WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 43 Issue 3
Jun.  2022
Article Contents
Turn off MathJax

ZHAO Y F, XU M, YANG L, et al. Extraction of essential oil from Psidium guajava leaves by microwave-assisted hydrodistillation method[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(3): 100−103 doi: 10.12172/202201210001
Citation: ZHAO Y F, XU M, YANG L, et al. Extraction of essential oil from Psidium guajava leaves by microwave-assisted hydrodistillation method[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(3): 100−103 doi: 10.12172/202201210001

Extraction of Essential Oil from Psidium guajava Leaves by Microwave-assisted Hydrodistillation Method


doi: 10.12172/202201210001
More Information
  • In this study, an efficient microwave-assisted hydrodistillation method was developed to separate the essential oil from Psidium guajava leaves. The main influencing factors of the process were optimized using single factor method. Under the optimized conditions, the yield of essential oil was 31.76 ± 1.45 mL·kg-1, and the dominant components of Psidium guajava leaves essential oil were caryophyllene, calamenene A, nerolidyl acetate and humulene epoxide. Compared with traditional hydrodistillation method, the microwave-assisted hydrodistillation had high yield, short time consumption, and low power consumption. Microwave-assisted hydrodistillation is considered as a potentially effective and sustainable alternative technique for the separation of essential oils from plant matrix.
  • 加载中
  • [1] 刘辉, 张艺, 蒲友明. 番石榴叶的资源概况及化学成分研究进展[C]. 2007年中华中医药学会第八届中药鉴定学术研讨会、2007年中国中西医结合学会中药专业委员会全国中药学术研讨会论文集. 2007: 374–376.
    [2] Beidokhti MN, Eid HM, Villavicencio MLS, et al. Evaluation of the antidiabetic potential of <italic>Psidium guajava</italic> L. (Myrtaceae) using assays for α-glucosidase, α-amylase, muscle glucose uptake, liver glucose production, and triglyceride accumulation in adipocytes[J]. Journal of Ethnopharmacology, 2020, 257: 112877. doi: 10.1016/j.jep.2020.112877
    [3] Luo Y, Peng B, Wei W, et al. Antioxidant and anti-diabetic activities of polysaccharides from guava leaves[J]. Molecules, 2019, 24(7): 1343. doi: 10.3390/molecules24071343
    [4] El-Ahmady SH, Ashour ML, Wink M. Chemical composition and anti-inflammatory activity of the essential oils of <italic>Psidium guajava</italic> fruits and leaves[J]. Journal of Essential Oil Research, 2013, 25(6): 475−481. doi: 10.1080/10412905.2013.796498
    [5] Wang L, Wu Y, Huang T, et al. Chemical compositions, antioxidant and antimicrobial activities of essential oils of <italic>Psidium guajava</italic> L. leaves from different geographic regions in China[J]. Chemistry and Biodiversity, 2017, 14(9): e1700114. doi: 10.1002/cbdv.201700114
    [6] Silva EAJ, Estevam EBB, Silva TS, et al. Antibacterial and antiproliferative activities of the fresh leaf essential oil of <italic>Psidium guajava</italic> L. (Myrtaceae)[J]. Brazilian Journal of Biology, 2019, 79(4): 697−702. doi: 10.1590/1519-6984.189089
    [7] Flores G, Wu SB, Negrin A, et al. Chemical composition and antioxidant activity of seven cultivars of guava (<italic>Psidium guajava</italic>) fruits[J]. Food Chemistry, 2015, 170: 327−335. doi: 10.1016/j.foodchem.2014.08.076
    [8] 陈亮,周莉君. 两种方法提取巨尾桉桉叶挥发油成分的分析[J]. 四川林业科技,2018,39(05):25−28,73.
    [9] 莫开林,费世民,吴斌,等. 时空分布对油樟精油含量的影响研究[J]. 四川林业科技,2015,36(6):93−94,26. doi: 10.3969/j.issn.1003-5508.2015.06.018
    [10] 王勋,黄伊嘉,杨磊,等. 无溶剂微波蒸馏法提取杜香精油的工艺研究[J]. 四川林业科技,2021,42(5):73−76. doi: 10.12172/202103050002
    [11] 张博雅,徐明,周婧丹,等. 少溶剂微波蒸馏同时萃取神农香菊叶精油[J]. 四川林业科技,2021,42(5):7−81.
    [12] Chaturvedi T, Singh S, Nishad I, et al. Chemical composition and antimicrobial activity of the essential oil of senescent leaves of guava (<italic>Psidium guajava</italic> L. )[J]. Natural Product Research, 2021, 35(8): 1393−1397. doi: 10.1080/14786419.2019.1648462
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(1)

Article views(406) PDF downloads(17) Cited by()

Related
Proportional views

Extraction of Essential Oil from Psidium guajava Leaves by Microwave-assisted Hydrodistillation Method

doi: 10.12172/202201210001
  • 1. College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
  • 2. Sichuan Academy of Forestry, Chengdu 610081, China
  • 3. Forestry Development Center of Huaying City, Guangan 638600, China
  • Corresponding author: ylnefu@163.com mokailin@126.com

