WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 43 Issue 1
Mar.  2022
Article Contents
Turn off MathJax

LIANG M Y, LIU C A, HUA S, et al. Comparison of Ochroma lagopus Swartz growth and soil ecological effects under different cultivation modes[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(1): 12−18 doi: 10.12172/202104200003
Citation: LIANG M Y, LIU C A, HUA S, et al. Comparison of Ochroma lagopus Swartz growth and soil ecological effects under different cultivation modes[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(1): 12−18 doi: 10.12172/202104200003

Comparison of Ochroma lagopus Swartz Growth and Soil Ecological Effects under Different Cultivation Modes


doi: 10.12172/202104200003
More Information
  • Received Date: 2021-04-20
    Available Online: 2022-01-13
  • Publish Date: 2022-03-02
  • The manufacture of modern large-scale wind turbine blades generally uses composite sandwich panels with balsa wood as the base materials, and with no alternative materials. The balsa wood in China is completely dependent on imports, and with the increasing demand of balsa wood and the uncertainty of Sino-foreign trade, the supply of balsa wood raw materials has become a “stuck neck” problem for wind power equipment manufacturing industry in China. In this study, the composite cultivation experiment was carried out with the balsa wood plantations constructed in May 2017, and the following cultivation models were constructed by using the cultivation techniques of ridge, furrow and film mulching with important cash crops in Xishuangbanna: balsa wood plantation (Q), balsa-soybean plantation (QD), balsa-soybean with plastic film plantation (QDF). Balsa wood plantation (CK), balsa-soybean/coriander plantation (QDX), balsa-soybean/coriander with plastic film plantation (QDXF). Through the measurement of soil nutrients, soil moisture content, balsa wood DBH growth and volume volume, the sustainable cultivation mode of balsa wood in Xishuangbanna was explored to provide theoretical basis and technical support for the localization of balsa wood raw materials. The results showed that the diameter at breast height (DBH) of balsa wood could reach 23 cm after growing for 2 years and 8 months, which can meet the requirements of manufacturers (DBH > 20 cm). After 3 years and 8 months, the DBH could reach 26 cm, and the increase of volume was over 30%. In order to obtain high income, balsa wood trees could be harvested after 4-5 years of planting. From April to November, the total soil water storage in QDX, QDXFQD, QDF increased 29.11 mm and 21.74 mm, respectively, however, CKQ decreased 13.19 mm. In the rainy season, CKQ increased the soil water consumption in 20-40 cm soil layers, and QHB, QDXFQDF increased soil water content in 20-40 cm soil layers. Film mulching practices in balsa plantations increased soil available P and NO3-N content. From January to August 2020, soil P in QDX, QDXFQD, QDF increased 5.54 mg kg−1 and 10.72 mg kg−1. From January to August in 2020, soil nitrate nitrogen content under QDXFQDF treatment increased by 126.32 mg kg−1. Cultivation of soybean with plastic film under light wood forest could significantly increase soil available phosphorus and nitrate nitrogen content, increase soil water storage and promote the sustainable growth of light wood..
  • 加载中
