1000-seed weight (2.87g) and C5 seeds had the smallest 1000-seed weight (1.01g). The purity of seeds ranged from 82.33 to 100%, among which the purity of C3, C4 and C5 seeds commercially sold in the market reached 100%, while the purity of C1 seeds was the smallest with a value of 82.33%. The seed empty rate of C4 was the smallest (5.33%), and the highest was C2 (34.33%). The seed viability ranged from 53.33% to 94.00%, among which C3 seeds had the highest viability (94%) and C2 seeds had the lowest viability (53.33%). Based on the comprehensive analysis, the seed traits of the same species from different geographical locations were quite different. Jiangxi black Aralia chinensis showed good characteristics in the overall index measurement. After comparison, it was found that there were obvious differences in appearance between the local seeds and other seeds (P < 0.05), and the plumpness and 1000-seed weight of seeds were also higher than those of other provenances.
  • 加载中
  • [1] 钟选亮. 刺龙苞冷藏保鲜技术特点分析[J]. 农村实用技术,2016(4):54−55.
    [2] Ruiying W, Minghua Y, Min W, et al. Total Saponins of Aralia Elata (Miq) Seem Alleviate Calcium Homeostasis Imbalance and Endoplasmic Reticulum Stress-Related Apoptosis Induced by Myocardial Ischemia/Reperfusion Injury[J]. Cellular Physiology and Biochemistry, 2018, 50(1): 28−40. doi: 10.1159/000493954
    [3] 刘震,李爱民,张悦,等. 龙牙楤木规范化栽培技术[J]. 特种经济动植物,2014,17(10):43−45. doi: 10.3969/j.issn.1001-4713.2014.10.019
    [4] 丁海建,曹长清. 长白山七种忍冬种子形态和种子繁殖方法[J]. 农业开发与装备,2021(12):237−238. doi: 10.3969/j.issn.1673-9205.2021.12.112
    [5] 张俊丽,李彤丰,吴惠民,等. 不同种源油茶种子特征及萌发特性研究[J]. 现代园艺,2022,45(1):1−3. doi: 10.3969/j.issn.1006-4958.2022.01.001
    [6] 邓贵仲,代欢,彭玉琳,等. 青稞种子活力与种子形态指标相关性分析[J]. 分子植物育种,2021:1−11.
    [7] 苏建明,侯松山. 罗勒种子形态特征与质量关系研究[J]. 石河子科技,2018(01):6−8. doi: 10.3969/j.issn.1008-0899.2018.01.004
    [8] 张静,杨文钰,陈兴福,等. 川泽泻种子形态和发芽特性研究[J]. 中国中药杂志,2009,34(1):26−29. doi: 10.3321/j.issn:1001-5302.2009.01.008
    [9] 张新静,于营,雷慧霞,等. 桔梗种子发育过程中外观形态及生理生化的变化[J]. 种子,2018,37(8):36−40.
    [10] 张小燕,Week San Alison,Kajita Dashiki,等. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传[J]. 植物生态学报,2021,45(11):1−10.
    [11] 孟淑春,徐秀苹,宋顺华. 提升种子净度检验能力的重要性[J]. 蔬菜,2021(12):46−49.
    [12] 国家技术监督局. 中华人民共和国国家标准 GB/T35437—1995农作物种子检验规程[S]. 北京: 国家技术监督局, 1935.
    [13] 郝向春,周帅,韩丽君,等. 不同种源辽东栎种子和幼树指标变异及相关分析[J]. 植物资源与环境学报,2021,30(4):1−11. doi: 10.3969/j.issn.1674-7895.2021.04.01
    [14] 蔡意中,陈一清. 穗期高温与早稻空粒率的关系[J]. 上海农业科技,1982(3):9−10.
    [15] 胡迎峰,穆帅,张家祥,等. 快速测定多花黄精种子活力的TTC染色法条件研究[J]. 安徽农学通报,2021,27(10):31−32. doi: 10.3969/j.issn.1007-7731.2021.10.013
    [16] 国际种子检验协会. 农业部全国农作物种子质量监督检测中心浙江大学种子科学中心译. 国际种子检验规程[M]. 北京: 中国农业出版社, 1999: 4.
    [17] 望俊森,张中州,袁谦,等. 黄淮南片小麦主要品质性状相关性分析[J]. 山西农业科学,2021,49(12):1438−1443. doi: 10.3969/j.issn.1002-2481.2021.12.11
    [18] 田宏,刘洋,熊军波,等. 不同种源截叶铁扫帚种子特性和萌发差异[J]. 种子,2020,39(4):105−109.
    [19] 马常耕. 杉木种子园种子生物学特性的地区及年度变异[J]. 林业科学研究,1989(1):59−66.
    [20] 史瑞平. 种子质量检验措施[J]. 现代农村科技,2021(11):125. doi: 10.3969/j.issn.1674-5329.2021.11.097
    [21] Enable D L, Brown J S. The selections interactions of dispersal, dormancy and seed size as adaptations for reducing risk in variable environments[J]. American Naturalist, 1988, 131(3): 360−384. doi: 10.1086/284795
    [22] Cam es D A, Grub P J. Colonization tolerance, competition and midsize variation within functional groups[J]. Trends in Ecology and Evolution, 2003, 18(6): 283−291. doi: 10.1016/S0169-5347(03)00072-7
    [23] Waller D M. Factors influencing seed weight in impatiens inscape(Balminess)[J]. American Journal of Botany, 1982, 69(9): 1470−1475. doi: 10.1002/j.1537-2197.1982.tb13395.x
    [24] Carmichael H J, Banner B, Hankering A P, et al. Seed size variation: magnitude, distribution and ecological correlates[J]. Evolutionary Ecology, 1988, 2(2): 157−166. doi: 10.1007/BF02067274
    [25] Hare J D. Variation in fruit size and susceptibility to seed predation among and within populations of the cockle, Anthurium samarium L.[J]. Ecologic, 1980, 46(2): 217−222.
    [26] 钟磊,钱家萍,蔡启忠,等. 肉桂种子生物学特性及生活力研究[J]. 种子,2021,40(7):99−103.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(3)

