WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 42 Issue 6
Dec.  2021
Article Contents
Turn off MathJax

Tang S Y, Wang G, Zeng X B, et al. Comparative study on water holding capacity of Phyllostachys praecox and Neosinocalamus affinis litter[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(6): 60−63 doi: 10.12172/202104220001
Citation: Tang S Y, Wang G, Zeng X B, et al. Comparative study on water holding capacity of Phyllostachys praecox and Neosinocalamus affinis litter[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(6): 60−63 doi: 10.12172/202104220001

Comparative Study on Water Holding Capacity of Phyllostachys praecox and Neosinocalamus affinis Litter


doi: 10.12172/202104220001
More Information
  • Corresponding author: 15398954@qq.com
  • Received Date: 2021-04-22
    Available Online: 2021-10-22
  • Publish Date: 2021-12-10
  • To investigate the water holding capacities of Phyllostachys praecox litter, the water holding characteristics of litter (undecomposed layer and decomposed layer) under two main bamboo plantations were studied by indoor soaking method. The results showed that the maximum water holding capacity, maximum moisture rate and maximum water absorption rate of Neosinocalamus affinis undecomposed layer were 5455.76 g·kg−1, 701.99% and 9679.98 g·kg−1, respectively. Those of Neosinocalamus affinis decomposition layer were 5720.91 g·kg−1, 715.99% and 11372.6 g·kg−1, respectively. Those of Phyllostachys praecox undecomposed layer were 4281.82 g·kg−1, 510.00% and 7464.16 g·kg−1, respectively. Those of Phyllostachys praecox decomposition layer were 6970.35 g·kg−1, 900.07% and 10980.26 g/kg, respectively. The analysis showed that the maximum water holding capacity, maximum moisture rate and maximum water absorption rate of Phyllostachys praecox decomposition layer > those of Neosinocalamus affinis decomposition layer > those of Neosinocalamus affinis undecomposed layer > those of Phyllostachys praecox undecomposed layer. It could be concluded that litter decomposition layer whichwas decomposed by soil animals, soil microbe, and other decomposers had stronger water holding capacity and water absorption rate than undecomposed layer. The litter layer under bamboo plantation was an important structure layer for water holding, water conservation, overland flow retardation and preventing soil erosion. After decomposition, the litter of Phyllostachys praecoxhad better hydrological effect than that of Neosinocalamus affinis litter.
  • 加载中
  • [1] 高志红,张万里,张庆费. 森林凋落物生态功能研究概况及展望[J]. 东北林业大学学报,2004,32(6):79−83. doi: 10.3969/j.issn.1000-5382.2004.06.025
    [2] 刘世荣, 温远光, 王兵, 等. 中国森林生态系统水文生态功能规律[M]. 北京: 中国林业出版社, 1996.
    [3] 耿玉清,王保平. 森林地表枯枝落叶层涵养水源作用的研究[J]. 北京林业大学学报,2000,22(5):49−52. doi: 10.3321/j.issn:1000-1522.2000.05.010
    [4] 肖玖金,马海燕,张晓庆,等. 四川盆周西缘山地典型人工林下苔藓和凋落物的持水特性[J]. 东北林业大学学报,2014,42(9):63−65.
    [5] 吴永炷. 种植雷竹经济效益评价分析[J]. 北京农业科技论文,2007,31(6):41−48.
    [6] 饶国才. 雷竹栽培技术要点[J]. 林业科技开发,2000(02):.51−62.
    [7] 刘丽. 林地覆盖雷竹退化特征及土壤改良研究[D]. 北京: 中国林业科技研究院, 2009.
    [8] 喻武,万丹,丁晨曦,等. 色季拉山典型林分枯落物持水性能研究[J]. 四川林业科技,2011,32(3):33−73.
    [9] 王佑民. 中国林地枯落物持水保土作用研究概况[J]. 水土保持学报,2000,14(4):103−113.
    [10] 林波,刘庆,吴彦,等. 川西亚高山人工针叶林枯枝落叶及苔藓层的持水性能[J]. 应用与环境生物学报,2002,8(3):234−238. doi: 10.3321/j.issn:1006-687X.2002.03.002
    [11] 常雅军,曹靖,马建伟,等. 秦岭西部山地针叶林凋落物持水特性[J]. 应用生态学报,2008,19(11):2346−2351.
    [12] 彭耀强,薛立,曹鹤,等. 3种阔叶林凋落物的持水特性[J]. 水土保持学报,2006,20(5):189−191. doi: 10.3321/j.issn:1009-2242.2006.05.047
    [13] 赵知渊,舒清态,杜阿朋. 尾叶桉人工林枯落物及土壤持水性能的研究[J]. 中南林业科技大学学报,2013,33(3):99−102.
    [14] 薛立,何跃军,屈明,等. 华南典型人工林凋落物的持水特性[J]. 植物生态学报,2005,29(3):415−421. doi: 10.3321/j.issn:1005-264X.2005.03.011
    [15] 张大鹏,范少辉,蔡春菊,等. 川南退耕丛生竹林枯落物持水特性研究[J]. 水土保持研究,2012,19(5):182−189.
    [16] 李正才,谢锦忠,历日光,等. 毛竹竹阔混交林群落地力保持研究[J]. 竹子研究会刊,2003,22(1):33−37.
    [17] 何亚平,费世民,蒋俊明,等. 四川长宁竹林凋落物的蓄水功能研究[J]. 北京林业大学学报,2006,28(5):35−41. doi: 10.3321/j.issn:1000-1522.2006.05.007
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(3)

