WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 43 Issue 3
Jun.  2022
Article Contents
Turn off MathJax

JIANG L, QIN F C, LI L, et al. Effects of different plantations on soil structure and nutrients in loess hilly and gully region based on fractal dimension[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(3): 71−79 doi: 10.12172/202108160001
Citation: JIANG L, QIN F C, LI L, et al. Effects of different plantations on soil structure and nutrients in loess hilly and gully region based on fractal dimension[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(3): 71−79 doi: 10.12172/202108160001

Effects of Different Plantations on Soil Structure and Nutrients in Loess Hilly and Gully Region Based on Fractal Dimension


doi: 10.12172/202108160001
More Information
  • Corresponding author: qinfc@126.com
  • Received Date: 2021-08-16
    Available Online: 2022-03-11
  • Publish Date: 2022-06-09
  • The fractal characteristics of soil particles of different plantations and their relationship with soil structure and nutrients in loess hilly and gully region of Qingshuihe county were studied, and the effects of different plantations on soil structure and nutrients in Qingshuihe county were compared with the fractal dimension of soil volume, so as to understand the soil structure and nutrient status of different plantations and provide reference for the selection of local artificial forests and rational management. Nine kinds of plantations in the study area were selected as the research objects, and the woodland free land was used as the control. The particle size distribution of soil was measured by laser particle size analyzer and the fractal dimension was calculated. The nutrient status was evaluated by single index, and the correlation between the fractal dimension of soil and nutrient was analyzed. The fractal dimension of soil volume of plantations in the study area was between 2.1785-2.3192, and the fractal dimension of soil volume was as follows: Pinus tabuliformis Carr.×Larix gmelinii (Rupr.) Kuzen. > Larix gmelinii (Rupr.) Kuzen. and PinPinus tabuliformis Carr. × Armeniaca sibirica (L.) Lam. (P>0.5) > Hippophae rhamnoides Linn. × Caragana korshinskii Kom., Armeniaca sibirica (L.) Lam. × Caragana korshinskii Kom., Hippophae rhamnoides Linn. (P>0.5) > Pinus tabuliformis Carr., Caragana korshinskii Kom., Armeniaca sibirica (L.) Lam. (P>0.5) > bare land. The fractal dimension of soil volume was positively correlated with clay, alkali-hydrolyzable nitrogen, available potassium and available phosphorus (P<0.5), and negatively correlated with sand (P<0.5), but not significantly correlated with silt and organic matter. There was no significant difference between nutrient evaluation results and fractal dimension of different plantations. The plantations in the study area had remarkable effects for improving soil structure and nutrients, and Pinus tabuliformis Carr.×Larix gmelinii (Rupr.) Kuzen., PinPinus tabuliformis Carr. × Armeniaca sibirica (L.) Lam. mixed forest and Larix gmelinii (Rupr.) Kuzen. pure forest had great impacts on soil structure and nutrients, and the improvement effect was the best.