Article views(280) PDF downloads(63) Cited by()

Related
Proportional views

Comparative Study on Seed Traits of Aralia chinensis from 5 Provenances

doi: 10.12172/202203290003
  • 1. Ganzi Tibetan Autonomous Prefecture Forestry Research Institute, Kangding 626001, China
  • 2. Sichuan Provincial Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
  • 3. Sichuan Academy of Forestry, Chengdu 610081, China

Abstract: Aralia chinensis is a traditional Chinese edible and medicinal wild herb with high nutritional value and health care function, which is used in the treatment of rheumatoid arthritis, diabetes and many other diseases. Because the market demand is constantly increasing, but at present, Aralia chinensis resources are declining year by year, so it is impossible to meet the market demand only by natural renewal alone. So, it is more and more important to select excellent Aralia chinensis provenance and strengthen good breeding research. Therefore, it is necessary to study the morphological differences of Aralia chinensis seeds, select excellent seeds and provide alternative provenances for Aralia chinensis planting. The seeds of Aralia chinensis from Kangding, Luding, Ganzhou red Aralia chinensis, Ganzhou black Aralia chinensis and Harbin provenances were used as research objects, and the index of seed appearance, 1000-seed weight, seed purity, seed empty seed rate and seed viability of different provenances were determined. There were significant differences in seed size, 1000-seed weight, seed purity, empty seed rate and seed viability among different provenances (P < 0.05). The maximum seed length was C4, 3.45mm, the minimum was C5, 1.92mm, and the maximum coefficient of variation was C1, 13.21%, and the minimum was C4, 5.72%. The maximum width was C4, 2.29mm, the minimum was C3, 1.37mm, and the maximum width variation coefficient was C3, 11.67%, the minimum was C4, 6.15%. The maximum seed thickness was C2 (1.05mm), the minimum was C4 (0.56mm), and the maximum seed thickness variation coefficient was C5 (12.71%), the minimum was C2 (8.65%). The 1000-seed weight ranged from 1.01 to 2.87g, among which C4 seeds had the largest 1000-seed weight (2.87g) and C5 seeds had the smallest 1000-seed weight (1.01g). The purity of seeds ranged from 82.33 to 100%, among which the purity of C3, C4 and C5 seeds commercially sold in the market reached 100%, while the purity of C1 seeds was the smallest with a value of 82.33%. The seed empty rate of C4 was the smallest (5.33%), and the highest was C2 (34.33%). The seed viability ranged from 53.33% to 94.00%, among which C3 seeds had the highest viability (94%) and C2 seeds had the lowest viability (53.33%). Based on the comprehensive analysis, the seed traits of the same species from different geographical locations were quite different. Jiangxi black Aralia chinensis showed good characteristics in the overall index measurement. After comparison, it was found that there were obvious differences in appearance between the local seeds and other seeds (P < 0.05), and the plumpness and 1000-seed weight of seeds were also higher than those of other provenances.