Article views(413) PDF downloads(11) Cited by()

Related
Proportional views

Comparative Study on Water Holding Capacity of Phyllostachys praecox and Neosinocalamus affinis Litter

doi: 10.12172/202104220001
  • 1. Shifang Management Station of Giant Panda National Park, Shifang 618400, China
  • 2. College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
  • 3. State-owned Forest Farm of Pengzhou, Pengzhou 611900, China
  • 4. Sichuan Academy of Forestry, Chengdu 610081, China
  • Corresponding author: 15398954@qq.com

Abstract: To investigate the water holding capacities of Phyllostachys praecox litter, the water holding characteristics of litter (undecomposed layer and decomposed layer) under two main bamboo plantations were studied by indoor soaking method. The results showed that the maximum water holding capacity, maximum moisture rate and maximum water absorption rate of Neosinocalamus affinis undecomposed layer were 5455.76 g·kg−1, 701.99% and 9679.98 g·kg−1, respectively. Those of Neosinocalamus affinis decomposition layer were 5720.91 g·kg−1, 715.99% and 11372.6 g·kg−1, respectively. Those of Phyllostachys praecox undecomposed layer were 4281.82 g·kg−1, 510.00% and 7464.16 g·kg−1, respectively. Those of Phyllostachys praecox decomposition layer were 6970.35 g·kg−1, 900.07% and 10980.26 g/kg, respectively. The analysis showed that the maximum water holding capacity, maximum moisture rate and maximum water absorption rate of Phyllostachys praecox decomposition layer > those of Neosinocalamus affinis decomposition layer > those of Neosinocalamus affinis undecomposed layer > those of Phyllostachys praecox undecomposed layer. It could be concluded that litter decomposition layer whichwas decomposed by soil animals, soil microbe, and other decomposers had stronger water holding capacity and water absorption rate than undecomposed layer. The litter layer under bamboo plantation was an important structure layer for water holding, water conservation, overland flow retardation and preventing soil erosion. After decomposition, the litter of Phyllostachys praecoxhad better hydrological effect than that of Neosinocalamus affinis litter.

  • 森林凋落物作为森林生态系统中一个特殊的结构层次,作为森林植被对降雨再分配的第二个作用层[1],具有较土壤更多更大的孔隙,能够截持降水,保持水分,抑制地表水汽蒸发,促进水分下渗作用,减轻或者防止旱灾[2-3]。不同植被群落其凋落物组成差异较大,可能具有不同的水文效应[4]。雷竹(Phyllostachys praecox)作为都江堰地区大面积引种的竹类,对当地农村经济带来了巨大的促进作用[5],而大面积的雷竹种植是否会对当地的生态产生负面作用?这是目前急需解决和研究的问题,目前对雷竹的研究主要集中在雷竹的栽培技术[6]、退化特征及土壤等方面[7],而对雷竹林下凋落物持水性的研究还鲜有报道。本研究以都江堰浦阳镇大面积发展的雷竹、慈竹(Neosinocalamus affinis)两种重要的人工竹林为研究对象,采用室内浸水法对其进行凋落物持水性研究,旨在为人工竹林可持续发展提供基础数据。