  • 加载中
  • [1] Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation. Soil Science Society of American Journal , 1989 , 53 ( 4 ) : 987-996.
    [2] 李德成,张桃林. 中国土壤颗粒组成的分形特征研究[J]. 土壤与环境,2000,9(4):263−265.
    [3] Manderlbrot, B.B. , Fractals: Form, chance, and dimension [M]. SanFrancisco: Free-man, 1977.
    [4] Tyler S W, Wheatcraft S W. Fractal scaling of soil particle size distributions: analysis and limitations. Soil Science Society of American Journal, 1992 , 56( 2) : 362-369.
    [5] 杨培岭,罗远培,石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报,1993,38(20):1896−1899. doi: 10.3321/j.issn:0023-074X.1993.20.010
    [6] 王国梁,周生路,赵其国. 土壤颗粒的体积分形维数及其在土地利用中的应用[J]. 土壤学报,2005,42(4):545−550. doi: 10.3321/j.issn:0564-3929.2005.04.003
    [7] 杨金玲,李德成,张甘霖, 等. 土壤颗粒粒径分布质量分形维数和体积分形维数的对比[J]. 土壤学报,2008,45(3):413−419. doi: 10.3321/j.issn:0564-3929.2008.03.005
    [8] 董 雪,迟悦春,许德浩,等. 西鄂尔多斯荒漠灌丛土壤粒径分形特征与养分的耦合关系[J]. 草业科学,2020,37(12):2403−2413.
    [9] 雷泽勇,郭 晗,班云云. 露天矿排土场不同土地利用状况下土壤分形维数特征研究[J]. 干旱区资源与环境,2014,28(4):168−173.
    [10] 夏江宝,张淑勇,王荣荣,等. 贝壳堤岛3种植被类型的土壤颗粒分形及水分生态特征[J]. 生态学报,2013,33(21):7013−7022.
    [11] 丁 杨,张建军,茹豪,等. 晋西黄土区不同林地土壤团聚体分形维数特征与土壤养分相关关系[J]. 北京林业大学报,2014,34(4):42−46.
    [12] 杨慧玲,高 鹏,王华伟,等. 大黑山生态修复区不同植被类型土壤颗粒的分形特征[J]. 中国水土保持科学,2009,7(5):52−57. doi: 10.3969/j.issn.1672-3007.2009.05.010
    [13] 杨振奇,秦富仓,于晓杰,等. 砒砂岩区小流域林地土壤机械组成与分形维数关系[J]. 土壤通报,2019,50(4):823−82.
    [14] 雷加富, 刘 红, 王恩玲. 生态公益林建设导则[M]. 北京: 中国标准出版社, 2001.
    [15] 张海廷,时延庆. 山东省不同土地利用方式土壤颗粒组成及其分形维数特征[J]. 水土保持研究,2018,25(1):126−138.
    [16] 刘 姣,刘广全,杨永智,等. 毛乌素沙地南缘臭柏群落土壤肥力评价[J]. 土壤通报,2021,52(1):129−138.
    [17] 叶回春,张世文,黄元仿,等. 北京延庆盆地农田表层土壤肥力评价及其空间变异[J]. 中国农业科学,2013,46(5):3151−3160.
    [18] 唐炎林,邓晓保,李玉武,等. 西双版纳不同林分土壤机械组成及其肥力比较[J]. 中南林业科技大学学报.,2007,27(01):70−75.
    [19] 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998.
    [20] 刘 畅,师学义,张美荣. 黄土高原区复垦村庄土壤肥力评价-以山西省泽州县西郜村为例[J]. 水土保持研究,2017,24(1):155−160.
    [21] 李易珺,杨自辉,郭树江,等. 青土湖干涸湖底2种典型固沙植物群落土壤粒径分布分形特征与养分关系研究[J]. 西北林学院学报,2020,35(5):26−67.
    [22] 姜 坤,秦海龙,卢 瑛,等. 广东省不同母质发育土壤颗粒分布的分形维数特征[J]. 水土保持学报,2016,30(6):319−324.
    [23] 黎宏祥,王彬,王玉杰,等. 不同林分类型对土壤团聚体稳定性及有机碳特征的影响[J]. 北京林业大学学报,2016,38(5):84−91.
    [24] 张吉科,林纬. 沙棘根瘤的形成与固氮能力[J]. 沙棘,1995,8(3):3−9.
    [25] 热依拉·木民,玉米提·哈力克,塔依尔江·艾山,等. 基于分形维数的不同林龄新疆杨对土壤理化特性的影响分析[J]. 土壤通报,2018,49(2):313−318.
    [26] 王清奎, 汪思龙, 于小军, 等. 杉木与阔叶树叶凋落物混合分解对土壤活性有机质的影响[J]. 应用生态学报, 18(6): 1203-1207.
    [27] 李 茜. 黄土高原不同树种枯落物混合分解对土壤性质的影响[D]. 杨凌: 西北农林科技大学, 2013.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(4)