  • 楤木(Aralia chinensis)是五加科楤木属植物,别名龙苞[1]、鹊不踏、虎阳刺、海桐皮和刺老芽等,是中国特有树种,传统的食药两用山野菜[2],其营养价值和保健功能极高,楤木为常用的中草药,食用的嫩芽中含有多种维生素和矿物质,其氨基酸的含量较高。还具有除湿活血、安神祛风、滋阴补气、强壮筋骨、健胃利尿等功效[3]。楤木被誉为“山野菜之王”,深受消费者青睐,是出口创汇的主要野菜之一,然而近年来随着市场需求的高涨,人们栽植楤木的积极性提高,但楤木野生资源有限,仅靠分蘖栽植生产的效率不高,无法很好满足市场需求。虽然楤木种子发芽较困难,但因其结实量大,采收成本低,如果能从种子繁殖取得突破,对于楤木的推广具有极大的促进作用,于是对其种子繁殖的研究[4]受到广泛关注。

    研究发现,不同种源的种子质量参差不齐,发芽率差异较大[5]。而种子形态与发芽率,有非常大的关系。邓贵仲等研究表明种子活力与种子千粒重与生活力、发芽率呈极显著正相关,种子生活力与发芽率呈极显著正相关[6]。苏建明等认为种子千粒重与生活力、发芽率呈极显著正相关,种子生活力与发芽率呈极显著正相关[7]。张静等发现种子长度与宽度呈极显著正相关,千粒重分别与其生活力、发芽率均呈显著正相关,种子生活力与发芽率呈极显著正相关[8]。因此,对不同种源种子的外观形态进行测定[9],分析种子的生活力、千粒重和空粒率等指标,能进一步了解楤木种子的特性,研究楤木种子外观形态的差异性,从而筛选优良种子,为楤木推广种植提供备选种源[10]

    • 2021年10月对野生楤木成熟种质资源进行现场调查并采集标本及种子,实验种子均为当地新鲜成熟种子,分别是四川省康定市C1种源,采自姑咱镇捧塔乡(E102°10′,N30°7′);四川省泸定县C2种源采自兴隆镇毛家寨(E102°14′,N29°45′)、冷碛镇团结村(E102°13′,N29°47′);江西赣州红楤木C3种源;江西赣州黑楤木C4和哈尔滨C5等5个种源种子。C1、C2在采收后,用塑封袋封装,并做好标记,排除袋内空气,在干燥处保存待用。江西赣州红楤木、江西赣州黑楤木及哈尔滨种源是通过网上购买。

    • 从5个不同种源随机各选取100正常种子,置于实验纸上,观察其外观形态并用数显游标卡尺(精确度0.01 mm)测量种子的长度、宽度和厚度(长度指种子着生种脐的一端至相对端间的轴长、宽度指垂直于长度轴的种子最大直线距离、厚度指垂直于宽度的第三平面的直线距离),重复10次。计算每个指标的变异系数,公式如下:

      变异系数CV(%)=(标准差÷平均值)× 100%。

    • 从5个不同种源取3份全样品,用四分法分样,直至减少至实验所需量,并称重,每个种源重复3次,区分各成分并称量,纯净种子重、废植物种子和夹杂物的重量,计算种子净度[11]