  • [1] Miyajima RH, Barreto VCS, Oliveira PAD, et al. Risk Analysis of the Economic Benefits of <italic>Ochroma pyramidale</italic>: A Case Study of Forest Planting in Brazil Journal of Agricultural[J]. Journal of Agricultural Science and Technology B, 2018, 8(7): 444−453.
    [2] Borrega M, Ahvenainen P, Serimaa R, et al. Composition and structure of balsa (<italic>Ochroma pyramidale</italic>) wood[J]. Wood Science & Technology, 2015, 49(2): 403−420.
    [3] 邹寿青,华帅,段柱标,等. 轻木在西双版纳低海拔地区栽培实用技术[J]. 林业调查规划,2019,44(05):112−116. doi: 10.3969/j.issn.1671-3168.2019.05.022
    [4] 邹寿青. 格局在变化—树木引种与植物地理[M]. 第十届全国林木引种驯化学术研讨会(C), 2004, p86–89.
    [5] 江丽娟,郑怀阳,周伟龙,等. 香榧-大豆复合经营对土壤化学性质的影响[J]. 福建林业科技,2019,46(2):22−29.
    [6] Zaefarian F. Soybean (<italic>Glycine max</italic> [L. ] Merr. ) production under organic and traditional farming[J]. Environmental Stresses in Soybean Production, 2016: 103−129.
    [7] 范阿南,陈祥伟,李志敏. 林豆复合生态系统土壤理化性质的研究[J]. 林业研究(英文版),2006,17(3):226−230.
    [8] Liu XE, Li XG, Guo RY, et al. The effect of plastic mulch on the fate of urea-N in rain-fed maize production in a semiarid environment as assessed by 15 N-labeling[J]. European Journal of Agronomy, 2015, 70: 71−77. doi: 10.1016/j.eja.2015.07.006
    [9] Qin XL, Li Y, Han YL, et al. Ridge-furrow mulching with black plastic film improves maize yield more than white plastic film in dry areas with adequate accumulated temperature- ScienceDirect[J]. Agricultural and Forest Meteorology, 2018, 262: 206−214. doi: 10.1016/j.agrformet.2018.07.018
    [10] Zhao Y, Zhai X, Wang Z, et al. Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau[J]. Agricultural Water Management, 2018, 202: 99−112. doi: 10.1016/j.agwat.2018.02.017
    [11] Zhao H, Wang RY, Ma BL, et al. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crops Research, 2014, 161: 137−148.
    [12] Yang Y, Du W, Cui Z, et al. Effects of plastic film mulching on soil water use efficiency and wheat yield in the Loess Plateau of China[J]. Arid Land Research and Management, 2020, 34(2): 1−14.
    [13] Liu QF, Chen Y, Liu Y, et al. Coupling effects of plastic film mulching and urea types on water use efficiency and grain yield of maize in the Loess Plateau, China[J]. Soil & Tillage Research, 2016, 157: 1−10.
    [14] 戴云集. 轻木与重木[J]. 植物杂志,1984,01:48.
    [15] Fletcher MI. Balsa-Production and utilization[J]. Economic Botany, 1951, 5: 107−125. doi: 10.1007/BF02984770
    [16] Hai L, Li XG, Liu XR, et al. Plastic mulch stimulates nitrogen mineralization in urea-Amended soils in a semiarid environment[J]. Agronomy Journal, 2015, 107: 921−930. doi: 10.2134/agronj14.0538
    [17] 傅波,宋方杰,陈志国. 大豆应用根瘤菌减少氮肥施用效果分析[J]. 现代化农业,2014(11):10−11. doi: 10.3969/j.issn.1001-0254.2014.11.006
    [18] Li H, Ma Y, Liu W, et al. Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China[J]. Environmental Management, 2012, 50(5): 837−848. doi: 10.1007/s00267-012-9942-2
    [19] Christensen-Dalsgaard KK, Ennos AR. Effects of drought acclimation on the mechanical properties of <italic>Ochroma pyramidale</italic>, Betula pendula and Acacia karroo tree seedling stems[J]. Forestry, 2012, 85(2): 215−223. doi: 10.1093/forestry/cpr061
    [20] 胡芬,陈尚谟. 旱地玉米农田地膜覆盖的水分调控效应研究[J]. 中国农业气象,2000,04:15−18. doi: 10.3969/j.issn.1000-6362.2000.03.004
    [21] Li R, Hou XQ, Jia ZK, et al. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China[J]. Agricultural Water Management, 2013, 116(1): 101−109.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article views(635) PDF downloads(20) Cited by()