Abstract: In this study, an efficient microwave-assisted hydrodistillation method was developed to separate the essential oil from Psidium guajava leaves. The main influencing factors of the process were optimized using single factor method. Under the optimized conditions, the yield of essential oil was 31.76 ± 1.45 mL·kg-1, and the dominant components of Psidium guajava leaves essential oil were caryophyllene, calamenene A, nerolidyl acetate and humulene epoxide. Compared with traditional hydrodistillation method, the microwave-assisted hydrodistillation had high yield, short time consumption, and low power consumption. Microwave-assisted hydrodistillation is considered as a potentially effective and sustainable alternative technique for the separation of essential oils from plant matrix.

  • 番石榴(Psidium guajava),属于桃金娘科番石榴属植物。原产于南美洲,现在中国南方各地栽培,主产区为福建、广东、广西和四川攀枝花等地[1]。番石榴是一种受人们喜爱的热带水果,其叶子在民间医学中已使用多年,特别是在治疗糖尿病的作用上[2]。例如,在中国福建南部,叶子被用作治疗糖尿病的常规草药,并且已经验证了乙醇和水溶性提取物具有抗高血糖的功能[3]。此外,药理学研究表明,番石榴叶还具有抗炎[4]、抗菌[5]、抗增殖[6]和抗氧化作用[7]

    近年来,作为天然物质来源的精油因其特殊而重要的生物活性,包括分离与纯化、组分鉴定、生物活性分析等,越来越受到人们的关注[8-11]。微波辅助水蒸气蒸馏具有渗透性强、选择性高、微波加热效率高、能耗低、速度快等优点[11]。微波辅助水蒸气蒸馏是微波与传统的水蒸气蒸馏法相结合形成的一种新方法,它利用微波能量破坏植物细胞壁,使细胞内水分子瞬时气化,造成局部较高温度及压力使目标成分从植物基质中分离出来[10]。本工作旨在研究影响微波辅助水蒸气蒸馏工艺从番石榴叶中提取精油的潜在参数,包括液料比、微波辐照功率和微波辐照时间,运用GC-MS分析获得的精油组成。通过微波辅助水蒸气蒸馏法提取攀枝花番石榴叶精油,以期为番石榴叶的开发和利用提供理论依据。

    • 番石榴新鲜叶2020年9月采自四川攀枝花市,经东北林业大学谷会岩教授鉴定。叶片冷链运至实验场所,样品在阴凉通风处风干,粉碎机粉碎,分样筛筛取均匀尺寸(50~70目筛)的叶片粉末,在室温下储存在密闭干燥器中避光储存。实验所用的样品均为同一批次。样品干燥失重经测定为12.33% ± 0.52%。

      微波水蒸气蒸馏装置采用家用微波炉改造,顶端钻孔,安装精油提取器。微波炉型号为P70D20N1P-G5,格兰仕公司产品,旋钮式分档,低火、中低火、中火、中高火和高火对应的微波辐照功率分别为230 W、385 W、540 W和700 W。微波炉改造由东北林业大学工科教学实习中心完成,经测试无微波泄露。

    2.   实验方法
    • 将精确称重的50.0 g番石榴叶粉末的加入到圆底玻璃烧瓶中,加入一定体积的纯水。开启微波炉至设定的功率,当第一滴水从冷凝器的下端滴下时开始计时,在不同的微波辐照功率下蒸馏一定时间。通过精油提取器的刻度管读取精油的体积。待精油不再增加后,用具盖玻璃瓶收集精油,然后将其储存在 4 ℃ 冰箱中,直至GC-MS分析。

    • 微波辅助水蒸气蒸馏后,获得的番石榴叶精油用正己烷 (1:100, v/v) 稀释,然后在Agilent 7890A-7000B气质联用仪(Agilent Technologies, Palo Alto, CA, 美国)对组分进行分析,具体操作步骤和参数见文献[10]中所述。基于精油样品与已知的类似化合物数据库(Wiley,质谱库,NIST05)的比较和质谱文献数据中的质谱碎片模式,确定精油的化学成分。此外,采用归一化法计算精油的百分比组成。

    3.   结果与讨论
    • 以纯水为溶剂,液料比分别为4、6、8、10和12 mL·g−1,微波辐照功率为385 W,微波辐照时间为30 min, 实验结果如图1所示。液料比4 mL·g−1时,液料比过小,植物基质中的可溶成分以高浓度溶解在溶剂中,不利于挥发性成分的传质。当液料比增加,达到6 mL·g−1时,精油的得率趋于最大;继续增加液料比,精油得率几乎没有增加。随着液料比变大,增加了水蒸气蒸馏过程的能耗和废水处理量,造成浪费。因此,在接下来的实验中,选择6 mL·g−1作为液料比。

