WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 43 Issue 4
Aug.  2022
Article Contents
Turn off MathJax

LIU X, JIANG L, ZHU W Y, et al. Effects of density regulation on Chimonobambusa pachystachys leaf nitrogen, phosphorus nutrient characteristics and bamboo shoot yield[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(4): 103−108 doi: 10.12172/202110030001
Citation: LIU X, JIANG L, ZHU W Y, et al. Effects of density regulation on Chimonobambusa pachystachys leaf nitrogen, phosphorus nutrient characteristics and bamboo shoot yield[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(4): 103−108 doi: 10.12172/202110030001

Effects of Density Regulation on Chimonobambusa pachystachys Leaf Nitrogen, Phosphorus Nutrient Characteristics and Bamboo Shoot Yield


doi: 10.12172/202110030001
More Information
  • Corresponding author: wenyafeng7107@163.com
  • Received Date: 2021-10-03
    Available Online: 2022-06-27
  • Publish Date: 2022-08-23
  • Density regulation plays a vital role in maintaining forest trees nutrient balance and improving forest land productivity. Five kinds of density regulation (CK: 100,000 culms hm−2, D1: 40,000 culms hm−2, D2: 50,000 culms hm−2, D3: 60,000 culms hm−2, and D4: 70,000 culms hm−2) were set in a pure forest of Chimonobambusa pachystachys in Gulin County, Sichuan Province. The Chimonobambusa pachystachys leaf nitrogen, phosphorus content, and bamboo shoot yield and their correlation were studied under five different densities. The results showed that the ratio of nitrogen to phosphorus in the leaves of Chimonobambusa pachystachys under all treatments was greater than 16, indicating that the growth of Chimonobambusa pachystachys was easily restricted by phosphorus. D1 and D2 treatments significantly reduced leaf nitrogen content, D3 and D4 treatments significantly increased leaf phosphorus content but significantly reduced leaf nitrogen to phosphorus ratio and alleviated the phosphorus limitation. D3 treatment significantly increased Chimonobambusa pachystachys bamboo shoot yield by 21.60%, and the bamboo shoot yield was 3690.05 kg hm−2 a−1. The yield of bamboo shoots was significantly positively correlated with leaf nitrogen and phosphorus content, and was significantly negatively correlated with leaf nitrogen and phosphorus ratio. The results indicated that the growth of Chimonobambusa pachystachys in the study area was easily restricted by phosphorus, so it was appropriate to apply phosphorus fertilizer to bamboo forest. Density regulation significantly changed the nitrogen and phosphorus nutrient characteristics in the leaves of Chimonobambusa pachystachys. When the density of standing bamboos in the study area was reserved at 60,000 hm−2, a higher bamboo shoot yield could be obtained.
  • 加载中
  • [1] Kershaw J, Richards E, Mccarter J, et al. Spatially correlated forest stand structures: a simulation approach using copulas[J]. Computers and Electronics in Agriculture, 2010, 74(01): 120−128. doi: 10.1016/j.compag.2010.07.005
    [2] 刘雄,谌立贞,谭靖星,等. 立竹密度对古蔺县方竹林笋产量的影响[J]. 四川林业科技,2018(6):40−43. doi: 10.16779/j.cnki.1003-5508.2018.06.008
    [3] 吴福忠,王开运,杨万勤,等. 缺苞箭竹密度对其生物量分配格局的影响[J]. 应用生态学报,2005(6):991−995. doi: 10.3321/j.issn:1001-9332.2005.06.002