    • 试验地位于成都市都江堰市蒲阳镇,属四川盆地亚热带湿润气候,四季分明, 属于浅切割低山地貌类型。年均温度15.2 ℃,极端最低、最高温度分别为38 ℃~10 ℃,降雨量为1 243.8 mm,年平均相对湿度为81%,年平均日照时数为1 024.2 h,无霜期可达到269 d。雷竹林种植于2008年“5·12”汶川地震后,是在农用地上人工更新形成的(见表1)。

      种名(灌木层)种名(灌木层)
      艾蒿
      Artemisia argyi Levl. Et Vant.
      水芹
      Oenanthe javanica(Bl.) DC
      铜钱草
      Salvia substolonifera Stib.
      透茎冷水花
      Pilea pumila (L.) A. Gray
      北马兜铃
      Aristolochia contorta Bunge
      无心菜
      Arenaria serpyllifolia Linn .
      糯米团
      Gonostegia hirta (Bl.) Miq.
      蛇莓
      Duchesnea indic (Andr) Focke
      马齿苋
      Portulaca oleracea Linn.
      鳞毛蕨
      Dryopteris sp.
      虎杖
      Reynoutria japonica Houtt.
      狗牙根C
      ynodon dactylon (Linn.) Pers.
      马唐
      Digitaria sanguinalis (Linn.) Scop.
      饭包草
      Commelina bengalensis Linn.
      威灵仙
      Clematis chinensis Osbeck
      灯笼草
      Physalis peruviana Linn.
      葎草
      Humulus scandens (Lour.) Merr.
      鹅儿肠
      Myosoton aquaticum (Linn.) Moench
      凹头苋
      Amaranthus lividus Linn.
      漆姑草
      Sagina japonica (Sw.) Ohwi
      空心莲子草
      Alternanthera philoxeroides
      (Mart.) Griseb
      珠芽艾麻
      Laportea bulbifera
      (Sieb.et Zucc) Wedd

      Table 1.  Tab. 1 Composition of herbaceous species under Phyllostachys praecox plantation

    2.   研究方法
    • 在试验地分别按慈竹(未分解层)、慈竹(分解层)、雷竹(未分解层)、雷竹(分解层)4种凋落物层随机收集人工竹林下的凋落物,并分别装入带袋子带回实验室备用。分别将其按照100 g的标准进行称量,并装入布袋中完全浸泡到清水中,每隔0.5、1、2、4、8、10、12、24 h分别取出直至凋落物不滴水为止(约为5 min)迅速称量凋落物湿质量,重复3次。每个时间段称得的凋落物湿质量与烘干质量差值为凋落物不同浸泡时间的持水量,该差值与浸泡时间的比值为凋落物的吸水速率。凋落物持水量、凋落物持水速率以及凋落物吸水速率分别按以下公式计算。

      凋落物的持水量=(凋落物湿质量-凋落物初重质量)/凋落物干质量×1000

      凋落物持水速率=(凋落物持水量/凋落物干质量)×10000

      凋落物吸水速率=凋落物持水量/吸水时间

      凋落物的吸水速率与浸泡时间进行拟合方程为:

      V=Ktb

      式中:V表示凋落物的吸水速率;t为浸泡时间;K为方程系数;b为指数。

    3.   结果与分析
    • 采用室内浸泡研究凋落物的最大持水量和最大持水速率,以浸泡24 h后的持水量为最大持水量[4]。慈竹与雷竹凋落物层的最大持水量和最大持水速率见表2。4种凋落物层中:持水量以雷竹分解层为最大,为6970.35 g·kg–1,是其烘干质量的697.03%,慈竹分解层次之,为5720.91 g·kg–1,是其烘干质量的572.09%,慈竹未分解层第三,为5 455.76 g·kg–1,是其烘干质量的545.58%,雷竹未分解层最低,为4281.82 g·kg–1,是其烘干质量的428.18%。其中,雷竹分解层的最大持水速率最高,为900.07%,慈竹分解层次之,为715.99%,慈竹未分解层第三,为701.99%,雷竹未分解层最低,为510.00%。不同竹林类凋落物的分解程度不同,其持水过程与持水量也不同,但总的表现出分解层的持水量和持水速率高于未分解层[8]