Article views(348) PDF downloads(8) Cited by()

Related
Proportional views

Effects of Different Plantations on Soil Structure and Nutrients in Loess Hilly and Gully Region Based on Fractal Dimension

doi: 10.12172/202108160001
  • College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010000, China
  • Corresponding author: qinfc@126.com

Abstract: The fractal characteristics of soil particles of different plantations and their relationship with soil structure and nutrients in loess hilly and gully region of Qingshuihe county were studied, and the effects of different plantations on soil structure and nutrients in Qingshuihe county were compared with the fractal dimension of soil volume, so as to understand the soil structure and nutrient status of different plantations and provide reference for the selection of local artificial forests and rational management. Nine kinds of plantations in the study area were selected as the research objects, and the woodland free land was used as the control. The particle size distribution of soil was measured by laser particle size analyzer and the fractal dimension was calculated. The nutrient status was evaluated by single index, and the correlation between the fractal dimension of soil and nutrient was analyzed. The fractal dimension of soil volume of plantations in the study area was between 2.1785-2.3192, and the fractal dimension of soil volume was as follows: Pinus tabuliformis Carr.×Larix gmelinii (Rupr.) Kuzen. > Larix gmelinii (Rupr.) Kuzen. and PinPinus tabuliformis Carr. × Armeniaca sibirica (L.) Lam. (P>0.5) > Hippophae rhamnoides Linn. × Caragana korshinskii Kom., Armeniaca sibirica (L.) Lam. × Caragana korshinskii Kom., Hippophae rhamnoides Linn. (P>0.5) > Pinus tabuliformis Carr., Caragana korshinskii Kom., Armeniaca sibirica (L.) Lam. (P>0.5) > bare land. The fractal dimension of soil volume was positively correlated with clay, alkali-hydrolyzable nitrogen, available potassium and available phosphorus (P<0.5), and negatively correlated with sand (P<0.5), but not significantly correlated with silt and organic matter. There was no significant difference between nutrient evaluation results and fractal dimension of different plantations. The plantations in the study area had remarkable effects for improving soil structure and nutrients, and Pinus tabuliformis Carr.×Larix gmelinii (Rupr.) Kuzen., PinPinus tabuliformis Carr. × Armeniaca sibirica (L.) Lam. mixed forest and Larix gmelinii (Rupr.) Kuzen. pure forest had great impacts on soil structure and nutrients, and the improvement effect was the best.

  • 土壤是一种由不同颗粒组成,具有不规则形状自相似结构的多孔介质,并且具有一定的分形特征[1-2]。分形理论最早由Mandelbort[3]提出,Tyler[4]将其引入土壤学的研究中,杨培岭用土壤重量分布来表征土壤颗粒的分形维数,他提出土壤粒径分布的分形维数反映了土壤粒径大小的影响和土壤质地的均一程度。分形维数越高则土壤结构越紧实反之则松散、通透性越好[5]。梁国栋[6]则提出了用土壤体积分数计算分形维数的方法,得到了与前者相同的结论。杨金玲[7]对以上两人采用的质量分形维数与体积分形维数方法进行了对比发现两种方法测得的分形维数值具有相关性(P<0.01),但对土壤分级增多后会略微降低体积分形维数值。因此在后来的董雪等[8-9]在研究中根据不同土壤粒径分级标准采用了不同的方法,他们的研究发现土壤分形维数不仅可以表征土壤质地,而且与土壤养分存在显著的相关性。在夏江宝等[10-13]的研究中通过分析比较不同植被类型下土壤分形特征及其与养分指标的相关性,以分形维数值来表征土壤质地和养分状况,进而提出改良和优化植被生长的建议。

    清水河县人工林是生态公益林 [14],由于单一种植或不合理配置模式导致固土保肥能力不足而形成水肥流失,不同林分质量差异明显,直接影响着土壤的结构和养分差异。研究区人工林位于黄河沿岸黄土丘陵沟壑区,土壤养分随流水冲刷流失较为严重,树种对土壤保水保肥能力显得尤为重要,对于这部分地区人工林土壤的结构和养分研究较少。在上述学者对其他地区土壤分形维数与养分的研究中,仅仅是对不同土地利用类型的养分含量与土壤颗粒体积及分形维数进行相关性分析,没有对土壤养分进行具体评价。土壤重量分布特征相比于体积分数来说,体积分数更容易通过激光粒度仪得到[15]。采用美国农业部的分级标准,将土壤划分粘粒、粉粒、砂粒3级,用土壤体积分形维数计算方法,通过计算激光粒度分析仪测得的不同人工林类型下、不同土层的土壤粒径的分形维数特征,在对土壤养分进行评价后,得到不同养分元素指标的隶属值和贡献率来评价不同林分类型的养分状况,再将土壤体积分形维数与土壤粒径、养分的相关分析,用土壤分形特征来评价不同人工林对土壤的结构及养分的影响,为生态公益林的树种选择及合理化经营提供参考依据。