    [4] 吴福忠,鲁叶江,杨万勤,等. 缺苞箭竹密度对养分元素贮量、积累与分配动态的影响[J]. 生态学报,2005(7):1663−1669. doi: 10.3321/j.issn:1000-0933.2005.07.019
    [5] 吴福忠,王开运,杨万勤,等. 密度对缺苞箭竹凋落物生物元素动态及其潜在转移能力的影响[J]. 植物生态学报,2005(4):537−542. doi: 10.3321/j.issn:1005-264X.2005.04.003
    [6] 鲁叶江,吴福忠,杨万勤,等. 土壤养分库对缺苞箭竹叶片养分元素再分配的影响[J]. 生态学杂志,2005(9):1058−1062. doi: 10.3321/j.issn:1000-4890.2005.09.017
    [7] Elser J, Bracken M, Cleland E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135−1142. doi: 10.1111/j.1461-0248.2007.01113.x
    [8] Fujita Y, Venterink H, Van B, et al. Low investment in sexual reproduction threatens plants adapted to phosphorus limitation[J]. Nature, 2013, 505(7481): 82−86.
    [9] Güsewell S. N : P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
    [10] Weiner J, Freckleton R. Constant final yield[J]. Annual Review of Ecology, Evolution, and Systematics, 2010, 41(1): 173−192. doi: 10.1146/annurev-ecolsys-102209-144642
    [11] Capelli M, Lauri P-É, Normand F. Deciphering the costs of reproduction in Mango-Vegetative growth matters[J]. Frontiers in Plant Science, 2016: 07.
    [12] 张雨峰,代丽,谢寅峰,等. 不同海拔金佛山方竹出笋及幼竹生长特性[J]. 南京林业大学学报(自然科学版),2019(5):199−203. doi: 10.3969/j.issn.1000-2006.201811065
    [13] 毛闻君,董文渊,赵金发,等. 开花刺竹子林分生长和天然更新状况调查[J]. 世界竹藤通讯,2008(6):25−28. doi: 10.3969/j.issn.1672-0431.2008.06.007
    [14] 潘金灿. 闽南毛竹林合理经营密度的研究[J]. 经济林研究,2000(2):20−22. doi: 10.3969/j.issn.1003-8981.2000.02.007
    [15] 杜灵丽,张迎辉,陈礼光,等. 苦竹立竹数与年龄结构对笋产量的影响[J]. 福建农林大学学报(自然科学版),2013(6):623−627.
    [16] 张卓文,蔡崇法,沈宝仙,等. 笋用雷竹林引种后新立竹生长规律与经营密度研究[J]. 华中农业大学学报,2004(3):348−351. doi: 10.3321/j.issn:1000-2421.2004.03.018
    [17] 陈存及,代全林,曹永慧,等. 茶秆竹林密度效应研究[J]. 福建林学院学报,2001(2):101−104. doi: 10.3969/j.issn.1001-389X.2001.02.002
    [18] 方金豹, 庞荣丽, 郭琳琳, 等. NY/T2017-2011植物中氮、磷、钾的测定[S]. 郑州: 农业部果品及苗木质量监督检测测试中心, 2001.
    [19] Agren I, Andersson O. Terrestrial ecosystem ecology principles and applications[J]. The Forestry Chronicle, 2012(3): 363−364.
    [20] Yang W, Wang K, Kellomäki S, et al. Annual and monthly variations in litter macronutrients of three subalpine forests in western China[J]. Pedosphere, 2006, 16(6): 788−798. doi: 10.1016/S1002-0160(06)60115-X
    [21] 郭子武,陈双林,杨清平,等. 密度对四季竹叶片C、N、P化学计量和养分重吸收特征的影响[J]. 应用生态学报,2013(4):893−899. doi: 10.13287/j.1001-9332.2013.0243
    [22] Grassi G, Meir P, Cromer R, et al. Photosynthetic parameters in seedlings of <italic>Eucalyptus grandis</italic> as affected by rate of nitrogen supply[J]. Plant, Cell and Environment, 2002, 25(12): 1677−1688. doi: 10.1046/j.1365-3040.2002.00946.x
    [23] 刘雄,向玲,赵丹蕊,等. 不同海拔金佛山方竹叶片氮磷化学计量特征及影响因素[J]. 应用与环境生物学报,2021:1−11. doi: 10.19675/j.cnki.1006-687x.2021.02054
    [24] Aerts R, Chapin F. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 1999, 30: 1−67.
    [25] Elser J, Sterner R, Gorokhava E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6): 540−550. doi: 10.1046/j.1461-0248.2000.00185.x
    [26] Agbede T. Tillage and fertilizer effects on some soil properties, leaf nutrient concentrations, growth and sweet potato yield on an <italic>Alfisol</italic> in southwestern Nigeria[J]. Soil and Tillage Research, 2010, 110(1): 25−32. doi: 10.1016/j.still.2010.06.003
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(2)