Related
Proportional views

Comparison of Ochroma lagopus Swartz Growth and Soil Ecological Effects under Different Cultivation Modes

doi: 10.12172/202104200003
  • 1. University of Chinese Academy of Sciences, Beijing 100049, China
  • 2. CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China

Abstract: The manufacture of modern large-scale wind turbine blades generally uses composite sandwich panels with balsa wood as the base materials, and with no alternative materials. The balsa wood in China is completely dependent on imports, and with the increasing demand of balsa wood and the uncertainty of Sino-foreign trade, the supply of balsa wood raw materials has become a “stuck neck” problem for wind power equipment manufacturing industry in China. In this study, the composite cultivation experiment was carried out with the balsa wood plantations constructed in May 2017, and the following cultivation models were constructed by using the cultivation techniques of ridge, furrow and film mulching with important cash crops in Xishuangbanna: balsa wood plantation (Q), balsa-soybean plantation (QD), balsa-soybean with plastic film plantation (QDF). Balsa wood plantation (CK), balsa-soybean/coriander plantation (QDX), balsa-soybean/coriander with plastic film plantation (QDXF). Through the measurement of soil nutrients, soil moisture content, balsa wood DBH growth and volume volume, the sustainable cultivation mode of balsa wood in Xishuangbanna was explored to provide theoretical basis and technical support for the localization of balsa wood raw materials. The results showed that the diameter at breast height (DBH) of balsa wood could reach 23 cm after growing for 2 years and 8 months, which can meet the requirements of manufacturers (DBH > 20 cm). After 3 years and 8 months, the DBH could reach 26 cm, and the increase of volume was over 30%. In order to obtain high income, balsa wood trees could be harvested after 4-5 years of planting. From April to November, the total soil water storage in QDX, QDXFQD, QDF increased 29.11 mm and 21.74 mm, respectively, however, CKQ decreased 13.19 mm. In the rainy season, CKQ increased the soil water consumption in 20-40 cm soil layers, and QHB, QDXFQDF increased soil water content in 20-40 cm soil layers. Film mulching practices in balsa plantations increased soil available P and NO3-N content. From January to August 2020, soil P in QDX, QDXFQD, QDF increased 5.54 mg kg−1 and 10.72 mg kg−1. From January to August in 2020, soil nitrate nitrogen content under QDXFQDF treatment increased by 126.32 mg kg−1. Cultivation of soybean with plastic film under light wood forest could significantly increase soil available phosphorus and nitrate nitrogen content, increase soil water storage and promote the sustainable growth of light wood..

  • 轻木(Ochroma lagopus Swartz)是木棉科常绿乔木,又称为巴沙木,原产于南美洲热带地区,具有生长速度快,密度低,生产周期短等特点[1,2]。现代大型风力发电机桨翼设计普遍采用轻木为基材的复合夹芯板,且无替代产品。我国轻木原料完全依赖进口,随着轻木需求量持续攀升和中外贸易的不确定性,轻木原料供应已经成为我国风能发电装备制造业的“卡脖子”问题。

    轻木林不能承受5级以上的风力[3],西双版纳具有得天独厚的气候条件,积温高,冬季无极端低温,又无台风,适合轻木的生长,是国内唯一适合轻木规模化种植的地区[4]。国内风电企业已在西双版纳建立了大规模的轻木种植基地,希望实现轻木原材料国产化。轻木生长速度快,土壤肥力消耗巨大,可持续性差,对土壤水分需求量大。轻木可持续栽培模式探索是实现轻木原料国产化的关键环节。大豆(Glycine max (Linn.) Merr.)是重要的粮食、油料、饲料和能源兼用作物,在西双版纳地区广泛种植。林下套种大豆能够有效提高土壤有机质和土壤氮、磷、钾等速效养分含量[5,6,7]。地膜覆盖不仅可以有效抑制杂草生长、加速养分运转为作物生长提供养分供给[8,9],还可以通过减少蒸发和促进蒸腾作用提高水分利用效率[10,11]、增加土壤贮水量[12,13]。目前国内外关于轻木可持续栽培模式的研究尚未见报道,希望我们的研究为轻木原料国产化提供重要理论依据和实践指导。

    • 本研究以2017年5月在中国科学院西双版纳植物园构建的4.7 hm2轻木基地进行(21°55′N、101°14′E,海拔510 m)。该地区年平均气温 21.5℃,年平均降雨量 1 500 mm 左右。该地区属于西南热带季风气候,干、湿季变化明显,一年可分为旱季和雨季,5—10 月为雨季,气候湿热,且集中了全年 85%的降水;11月至次年4月为旱季,降雨较少。轻木种植规格3.5 m × 4.0 m,约675株·hm-2,每年轻木投入复合肥671.6 kg·hm−2 (N: P2O5: K2O = 1∶1∶1,总养分45%)。大豆选用“中黄57”,种子使用量约为119.4 kg·hm−2,2020年5月底播种,8月底收获。

    • 2020年5月进行试验布置,该试验共有3个处理:轻木纯林、轻木-大豆复合林和轻木-大豆覆膜复合林。每个栽培模式各设3个重复,每个重复面积7 m×8 m,每个重复小区包括9株轻木。根据当地栽培措施,大豆栽培均需起垄,垄宽30 cm,沟宽30 cm,垄上大豆种植株行距20 × 25 cm,大豆投入复合肥为447.8 kg·hm−2 (N: P2O5: K2O = 1∶1∶1,总养分45%)(见图1)。为了控制轻木林下杂草的生长,覆膜处理采用的膜为黑膜。