    • 研究区位于清水河县黄土丘陵沟壑区北纬39°35′—40°11′,东经111°21′—112°07′之间,海拔在960 m~1 837 m之间,属于内蒙古高原与黄土高原交接处,以低山为主体,低缓沟壑、土石山和冲积平原并存的地貌类型。清水河县地处中温带,属半干旱典型的大陆性气候。主要特点为冬长夏短,寒冷干燥,风多雨少。降水主要集中在6-8月,占全年降水80%。黄土覆盖较厚,土壤类型主要有栗钙土、栗褐土、灰褐土。主要树种包括油松(Pinus tabuliformis Carr.)、落叶松(Larix gmelinii (Rupr.) Kuzen.)、山杏(Armeniaca sibirica (L.) Lam.)、柠条(Caragana korshinskii Kom.)、沙棘(Hippophae rhamnoides Linn.),森林覆盖率约为30.8%。

    • 在查阅文献资料和实地调查基础上,在研究区内选取分布范围广,立地条件为栗钙土、阳坡、海拔1200~1300 m,林龄>15年,郁闭度0.5~0.69,生长状况良好的典型林组,选择连续的林地一般在5 hm2以上,纯林包括油松、落叶松、山杏、沙棘、柠条,混交林包括沙棘×柠条,柠条×山杏,油松×山杏,油松×落叶松,无林地作为对照,共10个样地(见表1),所选人工林均在种植以后浇水外无人为影响。

      样地编号
      Plot number

      人工林类型
      Plantation type
      林龄/a
      Age
      郁闭度/覆盖度
      Coverage
      树高/m
      Tree height
      胸径/cm
      DBH
      枯落物层厚度/cm
      Litter layer thickness
      地理坐标
      Geographic coordinate
      Y1柠条170.552.1±0.5--0.4±0.139°42'12''N111°26'35''E
      Y2油松200.69.2±2.215.3±0.71.8±0.239°42'10''N111°26'36''E
      Y3沙棘180.650.6±0.2--0.6±0.139°51'25''N111°55'02''E
      Y4山杏200.553.3±1.210.5±0.31.0±0.139°54'06''N111°53'57''E
      Y5落叶松170.510.2±2.316.3±1.12.1±0.239°50'01''N111°37'16''E
      Y6柠条×沙棘180.692.0±0.8--0.9±0.139°51'07''N111°54'36''E
      Y7柠条×山杏170.652.2±0.6/
      3.4±1.5
      --/
      10.3±0.5
      1.1±0.139°51'25''N111°55'04''E
      Y8油松×山杏170.658.7±2.5/
      3.3±1.3
      15.5±0.7/
      10.2±0.2
      2.0±0.239°43'58''N111°25'35''E
      Y9油松×落叶松200.6510.5±2.3/
      10.5±2.5
      15.7±1.2/
      16.4±1.1
      2.3±0.239°42'17''N111°28'42''E
      Y10无林地----------39°44'21''N111°31'55''E

      Table 1.  Basic information of the sample plots

    • 采样时间为2020年8—9月。选取的样地每个随机设置30 m×30 m的3个作为重复。每个样地内采取五点取样法,将表层杂草、枯落物除去后,挖土壤剖面(1.2 m深×1.0 m宽),用环刀采集0~20 cm、20~40 cm和40~60 cm土样,带回实验室风干处理备用。

    • 将取回的土通过2 mm(10目)筛,分别混匀、称量后盛于广口瓶内。粒径分布测定采用马尔文 3000激光粒度分析仪。将土样过1 mm(16目)筛后采用碱解扩散法测碱解氮,碳酸氢钠浸提-钼锑比色法测速效磷,乙酸氨浸提-火焰光度法测定速效钾。测有机质含量,需将土通过0.25 mm(60目)筛后,再用重铬酸钾法测定[16]

    • 颗粒分级采用美国农业部土壤质地标准对土壤粒径进行分级:黏粒(<2 μm)、粉粒(2~50 μm)、砂粒(50~2 000 μm)。本研究采用王国梁等[6]采用的分形维数的计算方法:

      式中:r表示测量土壤颗粒直径,Rb为最大粒级土粒的直径,V(r<Rs)为小于Rs的累积土壤颗粒体积,VT为土壤各粒级体积的总和,D是土壤颗粒分布分形维数。计算方法为:首先求出土壤样品不同粒径(Rs)的体积比V(r<Rs)/VT和不同粒径比(Rs/Rb),同时对两者求对数。然后以lgV(r<Rs)/VT为纵坐标、以lgRs/Rb为横坐标作散点图并进行线性拟合,拟合后的直线回归方程的斜率为K=3-D,则分形维数D可求出。数据和绘图采用Excel2010和Spss23软件,用Excel2010对原始数据进行处理,绘制条形统计图。用Spss23软件对不同人工林、无林地的土壤粒径、分形维数、养分做方差分析,对土壤体积分形维数与粒径、养分做相关性分析。