      林型最大持水量/(g·kg−1)最大持水速率/%
      慈竹(未分解)5455.76±115.57701.99±11.56
      慈竹(分解层)5720.91±300.44715.99±30.05
      雷竹(未分解层)4281.82±199.33510.00±19.93
      雷竹(分解层)6970.35±150.54900.07±15.05
        注:表中数据均为平均值±标准误

      Table 2.  Maximum water holding capacity and maximum water absorption rate of Phyllostachys praecox and Neosino calamus affinis litter

    • 4种凋落物的吸水速率从0.5~4 h吸水速率下降最快,4 h后逐渐下降并趋于平稳(见图1)。凋落物未分解层的吸水速率以慈竹最高,从浸泡0.5~24 h后,吸水速率由9679.98 g·kg−1·h−1)下降到227.32 g·kg−1·h−1,雷竹未分解层则从7464.16 g/kg·h下降为178.41 g·kg−1·h−1。凋落物分解层的吸水速率则以雷竹分解层最高,从浸泡0.5h~24 h后,吸水速率由10980.26 g·kg−1·h−1下降为290.43 g·kg−1·h−1,慈竹分解层次之,从11372.6 g·kg−1·h−1下降为238.37 g·kg−1·h−1。可见,慈竹分解层的吸水速率在0.5 h~1 h区间下降最为急剧,慈竹分解层、雷竹未分解层、雷竹分解层在0.5 h~4 h区间下降最快,6 h~24 h区间吸水速率则开始逐渐趋于平稳。通过单因素ANOVA分析LSD方程方差分析得出,慈竹(未分解层)与慈竹(分解层)间持水量与持水速率未达到显著相关(P>0.05),其余分解层间均差异显著。

      Figure 1.  Water absorption rate of litter under different bamboo forests

      表2可见,各分解层吸水速率与浸泡时间拟合较好。除慈竹未分解层和雷竹分解层拟合系数R2小于0.9外,其余两者均大于0.9以上。

      凋落物方程R
      慈竹未分解层V=12831 t ~1.6641R2=0.8572
      分解层 V=14225 t ~1.6970R2=0.9048
      雷竹未分解层V=9087.2 t ~1.6842R2=0.9361
      分解层V=15194 t ~1.5754 R2=0.8037

      Table 3.  Relationship between water absorption rate and time of artificial bamboo plantation litter

    4.   讨论
    • 林地凋落物层作为林地生态系统地独特的结构层次,其储存量是反映林地持水能力的重要指标之一,储存量越大林地持水能力则越强[9],而凋落物层的最大持水率可以反映出凋落物本身具有的持水能力的大小[10]。本次实验表明:两种竹林凋落物中的最大持水率存在着一定的差异,但都表现出分解层的最大持水率大于未分解层,这说明凋落物的最大持水性能与凋落物的类型和其分解程度有着密切关系,相关研究也有类似结论[4]。在浸泡2~6 h区间内慈竹未分解层、慈竹分解层以及雷竹未分解吸水速率下降速度相对较快,在6 h后下降速度则逐渐趋于平稳,而雷竹分解层0.5~8 h区间内吸水速率下降速度较快,在8 h后才逐渐趋于平稳。将4种分解层吸水速率与浸泡时间进行拟合结果表明,凋落物在吸水速率和浸泡时间上满足V=Ktb关系,经检验达显著水平,因此,可以用来模拟自然条件下竹林凋落物吸水速率和持水量的实际变化[11]。由此可以看出雷竹林凋落物与蒲阳镇本地主要竹林(慈竹)确实对蒲阳镇水文效应确实具有更大的影响。凋落物的吸水速率越大[12],将水分转变为地下径流的速度就越快[13],从而可以更好地减少泥石流、洪水等地表径流灾害的发生[14-17]

      本次实验中,在慈竹未分解层中叶与枝的比例为1.1∶1;慈竹分解层中叶与枝的比例为1.2∶1.;雷竹未分解层中叶与枝的比例为1.2∶1;雷竹分解层中叶与枝的比例为1.3∶1,各分解层中叶所占比重明显大于枝,可能是由于叶的组织与枝不一样,叶较枝易分解更利于吸收水分,涵养水分。但由于本次实验中叶片与枝所占的比例不同,对持水速率和持水量都会出现影响,在这方面还有待研究。

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return