Article views(759) PDF downloads(22) Cited by()

Related
Proportional views

Effects of Density Regulation on Chimonobambusa pachystachys Leaf Nitrogen, Phosphorus Nutrient Characteristics and Bamboo Shoot Yield

doi: 10.12172/202110030001
  • 1. College of Forestry, Sichuan Agricultural University, Chengdu 611130, China;
  • 2. Sichuan Forestry Survey and Design Institute, Chengdu 611130, China;
  • 3. Gulin County State-owned Forest Farm, Luzhou 646500, China
  • Corresponding author: wenyafeng7107@163.com

Abstract: Density regulation plays a vital role in maintaining forest trees nutrient balance and improving forest land productivity. Five kinds of density regulation (CK: 100,000 culms hm−2, D1: 40,000 culms hm−2, D2: 50,000 culms hm−2, D3: 60,000 culms hm−2, and D4: 70,000 culms hm−2) were set in a pure forest of Chimonobambusa pachystachys in Gulin County, Sichuan Province. The Chimonobambusa pachystachys leaf nitrogen, phosphorus content, and bamboo shoot yield and their correlation were studied under five different densities. The results showed that the ratio of nitrogen to phosphorus in the leaves of Chimonobambusa pachystachys under all treatments was greater than 16, indicating that the growth of Chimonobambusa pachystachys was easily restricted by phosphorus. D1 and D2 treatments significantly reduced leaf nitrogen content, D3 and D4 treatments significantly increased leaf phosphorus content but significantly reduced leaf nitrogen to phosphorus ratio and alleviated the phosphorus limitation. D3 treatment significantly increased Chimonobambusa pachystachys bamboo shoot yield by 21.60%, and the bamboo shoot yield was 3690.05 kg hm−2 a−1. The yield of bamboo shoots was significantly positively correlated with leaf nitrogen and phosphorus content, and was significantly negatively correlated with leaf nitrogen and phosphorus ratio. The results indicated that the growth of Chimonobambusa pachystachys in the study area was easily restricted by phosphorus, so it was appropriate to apply phosphorus fertilizer to bamboo forest. Density regulation significantly changed the nitrogen and phosphorus nutrient characteristics in the leaves of Chimonobambusa pachystachys. When the density of standing bamboos in the study area was reserved at 60,000 hm−2, a higher bamboo shoot yield could be obtained.

  • 合理的林分结构是林地丰产的基础,空间结构调整是森林经营中促进林木生长和养分平衡,提高林地生产力的主要营林措施之一[1]。密度调控是调整林分空间结构的关键技术,决定着林木个体间的竞争关系,影响着林地光、热、水、气等环境因子的分配[2, 3]和植被-土壤养分循环过程[4]。通常,密度调控会直接改变林分植被的生长空间[2]、地上生物量[3]和凋落物养分归还量[4],进而影响植株叶片的养分特征、养分重吸收率[5]和土壤养分库的大小[6]。养分是林木生长和发育的物质基础,如氮(N)是植物营养生长的主要限制养分[7],磷(P)与植物生殖生长和养分积累密切联系[8],氮磷比率则表征着植物的养分均衡特征[9]。密度调控下植物氮、磷养分特征的变化不仅会影响植被生长,也会导致林产品产量的改变[10]。高密度下植物可利用养分和生长空间的竞争加剧导致营养生长过弱,或低密度下养分盈余引起的营养生长过旺均会导致减产[11]。因此,开展林分密度调控研究,确定营林适宜密度,对于维持林木养分平衡和提高林地生产力具有重要意义。