    • 土壤养分单项评价指标常常被用于立地条件相似,相同的土地利用类型,用于描述单一养分指标对土壤养分的影响程度[17]。土壤中的氮、磷、钾对植物的生长发育影响显著,而碱解氮、有效磷、速效钾反映了土壤现实供应指标,另外,土壤有机质含量是土壤肥力的一个重要标志[18]。因此计算这四种指标对土壤养分的隶属值和贡献率,并得出不同林分类型的土壤养分。为了使养分各项指标具有可比性,需要将各项指标进行标准化处理,创建隶属度函数,计算隶属度值。将指标数据转化成0.1~1.0的无纲量化数值。对于离散程度较大的碱解氮、有机质、速效磷、速效钾则适用S型隶属度函数。计算公式:

      式中x为指标实际值,x1、x2为转折点取值。假定指标在一固定区间增长反映对树木生长的最大影响,高于或低于此区间,则影响变小。根据土壤养分分级标准和土壤普查数据及相关文献资料[19-20]x1、x2转折点取值见表2

      转折点
      Turning point
      有效磷/(mg·kg−1
      Available phosphorus
      速效钾/(mg·kg−1
      Available potassium
      碱解氮/(mg·kg−1)
      Alkali-hydrolyzable nitrogen
      有机质/(g·kg−1)
      Organic matter
      X11050515
      X22520010022

      Table 2.  Turning point value of membership function

    2.   结果与分析
    • 研究区人工林土壤样品的颗粒组成以砂粒为主,占35.9%-84.1%,均值为60%,其次是粉粒占22.3%-57%,均值为35.3%;最小的为黏粒占1.8%-11%,均值为4.7%(见表3)。表明研究区是典型的砂土地区,说明该地区土壤保水保肥能力较差,土壤较疏松,有机质分解快。土壤黏粒有林地高于无林地,而砂粒含量则相反。有林地黏粒含量最高的为油松×落叶松,最低为油松。不同人工林的土壤粉粒、砂粒含量差异显著,其中落叶松林、油松×山杏和油松×落叶松土壤粉粒含量较大,而土壤砂粒含量较低。无林地的土壤黏粒、粉粒含量明显小于有林地,而土壤砂粒含量明显高于有林地。落叶松、油松×山杏和油松×落叶松土壤黏粒含量在随着土层深度增加;沙棘、山杏、沙棘×柠条土壤粉粒含量增加,落叶松土壤粉粒含量先增后减;山杏、沙棘、油松×落叶松土壤砂粒含量逐渐下降。

      样地
      Plot
      黏粒/% Clay/%粉粒/% Silt/%砂粒/% Sand/%
      0~20 cm20~40 cm40~60 cm0~20 cm20~40 cm40~60 cm0~20 cm20~40 cm40~60 cm
      Y13.8±0.3d4.2±0.4c4.2±0.2cd31.3±3.3c31.1±2.3c30.8±1.2d65.9±5.2c64.5±3.3b64.4±2.5b
      Y21.8±0.2e2.5±0.2e2.1±0.2e22.7±1.7d24.9±1.3d24.4±1.4e75.4±4.1ab72.8±3.0ab73.4±3.4a
      Y33.7±0.2d3.7±0.2cd3.8±0.4cd22.3±2.3d23.7±2.5d27.0±1.3de75.0±3.2Aab73.1±3.5Aab68.8±2.3Bb
      Y44.1±0.3cd4.9±0.3c4.8±0.2c25.6±2.5cd31.0±1.4c30.0±1.7d71.3±1.2Ab66.0±2.4Bb65.0±1.1Bb
      Y56.5±0.7Ab6.2±0.3ABb5.5±0.3Bc55.0±4.456.7±1.257.0±1.4a39.7±2.5d38.3±2.2d37.4±1.5d
      Y64.9±0.2d4.4±0.2cd4.3±0.2cd25.4±1.6cd31.0±1.2c24.9±1.2e71.03±4.2b67.6±5.5b71.4±2.2ab
      Y73.8±0.2d4.2±0.2cd3.6±0.2d28.0±1.2d28.6±2.4d29.2±1.3d69.1±3.5b67.5±1.7b67.5±3.2b
      Y87.9±0.4Ab7.5±0.5Ab5.1±0.7Ba40.1±2.4b43.0±1.5b44.0±2.3c52.0±4.3d51.0±2.8c51.0±2.1c
      Y99.5±1.2Aa9.0±0.2Aa7.8±0.3Ba42.0±1.5Bb42.0±1.2Bb49.0±1.5Ab48.2±1.2Ae49.0±2.0Ad42.0±1.5Bd
      Y101.6±0.2e2.2±0.2e2.0±0.2e19.8±1.2d21.4±1.2d22.0±1.2e78.6±5.5a76.4±1.9a75.2±1.3a
        注:不同小写字母表示不同人工林土壤体积分形维数的显著差异,不同大写字母表示同一人工林不同土层显著差异(P<0.05)  Note: Different lowercase letters indicate significant differences in fractal dimension of soil volume of different plantations, and different capital letters indicate significant differences in different soil layers of the same plantation (P<0.05).