      Figure 1.  Different cultivation modes of balsa wood plantations

    • 2020年1月和8月,每个重复小区随机钻取4个0—20 cm的土样,然后混合成一个样。土样风干过筛后检测土壤全磷、速效磷、铵态氮和硝态氮。全磷用HClO4-HF消解,用iCAP7400 测定(Thermo Fisher Scientific U.S.A)。土壤速效磷测定前先对土样进行pH测定,碱性土壤样品用0.5 mol L−1 NaHCO3浸提,酸性土壤用0.03 mol L−1 NH4F-0.025 mol L−1 HCl浸提,然后用Auto Analyzer 3进行测定(SEAL Analytical GmbH)。铵态氮和硝态氮用2 mol L−1 KCL提取,用Auto Analyzer 3进行测定(SEAL Analytical GmbH Germany)。2020年1月、5—12月及2021年1月对轻木胸径进行监测。截至2020年1月和2021年1月轻木生长期分别为2年8个月和3年8个月。

    • 采用SAS软件(8.0版)对不同栽培处理全磷、速效磷、铵态氮、硝态氮、轻木胸径、材积进行方差分析(P ≤ 0.05),用SigmaPlot 10.0进行制图。对轻木胸径统计分析时,我们先对每个重复样地轻木胸径求均值,再用每个样地轻木胸径均值再进行方差分析。同时,我们对中国科学院西双版纳热带植物园80年代收集的1238个轻木胸径和2.7 m茎干材积数据进行整理,并对二者之间的关系进行回归。

    2.   结果
    • 2020年1月和8月不同栽培处理之间土壤全磷没有显著性差异(见图2)。2020年1月不同栽培处理之间土壤速效磷含量没有显著差异。从2020年1月到2020年8月,轻木纯林土壤速效磷出现下降趋势,而轻木-大豆复合林和轻木-大豆覆膜复合林分别增加了5.54 mg kg−1 和10.72 mg kg−1。从2020年1月到2020年8月,所有栽培处理土壤铵态氮含量显著降低,而硝态氮含量显著提高,其中覆膜复合林土壤硝态氮含量增加了126.32 mg kg−1

      Figure 2.  Contents of soil total phosphorus, available phosphorus, ammonium nitrogen and nitrate nitrogen in 0-20 cm soil layer under different treatments in January and August 2020

    • 试验开始前,轻木纯林、轻木-大豆复合林和轻木-大豆覆膜复合林 2年8个月的轻木胸径分别为22.4、21.8和24.6 cm(见图3)。经过1年栽培处理之后,轻木纯林、轻木-大豆复合林和轻木-大豆覆膜复合林胸径分别为25.9、25.4和28.9 cm,分别比1年前增加了3.5、3.6和4.3 cm(见图3图4)。2020年,轻木胸径雨季增加量要明显高于旱季,轻木纯林、轻木-大豆复合林和轻木-大豆覆膜复合林雨季胸径增加量分别占到全年胸径增加量的58.3%、61.1%和61.4%。胸径和2.7 m轻木茎干材积之间存在显著二次幂函数关系(见图5)。2年8个月轻木经过1年生长之后,轻木纯林、轻木-大豆复合林和轻木-大豆覆膜复合林2.7 m茎干材积分别增加了33.6%、35.2%和38.1%(见图6)。

      Figure 3.  Diameter at breast height of balsa trees under different treatments for 2 years and 8 months and 3 years and 8 months

      Figure 4.  The increase of DBH of balsa trees under different treatments in the whole year, rainy season and dry season in 2020

      Figure 5.  Relationship between DBH and 2.7 m stem volume of balsa trees

      Figure 6.  The volume of 2.7 m stem of balsa wood planted for 2 year and 8 months and 3 year and 8 months