    刺竹子(Chimonobambusa pachystachys)隶属禾本科竹亚科方竹属,在四川西南地区和贵州北部广泛分布,适生海拔为1000~2000 m,是我国重要的秋笋竹类[12]。刺竹子竹笋富含蛋白质、氨基酸和矿质元素,是一种绿色营养的森林蔬菜,被美誉为“竹类之冠”[13]。目前,已有学者开展了密度调控对竹林笋产量影响的研究,但这些研究主要集中在毛竹(Phyllostachys edulis[14]、苦竹(Pleioblastus amarus[15]、雷竹(Phyllostachys violascens[16]和茶竿竹(Pseudosasa amabilis[17]等林分,而有关密度调控对刺竹子养分和竹笋产量影响的研究缺乏。基于此,本研究以四川盆地南缘刺竹子笋用纯林为对象,研究了密度调控对竹林叶片氮、磷养分特征和笋产量的影响,以期为刺竹子笋用林的养分管理和竹笋产量的提高提供参考。

    • 研究区位于四川省泸州市古蔺县国有林场(E105°34′—105°52′,N27°56′—28°11′)。该区域地处大娄山褶皱带西段北侧,属四川盆地南缘山地,为亚热带湿润季风气候,≥ 0 ℃年积温5200 ℃,多年均温14.5 ℃,1月平均气温5.3 ℃,7月平均气温26.6 ℃,无霜期约200 d,年平均降雨量1100 mm。该区域温凉高湿,秋冬多雾,空气湿度大,9月—11月(出笋期)日均空气湿度 ≥ 95%。研究区内竹类资源以刺竹子和毛竹为主,灌草多为铃木冬青(Ilex suzukii)、黄毛楤木(Aralia chinensis)、马桑(Coriaria nepalensis)、悬钩子属(Rubus)、蕨类(Pteridophyta)和蒿类(Artemisia)等。土壤类型为黄棕壤,土层厚度大于40 cm,呈酸性。试验林分为刺竹子纯林,郁闭度在0.9以上,林下无灌草。平均立竹密度为10万株·hm−2。试验林分基本情况如表1

      平均密度/(万株·hm−2
      Average density
      郁闭度
      Canopy closure
      平均地径/cm
      Average ground diameter
      平均高/m
      Average plant height
      年龄结构/(1 a∶2 a∶ ≥ 3 a)
      Age structure
      100.91.22.72∶3∶5

      Table 1.  Basic situation of Chimonobambusa pachystachys forest stand.

    • 2017年6月在研究区海拔1780 ± 50 m处选择具有代表性的刺竹子纯林为对象,在林内建立15个5 m×5 m的观测样方并编号,样方间设置大于3 m的缓冲带。试验设置了5种密度水平:即10 万株·hm−2 (CK)、4万株·hm−2(D1)、5万株·hm−2(D2)、6万株·hm−2(D3)和7万株·hm−2(D4),每个处理3个重复,随机分布于15个样方内。

      本研究中密度调控采用间伐手段进行,间伐时间为2017年6月、2018年6月和2019年6月,每次间伐时砍伐密集生长、竞争激烈区域的成竹,保留长势良好的成竹,使保留下的刺竹子数量达到设计密度并均匀分布在样方内,将间伐剩余物清除至样地外。

    • 在2019年9月15日—10月30日期间(根据前期调查,刺竹出笋期在9月中旬至10月底),每间隔2 d进入试验样地采集每个样方中高于土面30 cm~60 cm的竹笋(结合当地采笋习惯,林地中 > 60 cm的竹笋为留竹),并使用电子计价秤(型号:HY-799 ACS,精度:0.01 kg)就地称取带皮鲜笋质量,采集笋产量数据。