      Table 3.  Soil particle size distribution of different plantations

    • 土壤体积分形维数是反映土壤颗粒分布的重要指标,而土壤结构指土壤颗粒(包括土壤团聚体)的排列和组合形式,在一定范围内,土壤分形维数越高,黏粒含量越高,越容易形成稳定的团聚体,土壤结构越稳定[21-22]。根据土壤体积分形维数公式计算出不同人工林及无林地的土壤体积分形维数,及不同土层深度的平均值,并进行方差分析,结果如图 1所示:研究区土壤体积分形维数均值为2.2427,在2.1475到2.3192之间变动;从整体上看,分形维数值有林地大于无林地;混交林大于除落叶松林以外的纯林;0~60 cm土层平均值,油松×落叶松>落叶松、油松×山杏(P>0.5)>沙棘×柠条、山杏×柠条、沙棘(P>0.5)>油松、柠条、山杏(P>0.5)>裸地;在不同深度的土壤,除油松×落叶松、落叶松外,其他人工林分形维数变化不显著,说明这两种人工林对不同深度土壤结构影响较大;0~20 cm土壤结构明显优于下层土壤(P<0.5);落叶松、油松×山杏、油松×落叶松土壤结构较好,而山杏纯林、油松纯林土壤结构较差,有林地土壤结构明显优于无林地。

      Figure 1.  Fractal dimension of soil volume in different plantations

    • 测得土壤养分含量如图2。在0~20 cm土层,混交林与纯林土壤速效磷含量差异显著,纯林中落叶松速效磷最高,柠条较低,混交林中油松×落叶松速效磷高,其余人工林差异不显著;20~40 cm土层中,除上述混交林较高外,其余人工林速效磷差异不显著,40~60 cm土层,无林地与有林地差异显著;相同人工林类型下,表层土壤速效磷最多,下两层土壤差异小。速效钾含量:不同人工林0~40 cm土层中速效钾变化情况与速效磷变化类似。研究区速效钾丰富,不同土层的速效钾基本在80 mg·kg−1以上,落叶松和油松×落叶松的速效钾较多,油松的速效钾较少;40~60cm土层中,油松速效钾增加,其余各人工林差异变小。碱解氮含量:0~60 cm土层中沙棘、落叶松、油松×山杏、油松×落叶林较高,所有人工林及无林地上层与下两层差异显著。有机质含量:不同林分类型在不同深度土壤中有机质差异显著,落叶松、油松×落叶松的有机质较高,其余林分类型都处于较低水平,其中山杏的有机质最低。四种养分指标在土壤深度变化上基本呈下降趋势。不同人工林类型四种养分的差异都逐渐变小,无林地与有林地四种养分指标差异显著。整体上看,在上两层土壤养分比较时下降剧烈,而到20~40 cm土层与40~60 cm土层养分差异变小。

      Figure 2.  Soil nutrients of different plantations

      根据土壤养分分级标准[18],9种人工林0~60 cm土层的土壤所含有速效钾、速效磷丰富,都属于三级左右(中上水平),而有机质、碱解氮较少,属于四级及以下(中下水平)。没有林分覆盖的无林地所有养分最少,养分流失最严重,都在5级以下水分。所有的人工林的营养元素在垂直深度变化中,除有机质处于5级外,0~20 cm的土壤养分都处于2-4级之间,土壤养分状况中等,而20~60 cm土壤养分状况处于中下及较低水平。