      Figure 1.  Effect of liquid-solid ratio on the yield of essential oil

    • 研究发现,微波辐照功率对番石榴叶精油的得率有显著影响,见图2。本实验选择液料比为6 mL·g−1,微波辐照时间为30 min。当微波辐照功率从 230 W 增加到 700 W 时,精油的得率显著增加。这种得率的增加归因于微波辐照能量可以提高水渗透到植物基质中的程度。通过这种方式,水可以通过分子与电磁场的相互作用有效地传递给目标物,从而将能量快速传递给溶剂和基质,并迅速提取目标成分。在本实验仪器使用功率范围内,功率越大则精油的得率越高。当微波功率超过540 W时,精油得率增加趋势变缓。微波功率越大,能耗也越高,物料在快速受热下容易造成局部受热不均而使目标物产生异构化或者降解。因此,我们确定微波辐照功率540 W为适宜的条件。

      Figure 2.  Effect of microwave irradiation power on the yield of essential oil

    • 液料比6 mL·g−1、微波辐照功率700 W的条件下,在10~60 min的范围内研究了微波辐照时间对精油得率的影响。根据图3所示的结果,随着微波辐照时间从 10 min增加到 40 min,精油的得率增加较明显。当微波辐照时间从 40 min增加到 60 min时精油的得率增加趋势变缓。过长的微波辐照时间增加了能耗,使整个操作的效率变低,因此,微波辐照时间以适度为好。因此,40 min的微波辐照时间为佳。

      Figure 3.  Effect of microwave irradiation time on the yield of essential oil

    • 精确称取50.0 g番石榴叶粉末,采用液料比6 mL·g−1、微波辐照功率540 W、微波辐照时间40 min为提取工艺,精油得率为31.76 ± 1.45 mL·kg−1

    • 精油成分采用GC-MS分析,微波辅助水蒸气蒸馏法制备的番石榴叶精油结果如表1所示。共鉴定出17种化合物,占总挥发性化合物的99.46%。从 17 种挥发性成分的 相对百分含量值来看,石竹烯(Caryophyllene)、菖蒲烯A(Calamenene A)、乙酸橙花酯(Nerolidyl acetate)和胡麻烯环氧化物(Humulene epoxide)占比较大,其中石竹烯含量达 28% 以上,与文献报道一致[12]

      序号.a化合物保留指数鉴定方法分子式相对含量/%
      1Tetradecane235MSbC14H300.43
      2Copaene1382RIc, MSC15H247.12
      3Caryophyllene1428RI, MSC15H2428.70
      4γ-Muurolene1485RI, MSC15H241.84
      5α-Muurolene1490RI, MSC15H241.55
      6Nerolidyl acetate1494RI, MSC17H28O22.01
      7β-Selinene1497RI, MSC15H240.56
      8Eremophilene1502RI, MSC15H247.52
      91,5,9,9-tetramethyl-, Z,Z,Z-1,4,7,-Cycloundecatriene,1517RI, MSC15H243.99
      10Calamenene A1521RI, MSC15H2214.21
      11β-Bisabolene1533RI, MSC15H241.37
      12γ-Cadinene1542RI, MSC15H241.22
      13Isocaryophillene1567RI, MSC15H242.52
      14Humulene epoxide1606RI, MSC15H24O8.83
      15Longifolenaldehyde1647RI, MSC15H24O5.59
      16Nerolidyl acetate1695RI, MSC17H28O210.79
      17cis-9-Hexadecenal1750RI, MSC16H30O1.22
      总鉴定化合物 99.46
      总萜烯71.02
      总含氧萜   28.44
      a 依据 HP-5MS 毛细管柱流出顺序.
      b 根据 NIST02 质谱数据库确定.
      c 根据文献中化合物在 HP-5MS 毛细管柱的保留指数确定.

      Table 1.  Chemical composition analysis of the essential oil extracted from Psidium guajava the leaves of by GC–MS analysis.

    4.   结论
    • 本文成功建立了一种绿色高效的微波辅助蒸馏提取法从番石榴叶中提取精油的方法。以纯水为溶剂,最佳工艺条件为:液料比6 mL·g−1,微波辐照功率540 W,微波辐照时间40 min。在优化条件下,精油得率为31.76 ± 1.45 mL·kg−1。所得精油的GC-MS分析表明,该精油的主要成分为石竹烯(Caryophyllene)、菖蒲烯A(Calamenene A)、乙酸橙花酯(Nerolidyl acetate)和胡麻烯环氧化物(Humulene epoxide)等。石竹烯用于调配丁香、胡椒、肉豆蔻、柑橘、药草等食用香精,也可用于合成其他香料,如用来合成乙酰基石竹烯等更有价值的香料。乙酸橙花酯主要用以配制生梨、苹果、柠檬、桃子、树莓、柑橘类等水果型香精。与传统的水蒸气蒸馏方法相比,微波辅助蒸馏提取法具有收率高、耗时短、能耗低等优点,被认为是从植物基质中分离精油的潜在有效和可持续的替代技术。

Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return