    • 2019年6月下旬进行叶片样品的采集。在各样方中随机选择3株2~3年生,无病虫害的刺竹子为采样株,采集植株上、中、下部位,东、南、西、北4个方向的叶片各50 g左右,混合均匀后置于冰盒中尽快带回实验室。将带回的叶片样品经去离子水冲洗后置于105 ℃的烘箱中杀青0.5 h,将杀青后的叶片在80 ℃下烘干至恒重,然后粉碎,研磨过0.15 mm筛用于氮、磷含量的测定。

    • 叶片氮含量采用硫酸-高氯酸消煮法消煮后在全自动间断化学分析仪(法国 Alliance Smart Chem 200)上分析测定;叶片磷含量采用硫酸-高氯酸-钼锑抗比色法测定。所有样品均进行水分系数的转换,测定结果以单位质量的元素含量(g·kg−1)表示[18]

    • 运用Excel 2019进行数据整理和绘图,应用IBM SPSS 25进行数据统计分析。采用单因素方差分析法(one-way ANOVA)分析密度调控对刺竹子叶片养分特征和笋产量进行方差分析,采用Pearson(双侧)相关性分析对叶片养分特征与笋产量进行相关性分析。

    2.   结果与分析
    • 图1可知,各密度处理下刺竹子叶片氮、磷含量和氮磷比分别介于21.49~26.85 g·kg−1、0.81~1.23 g·kg−1和21.42~28.90之间。与CK相比,D1和D2处理显著降低了叶片氮含量(P < 0.05),对叶片磷含量和氮磷比无显著影响(P > 0.05);D3和D4处理显著增加了叶片磷含量(P < 0.05),显著降低了叶片氮磷比(P < 0.05),对叶片氮含量无显著影响(P > 0.05)。

      Figure 1.  Effects of density regulation on leaf nitrogen and phosphorus nutrient characteristics of Chimonobambusa pachystachys

    • 图2可知,各处理下刺竹子笋产量介于2761.42~3690.05 kg·hm−2·a−1之间。与CK相比,D1和D2处理的笋产量分别降低了273.15·kg·hm−2·a−1和81.40·kg·hm−2·a−1,减幅分别为9.00%和2.68%;D3和D4处理的笋产量分别提高了655.48·kg·hm−2·a−1和225.54·kg·hm−2·a−1,增幅分别为21.60%和7.43%。方差分析表明,D3处理显著提高了刺竹子笋产量(P < 0.05),其余处理对刺竹子笋产量无显著影响(P > 0.05)。

      Figure 2.  Effect of density regulation on Chimonobambusa pachystachys bamboo shoot yields

    • 表2可知,刺竹子笋产量与叶片氮、磷含量呈显著正相关(P < 0.01),与叶片氮磷比呈显著负相关(P < 0.01)。

      养分
      Nutrients
      叶氮含量

      Leaf N content /
      (g·kg−1
      叶磷

      Leaf P content /
      (g·kg−1
      叶氮磷比

      Leaf N : P
      笋产量 Yield/
      (kg·hm−2·a−1
      0.632*0.809**−0.741**
        *表示在0.05水平显著;**表示在0.01水平显著。
        * Means significant at the 0.05 level; ** means significant at the 0.01 level.