    • 雷达图(见图3)表明:不同林分类型的几种指标越集中在原点越远位置,则表明土壤养分含量越高,围成的面积越大的指标作用分越高,综合贡献率养分指标距离原点越远,综合贡献率越高。在0~20 cm土层,油松×落叶松、落叶松四个养分指标的隶属度值都大于0.5,而油松、沙棘的养分指标的隶属度值都小于0.5,说明前两种人工林在土壤养分状况较好,而后两种林分类型养分状况较差。四种养分指标都对土壤养分评价有较大影响,其中速效钾围成面积最大,有机质围成面积最小,在对研究区0~20 cm土壤养分状况评价时速效钾作用分最高。在20~40 cm土层,对土壤养分单项指标评价的因子只有速效钾、速效磷、碱解氮,而有机质的隶属值都在0.1;在40~60 cm土层,只有速效钾隶属度值大于0.1。因此在20 cm以下土层,各人工林类型的养分差异在逐渐减小。由于指标间对土壤养分状况的差异性,对单一指标的贡献率进行了验证,对计算的隶属值进行了相关分析,并计算权重系数,得到不同林分各项养分指标的贡献率,速效钾(0.176)>速效磷(0.132)>碱解氮(0.080)>有机质(0.054),因此速效钾、速效磷的含量最能反映土壤养分状况。

      Figure 3.  Single index evaluation and comprehensive average contribution rate of nutrients in different plantations

    • 将土壤体积分形维数与粒径体积分数及四种养分指标含量进行相关分析得到(见表4):土壤体积分形维数与土壤黏粒、速效磷、土壤速效钾、碱解氮呈显著正相关(P<0.05)而与土壤粉粒、有机质没有达到显著水平,与土壤砂粒呈显著负相关(P<0.05);土壤速效钾、速效磷、碱解氮与土壤黏粒体积分数呈正相关,土壤速效钾、速效磷、碱解氮与砂粒体积分数呈显著负相关(P<0.05);由相关关系可知,在整个土层中,土壤体积分形维数越高,土壤黏粒含量越高,砂粒含量越少;土壤体积分形维数越高,土壤速效钾、速效磷、碱解氮含量越多。

      分形维数值
      Fractal dimension value
      有机质/(g·kg−1)
      Oraganic matter
      速效磷/(mg·kg−1)
      Available phosphorus
      速效钾/(mg·kg−1)
      Available potassium
      碱解氮/(mg·kg−1)
      Alkali- hydrolyzable nitrogen
      分形维数值Fractal dimension value10.1480.712*0.789**0.642*
      黏粒体积分数Clay volume fraction0.894**0.1600.803**0.813**0.666*
      粉粒体积分数Silt volume fraction0.425−0.0480.5620.5620.565
      砂粒体积分数Sand volume fraction−0.782*−0.034−0.663*−0.753*−0.488*
        注:“**”P<0.01相关性极显著,“*”P<0.05相关性显著  Note: "* *" p<0.01 indicates extremely significant correlation, and "*" p<0.05 indicates significant correlation.

      Table 4.  Correlation analysis of soil volume fractal dimension, particle size and nutrients

    3.   讨论与结论
    • 研究区土壤体积分形维数在土层垂直方向上变动范围较小,大部分为厚的黄土层,土壤类型单一,但在水平方向上纯林、混交林、无林地三者差异较显著。由此可以发现植树造林及不同人工林类型对土壤结构产生了影响。土壤体积分形维数越高,土壤黏粒占比越高,砂粒越低,土壤吸水性、保水性强,但通气性、透水性就较弱[6]。但在黄土丘陵沟壑区地貌类型下,降水较少,水土流失严重,所覆盖的植被对于黏粒的含量就显得尤为重要,因为足够细小的黏粒才能形成稳定的团聚体,使土壤结构稳定。有林地的土壤体积分形维数高于无林地,这是因为有林地植被覆盖及枯落物层对土壤起保护作用,防止细小的黏粒粉粒随着降雨径流被冲刷而得以保留。不同人工林类型中,除落叶林外混交林的土壤体积分形维数高于纯林。在黎宏祥等[23]的研究中表示,林分结构越复杂的类型,枯落物厚度越多,输入的有机质含量越多提高了大团聚体的形成,而枯落物越多(见表1),防止径流冲刷细小颗粒的能力就越大,而落叶松枯落物含量仅次于其混交林。同一人工林不同土层分形维数值比较发现,除落叶松和油松×落叶松林外,其余人工林类型土壤体积分形维数随土层变化并不显著,尤其是柠条、沙棘的灌木纯林,在下两层土壤中的分形维数值近似。出现这种情况是因为灌木根系较浅,对下层土壤的影响小。对纯林与混交林中出现的同种树种对比发现,如柠条×沙棘比单一种植的柠条、沙棘纯林土壤黏粒和枯落物明显增加,分形维数也变大。不同人工林土壤质地粗细变化与分形维数一致,意味着分形维数较大的人工林土壤结构较好。