      净度(%)=纯净种子重÷(纯净种子重+废植物种子重+夹杂物重)×100%

    • 参照《农作物种子检验规程》[12]采用“千粒重”测定方法。将全部纯净种子充分混合后,从中随机数取1000粒种子,用精确度0.0001 g的分析天平称量[13],测定其千粒重,3次重复。

    • 解剖种子,剥掉表皮,用解剖针挑开一条裂缝,拨开种皮,观察记录[14],每种源50粒种子,重复3次。

    • 采用TTC法测定生活力[15],将种子用温水(约30℃)浸泡2~6 h,使种子充分吸胀,种子长轴切开,使其胚露出,将处理好的种子浸于TTC试剂中,置于恒温箱(30~35℃)中保温30 min,染色结束立即鉴定记录,每种源50粒种子,重复3次。

      楤木种子生活力判定标准参照《国际种子检验规程》[16],胚的主要组织染呈粉红色或者红色即为有活力的种子,按以下公式计算种子生活力:

      种子生活力(%)=(着色种子数目÷种子总数目)×100%

    • 实验数据均采用IBM SPSS Statistics 27软件进行实验结果处理分析。利用Pearson相关系数计算法,对实验中种子品质指标间进行相关性分析。

    2.   结果与分析
    • 楤木果实为蒴果,球形黑褐色,种子椭圆形,由表1可得出,长度平均值2.33 mm,变化范围1.92~3.45 mm,种子的长度在种源间存在显著差异(P<0.05),其中C4种子最大,为3.45 mm,C5种子长度最小,为1.92 mm,其由大到小依次是C4>C2、C3>C1>C5,C4比C5大44%,C2和C3差异不显著;C1种子长度变异系数最大是13.21%,C4种子最小为5.72%。

      指标
      Index
      种子长度/mm
      Seed length /mm
      种子长度变异系数/%
      Variation coefficient
      of seed length /%
      种子宽度/mm
      Seed width /mm
      种子宽度变异系数/%
      Variation coefficient
      of seed width /%
      种子厚度/mm
      Seed thickness /mm
      种子厚度变异系数/%
      Variation coefficient
      of seed thickness /%
      C12.05±0.27cd13.211.54±0.18bc11.450.75±0.10b13.20
      C22.10±0.15c7.181.54±0.12bc7.941.05±0.09a8.63
      2.29±0.18b8.071.61±0.19b11.681.04±0.09a8.67
      C32.15±0.20bc9.401.37±0.16d11.670.68±0.06bc9.42
      C43.45±0.20a5.722.29±0.14a6.150.56±0.07d12.35
      C51.92±0.0.25d13.061.47±0.13cd8.800.66±0.08c12.71
      平均值Mean value2.33±0.219.441.64±0.159.620.79±0.0810.83
        注:表中数据为平均值±标准误;同列数据后不同小写字母表示差异显著(P<0.05)。
        Note: The data in the table are Mean value ± Standard Error. Different lowercase letters after the data in the same column indicate significant differences (P<0.05).

      Table 1.  Appearance and morphology of the seeds

      种子宽度平均值1.64 mm,变化范围1.37~2.29 mm,种子的宽度在种源间存在显著差异(P<0.05),其中C4种子宽度最大,为2.29 mm,C3种子宽度最小,为1.37 mm,其由大到小依次是C4>C2、C1>C5、C3,C1和C2、C3和C5种子间无显著性差异;C1种子宽度变异系数最大是11.45%,C4种子最小为6.15%。

      种子厚度平均值0.80 mm,变化范围0.63~1.05 mm,种子的厚度在种源间存在显著差异(P<0.05),其中C2种子厚度最大为1.05 mm,C4种子厚度最小为0.56 mm,其由大到小依次是C2>C1>C3、C5>C4,C3和C5种子间无显著性差异;C5种子厚度变异系数最大为12.71%,C2种子最小为8.65%。