    • 2020年1月—2021年1月、2020年4月—2020年11月不同栽培处理之间0~100 cm土层土壤贮水量没有显著性差异(见图7)。在2020年1月—2021年1月,轻木纯林、轻木-大豆复合林和轻木-大豆覆膜复合林0~100 cm土层土壤贮水量增长分别为27.19 mm、44 mm、47 mm,轻木-大豆复合林和轻木-大豆覆膜复合林分别比轻木纯林高出16.81 mm、19.81 mm。在2020年4月—2020年11月,轻木纯林0~100 cm土层土壤贮水量降低了13.19 mm,轻木-大豆复合林和轻木-大豆覆膜复合林0~100 cm土层土壤贮水量分别提高了29.11 mm、21.74 mm。从同处理的不同时间变化来看(见图8),在旱季,2020年4月轻木纯林60~100 cm土层土壤贮水量明显降低,这是由于旱季轻木生长,向更深土层获取水分。在雨季(2020年8月),轻木纯林0~20 cm土层土壤贮水量高出20~40 cm土层土壤贮水量,差值为12.06 mm,变化幅度大于其他层;轻木-大豆复合林和轻木-大豆覆膜复合林减少了0~20 cm与20~40 cm土层土壤贮水量的差值,在轻木-大豆复合林0~20 cm土层土壤贮水量高出20~40 cm土层土壤贮水量4.4 mm,轻木-大豆覆膜复合林提高了20~40 cm土层土壤贮水量,较之0~20 cm土层土壤贮水量增加了0.62 mm。

      Figure 7.  Changes of soil water storage under different treatments from January 2020 to January 2021 and from April 2020 to November 2020

      Figure 8.  Changes in soil water storage under different treatments from January 2020 to January 2021

    3.   讨论和结论
    • 轻木是世界上最速生的树种之一,一年可长到6 m以上,直径8-12 cm[14,15],因此土壤肥力消耗巨大。土壤养分持续供给能力是确保轻木能够持续快速生长的重要基础。我们研究发现轻木林持续种植会导致土壤速效磷含量下降,而轻木林下覆膜栽培大豆可以显著提高土壤速效磷含量。同时我们研究发现轻木林下覆膜栽培大豆更有利于提高土壤硝态氮含量,满足轻木生长对速效氮的需求。有研究表明地膜覆盖可以通过改善土壤水温条件提高土壤微生物活性,加快碳氮的矿化提高养分的有效性[16]。因此轻木林下覆膜栽培大豆可以维持土壤肥力,同时可以减少氮肥的投入,避免氮肥过度投入对环境带来的危害[17]

      风电企业收购轻木的标准是胸径不低于20 cm。我们研究发现在西双版纳地区,当轻木种植2年8个月时轻木胸径可达23 cm左右,符合企业收购标准。当轻木继续种植到3年8个月时胸径可达26 cm,经过1年的生长,轻木2.7 m茎干材积增加了30%以上,同时轻木的主干高度增加1 m以上,综合收益会持续显著增加。因此,在西双版纳地区为了获取较高的经济收入,轻木可以持续种4—5年。

      轻木原产地气候湿热,终年有雨,年降雨量1 600~3 000 mm[1,3]。西双版纳地区气候属于热带季风气候,年平均降雨量1 500 mm;年干湿季分明,可分为旱季 ( 11月—次年4月) 与雨季( 5—10月) ,旱季降雨量在300 mm左右; 雨季气候湿热,降雨量1 200 mm左右[18]。因此,西双版纳地区雨季非常适合轻木生长,但旱季较低的降雨将会对轻木的生长产生严重的制约,而干旱、缺水会对轻木幼苗的生长产生影响,从而导致其力学性质的改变[19]。我们研究发现,在雨季,轻木纯林种植会加剧20~40 cm土层土壤贮水量的消耗,而在旱季会加剧60~100 cm土壤贮水量的消耗,轻木-大豆覆膜复合林有效提高全年0~100 cm土层土壤总贮水量,改善旱季土壤贮水状况,提高20~40 cm土层土壤贮水量。有研究表明地膜覆盖可有效减少非生产性的蒸发,增加雨水蓄积,从而增加土壤贮水量[20,21]。此外,我们研究发现在西双版纳地区雨季轻木胸径增加量可以找到占到全年的60%以上。因此,轻木林下覆膜栽培大豆可以维持土壤水分状况,同时为了获取更高的轻木产量,在有灌溉条件下可以在旱季对轻木进行灌溉。

      总之,在西双版纳地区可以进行轻木的种植,轻木林下覆膜栽培大豆可以有效维持土壤肥力、提高土壤贮水量,促进轻木可持续生长。

Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return