      研究区土壤4种养分指标在比较时发现,不同人工林类型养分指标的差异很大,直接进行分析并不能说明哪种林地的养分好坏,因为不同树种在固土保肥的同时,制造和利用的养分也不同。如落叶松其单一指标如碱解氮、有机质就明显高于其他林分类型。沙棘的碱解氮明显高于其他林分,这可能是因为沙棘的固氮能力较强[24]。因此对土壤养分进行了单项指标分析,来判断不同指标对土壤养分的反映程度,结合土壤体积分形维数值与这些指标的关系来进一步判断分形维数是否能反映土壤养分状况,并形成对比。土壤体积分形维数与养分的关系,与热依拉·木民等[25]研究结果一致,土壤速效磷、速效钾、碱解氮与土壤体积分形维数呈正相关,土壤体积分形维数越高,反映速效磷、速效钾、碱解氮含量越多。但是并没有证明有机质与分形维数是否存在相关关系,还有待更多数据做进一步研究。除沙棘林碱解氮含量高于混交林外的,在同一树种的纯林和混交林之间养分指标都是后者优于前者。土壤养分评价结果表明,油松×落叶松、落叶松、油松×山杏养分状况较好,王清奎等[26]指出,枯落物分解是土壤大量养分元素的主要来源,李茜[27]在对黄土高原不同树种枯落物混合分解对土壤性质的影响研究中发现不同林分的枯落物对土壤养分影响不同,在对落叶松、油松等枯落物进行单独分解时与混合分解时发现混合分解时发现,混交种植的落叶松、油松有相互促进分解的作用,并且枯落物越多,微生物量也越多,从而产生的各种养分元素也就越多。但单独种植的落叶松的养分和分形维数却比油松、山杏好,对比发现落叶松砂粒含量较小,而枯落物含量也较多。从分形维数与养分指标的相关性,及养分评价的结果,说明分形维数能客观反映不同人工林的土壤养分状况。公益林监测和评价是一项持久的工作,本文主要是针对四种指标对土壤体积分形维数与土壤养分进行分析,没有对土壤肥力进行综合评价来判断不同林分类型的肥力状况,而影响土壤肥力状况的指标也有全氮、全磷及其铜、锌等元素,在比较时也只是横向地比较了不同人工林的结构和养分差异,下一步的公益林的保育中,将考虑和结合更多的土壤理化因子,并结合多年的变化趋势来综合判断和评价不同人工林对土壤结构和肥力的影响。

    • (1)研究区不同人工林的土壤颗粒主要为砂粒(60%),其次为粉粒(35.3%),黏粒(4.7%)占比最小。土壤颗粒体积分形维数均值为2.2427。土壤体积分形维数表现为油松×落叶松(2.2608~2.3192)>落叶松、油松×山杏(P>0.5)>沙棘×柠条、山杏×柠条、沙棘(P>0.5)>油松、柠条、山杏(P>0.5)>裸地(2.1475~2.1663)。油松×落叶松、落叶松、油松×山杏的土壤结构较好,油松、柠条、山杏较差,无林地最差。

      (2)根据土壤养分分级,9种人工林0~60 cm土层的土壤所含有速效钾、速效磷属于三级左右(中上水平),而有机质、碱解氮较少,属于四级及以下。养分状况评价主要隶属值为速效钾,其次是速效磷,有机质隶属值最小,结合综合贡献率分析,与隶属值变化一致。土壤体积分形维数与土壤速效钾、速效磷、碱解氮含量呈显著正相关(P<0.05)。不同人工林对土壤养分改善状况与上述人工林类型的土壤结构优良状况一致。

Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return