      不同地理位置同一物种的种子大小具有较大差异性,C4较其他采集的种质种子资源的外观形态要大,尤其长度达3 mm以上,宽度达2 mm以上,与其他种源种子差异显著(P<0.05)。其种子厚度较其他种源最小为0.56 mm,说明该地种子较瘪,而C2种子的厚度最大,为1.05 mm,其宽度也较大,为1.58 mm,说明该种子较圆。在种源间C1种子性状的变异系数较大,其长度、宽度和厚度变异系数分别为13.21%、11.45%和13.20%,说明该种源地种子性状多样,变异性丰富,而C4整体变异系数最小,最为整齐。

    • 5个种源地种子千粒重平均值为1.51 g,变化范围在1.01~2.87 g(见表2),各种源地种子千粒重存在显著差异(P<0.05),其中C4千粒重最大,为2.87 g,C5千粒重最小,为1.01 g,其由大到小依次是C4>C2>C1>C3、C5,C4比C5大约3倍。C4的种子千粒重显著高于其他种源,其值可达最小种源C5的3倍,说明了C4的种子饱满度和充实率高于其他种源,且贮藏的营养物质较多,播种以后出苗整齐健壮,此结果与种子外观形态测定结果相符。

      种源
      Provenance
      种子千粒重/g
      1000-seed weight /g
      种子净度/%
      Seed purity /%
      种子空粒率/%
      Seed empty rate /%
      种子生活力/%
      Seed viability %
      C11.27±0.01c82.33±2.77b8.67±5.03b88.67±5.03a
      C21.44±0.09b83.68±3.87b34.33±13.65a53.33±5.03c
      C30.97±0.02d100.00±0.00a6.67±3.06b94.00±4.00a
      C42.87±0.15a100.00±0.00a5.33±3.06b90.67±1.15a
      C51.01±0.01d100.00±0.00a11.33±3.06b76.67±3.06b
      平均值1.51±0.0593.20±1.3313.27±5.5780.67±3.66
        注:表中数据为平均值±标准误;同列数据后不同小写字母表示差异显著(P<0.05)。
        Note: The data in the table are Mean value ± Standard Error. Different lowercase letters after the data in the same column indicate significant differences (P < 0.05).

      Table 2.  Seed traits index

    • 5个种源地种子净度平均值为93.20%,变化范围在82.33~100%(见表2),各种源地种子净度存在显著差异(P<0.05),市售种子C3、C4和C5的净度最大为100%,C1种子净度最小,为82.33%,C2种子净度为83.68%,C1、C2两者差异不显著。由上面分析可看出,除去市售种子的净度达100%,而人工实地采集种子净度较低,也说明市售种子经过前期处理,去除了杂质;而人工采集的四川的两个种源,前期处理还不够。

    • 5个种源地种子空粒率平均值为13.27%,变化范围在5.33~34.33%(见表2),各种源种子空粒率存在显著差异(P<0.05),其中C2种子空粒率最高,为34.33%,其与C1、C3、C4、C5间差异显著,而C1、C3、C4、C5间差异不显著。

    • 5个不同种源地种子生活力平均值为80.67%,变化范围在53.33~94.00%(见表2),各种源种子生活力存在显著差异(P<0.05),C3种子生活力最高,为94%,C2种子生活力最低,为53.33%,C3比C2大43%,由大到小依次是C3、C4、C1>C5>C2,其中C1、C3、C4间差异不显著。5个种源中,C1、C3和C4表现出高生活力,说明这3种源的种子具有较大的生长优势和生产潜力。

    • 对楤木种子外观形态(长度、宽度、厚度)、千粒重、净度、空粒率和生活力7个指标进行Pearson相关性分析[17],相关系数达到显著(P<0.05)和极显著(P<0.01)的水平如表3所示。结果表明:种子长度和宽度、千粒重呈极显著正相关,与净度呈、生活力呈正相关,与种子厚度和空粒率呈负相关;种子宽度和千粒重呈极显著正相关,与净度、生活力呈正相关,与厚度、空粒率呈负相关;种子厚度和空粒率呈极显著正相关,与净度、生活力呈极显著负相关,与千粒重呈负相关;种子千粒重和净度、生活力呈正相关,与空粒率呈负相关;种子净度和生活力呈正相关,与空粒率呈负相关;种子空粒率和生活力呈极显著负相关。