      Table 2.  Correlation analysis between bamboo shoot yield and leaf nutrients

    3.   讨论
    • 林分密度调节着植被生境的光照、水分和土壤养分等环境因子,是林木叶片养分和地上生产力的重要影响因素[17, 19]。本研究中,刺竹子叶片氮、磷含量随立竹密度的增加整体表现出先上升后下降的趋势(见图1A图1B)。其原因是密度调控直接改变了林地内的立竹数量和生物量分配格局[6],改变了林地的凋落物分解量和养分归还过程,进而对叶片氮、磷含量产生了影响。有研究表明,森林植物吸收的养分中约90%来自凋落物分解后归还给土壤的养分[19],低密度下竹林凋落物较少,养分归还量低,植物可利用的养分来源减少,因而植株叶片氮、磷养分含量降低;而高密度下立竹数量增加会加剧养分的竞争和消耗,竹林总体上干物质积累较多,在一定程度上引起养分稀释[20],并且立竹密度增大也会引起土壤速效养分需求量的增加,导致土壤养分的可获得性和生物有效性降低,从而引起植株养分吸收限制和获取量的减少[21],因而叶片氮、磷含量呈下降趋势。值得注意的是,本研究中D3和D4处理下叶片氮含量与CK差异不显著(见图1A),其原因是相较于低密度处理(D1和D2),高密度(D3、D4和CK)处理的竹林中植株可能同化更多的氮素来增强其羧化能力以竞争更多光照和生存空间[22],光合羧化能力的增强可能是导致高密度下竹株叶片氮含量未呈现显著差异的原因。

      植物叶片的氮磷比值不仅反映着植物群落的养分利用情况,也能对林地生产力的限制性元素提供指示[9]。本研究中各处理下刺竹子叶片氮磷比均大于16(见图1C),表明研究区刺竹子生长易受到磷素的限制[9],这与本课题组在同区域的前期研究[23]和大多数亚热带区域植物养分限制的研究结果[24]一致。因此,可对研究区刺竹子林分适当施用磷肥。本研究还发现,密度调控显著改变了刺竹子叶片的氮磷比。郭子武等对不同密度下四季竹养分重吸收特征的研究结果也表明,为适应不同立竹密度下养分和空间资源的差异,植物会调节其营养元素的重吸收量[5,21],进而改变植株叶片的氮磷比。生长速率假说指出,生物体较低的氮磷比有利于核糖体快速合成蛋白质[25],促进植被生长。本研究中,D3和D4立竹密度下刺竹子叶片氮磷比显著低于其他处理,表明将立竹密度控制在D3和D4水平时氮、磷养分较为均衡,有利于研究区刺竹子的生长。

      林分结构和植株养分含量是刺竹子笋产量的关键影响因子[2]。本研究中,刺竹子的竹笋产量随林分密度的增大呈先增加后减少的规律,当立竹密度为D3时竹笋产量达到最大值(见图2)。一方面是密度调控直接改变了立竹的空间结构和母竹数量,进而影响了刺竹子林分的笋产量。高密度下虽然母竹数量较多,但竹株对林地空间与养分的竞争加剧[4]会导致竹笋减产;而在低密度下虽然林地空间充足,立竹竞争小,但母竹数量减少也会导致出笋数量的下降,引起笋产量降低[2]。另一方面,密度调控通过调节竹株的氮、磷养分状况改变了竹笋产量(见图1)。一般而言,植物体内养分含量越高,养分越均衡,其地上生产力也就越高[26]。本研究中,相关性分析结果也表明,刺竹子笋产量与叶片氮、磷含量呈正相关,与叶片氮磷比呈负相关关系(见表2),D3处理下刺竹子叶片氮、磷含量高,氮磷比低,因此立竹密度为D3时笋产量较高。因此,研究区刺竹子立竹密度保留在6万株 hm−2时有利于笋产量的提高。

    4.   结论
    • 研究区刺竹子生长易受到磷素限制,可对竹林适当施磷肥。密度调控显著改变了刺竹子叶片氮、磷养分特征,当立竹密度为6~7万株·hm−2时养分限制情况得到缓解。刺竹子叶片氮、磷养分含量与笋产量呈正相关关系,氮磷比与笋产量呈负相关关系。当立竹密度调控为6万株·hm−2时,刺竹子的笋产量得到了显著提高。竹笋产量除了受到立竹密度、植株养分的影响外,也与气候、土壤肥力等环境因子密切联系,在今后的研究中可进一步探讨这些因子与笋产量的关系,为刺竹子笋用林的可持续经营提供依据。

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return