      指标
      Index
      长度
      Length
      宽度
      Width
      厚度
      Thickness
      千粒重
      1000-seed weight
      净度
      Neatness
      空粒率
      Empty grain rate
       宽度 Width0.938**
       厚度 Thickness−0.47−0.394
       千粒重 1000-seed weight0.950**0.975**−0.394
       净度 Neatness0.3820.25−0.643**0.188
       空粒率 Empty grain rate−0.28−0.270.807**−0.177−0.472
       生活力 Viability0.3590.212−0.813**0.1580.491−0.788**
        注:*表示达到P<0.05显著水平,**表示达到P<0.01极显著水平。
        Note: * indicates significant level at P<0.05, ** indicates extremely significant level at P<0.01.

      Table 3.  Correlation coefficients between various indicators of seeds from different provenances

    3.   讨论
    • 种子作为植物个体发育的一个特定阶段,既是植物遗传信息的保存者与传递者,又是植物在环境胁迫下保证物种繁衍的适应性策略[18]。种子的大小,是直接表现一颗种子饱满度以及种子质量的优良,而种子的大小则能较稳定的表现种子的外观形态。物种子发芽是生命的起始,对良种壮苗的培育具有重要影响[19]。而种子生活力的高低,与种子发芽率密切相关。史瑞平关于《种子质量检验措施》的研究中指出,加强种子质量检验工作不仅能够保障农业生产安全,也为农民增收创造了条件。种子质量检验包括田间检验和室内检验[20]

      本实验从种子外观形态入手,对楤木种子的千粒重、净度、空粒率和生活力进行实验,分析比较5个不同种源地种子的差异性,结果表明,同一物种由于地理差异和自然选择的作用下,表现出一定的差异性,种子大小的变异是对种子所处环境的适应,并且在一定程度上降低了未来风险[21]。一般认为,较大种子会增加后代在群落中的生存适合度和丰富度,而较小种子会提高其后代在群落更新中的贡献[22]。种子的变异不仅存在植被间、物种间,还普遍存在种群内和植株内[23]。Michaels等研究发现,物种内种子大小变异系数平均在10%~50%之间[24],Hare则认为,同一物种内有68~77%的变异发生在个体内,只有9%~13%发生在个体间[25]。分析不同种源地的楤木种子差异性,为后期栽植提供科学依据。

      种子生活力作为表征种子发芽潜力和品质优劣的重要指标,测定种子生活力更能有力验证不同种源地种子之间有差异性[26],而影响种子生活力的主要因素由水分、氧气、温度以及光线。本实验中,种子生活力最高是C3,与C1和C4差异不显著(P>0.05),而C2生活力最低,为53.33%,C1的千粒重、净度和空粒率分别是1.27 g、82.33%和8.67%,C1种源较圆润;C4的外观形态与其余四个种源地有较大差异,且其千粒重、净度和空粒率分别是2.87 g、100%和5.33%,说明该地种子内含有较多的营养物质,生活力高,空粒率低,有较大的发芽潜能。

      表2可知,C1种源的千粒重为1.27 g,空粒率为8.67%,生活力达88%以上,说明该地种源种子,亦有较高的生活力,其发芽潜力较高,种子胚乳内含的营养物质也较高。而C5种源的种子千粒重仅有1.01 g,空粒率为11.33%,且生活力只有76.67%,各项指标较低下,说明了该地种子的活力以及后期播种发芽率都较低。结合前面种子外观形态、千粒重和空粒率等指标,C4种子表现出性状的优良性。

    4.   结论
    • C4较其他采集的种子资源的外观形态要大,与其他种源种子差异显著(P<0.05),且C4整体变异系数最小。说明该地种子比较充实,含有较多的营养物质,且种子较整齐。C4种子千粒重显著高于其他种源,其值可达最小种源C5的3倍,说明了C4种子饱满度和充实率高于其他种源,且贮藏的营养物质较多。经综合评判,江西黑楤木在种子性状整体指标测定上表现较好。但不同种源种子的推广应用,不仅要考虑种子外观性状,还应考虑适应性,种子发芽率,壮苗率,苗木后期生长等多种因素。因此,建议继续从以上角度进行研究。

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return