WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 42 Issue 5
Sep.  2021
Article Contents
Turn off MathJax

Shi G Y, Fu Z R, , et al. Study on ultrasonic-assisted extraction of costundide and dehydrocostus lactone from Aucklandia costus Falc. produced in Sichuan Province[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(5): 82−85 doi: 10.12172/202103050003
Citation: Shi G Y, Fu Z R, , et al. Study on ultrasonic-assisted extraction of costundide and dehydrocostus lactone from Aucklandia costus Falc. produced in Sichuan Province[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(5): 82−85 doi: 10.12172/202103050003

Study on Ultrasonic-assisted Extraction of Costundide and Dehydrocostus Lactone from Aucklandia costus Falc. Produced in Sichuan Province


doi: 10.12172/202103050003
More Information
  • Corresponding author: ylnefu@163.com(YANG Lei); mokailin@126.com(MO Kailin)
  • Received Date: 2021-03-05
    Available Online: 2021-07-15
  • Publish Date: 2021-09-30
  • Using the rhizomes of Aucklandia costus Falc. produced in Sichuan Province as raw materials and limonene as extraction solvent, costunolide and dehydrocostus lactone were extracted by ultrasonic cell disruption assisted extraction method. Effects of liquid-solid ratio, ultrasonic power, cavitation time, buffer time, and ultrasonic time on the yield of costunolide and dehydrocostus lactone were investigated by the quantitative method of high performance liquid chromatography. The best extraction conditions were as follows: under the ultrasonic power 350 W, ultrasonic time 40 min, the ratio of limonene to Radix Aucklandiae was 25 mL·g−1, the cavitation time was 1.5 s, and the buffer time was 2.0 s. Ultrasonic cell disruption assisted extraction method had the advantages of high efficiency, energy saving, and environmental protection.
  • 加载中
  • [1] Li A, Sun A, Liu R. Preparative isolation and purification of costunolide and dehydrocostus lactone from <italic>Aucklandia lappa</italic> Decne by high-speed counter-current chromatography[J]. Journal of Chromatography A, 2005, 1076(1−2): 193−197. doi: 10.1016/j.chroma.2005.04.042
    [2] 江苏新医学院. 中药大辞典(上册)[M]. 上海: 上海科技出版社, 1979: 353.
    [3] 尹宏权,齐秀兰,华会明,等. 云木香化学成分研究[J]. 中国药物化学杂志,2005(4):217−220. doi: 10.3969/j.issn.1005-0108.2005.04.006
    [4] Sunkara Y, Robinson A, Suresh B K, et al. Anti-inflammatory and cytotoxic activity of chloroform extract of roots of <italic>Saussurea lappa</italic> Clarke[J]. Journal of Pharmacy Research, 2010, 3(8): 1775−1778.
    [5] Madhuri K, Elango K, Ponnusankar S. Saussurea lappa (Kuth root): review of its traditional uses, phytochemistry and pharmacology[J]. Oriental Pharmacy & Experimental Medicine, 2012, 12(1): 1−9.
    [6] 张明发,沈雅琴,朱自平,等. 木香的抗腹泻和抗炎作用[J]. 中国药业,1999(6):16−17.
    [7] Kretschmer N, Rinner B, Stuendl N, et al. Effect of costunolide and dehydrocostus lactone on cell cycle, apoptosis, and ABC transporter expression in human soft tissue sarcoma cells[J]. Planta Medica, 2012, 78(16): 1749−1756. doi: 10.1055/s-0032-1315385
    [8] 林明侠. 木香的药理及临床研究概况[J]. 中医药信息,2005(3):18−19. doi: 10.3969/j.issn.1002-2406.2005.03.009
    [9] 周广涛,高鹏,戴兵,等. 木香中去氢木香内酯和木香烃内酯提取工艺优选[J]. 中国实验方剂学杂志,2013,19(2):40−42.
    [10] Huang W, Xue A, Niu H, et al. Optimised ultrasonic-assisted extraction of flavonoids from <italic>Folium eucommiae</italic> and evaluation of antioxidant activity in multi-test systems <italic>in vitro</italic>[J]. Food Chemistry, 2009, 114(3): 1147−1154. doi: 10.1016/j.foodchem.2008.10.079
    [11] 李华,李丹. 超声辅助法提取分离大豆皂苷的实验研究[J]. 食品工业科技,2007(5):168−171. doi: 10.3969/j.issn.1002-0306.2007.05.049
    [12] 蒋莹,刘欣. 柠檬烯的开发利用研究进展[J]. 食品安全导刊,2018(9):133.
    [13] 董毅,陈维金,杨绍雄,等. 柠檬烯提取实验研究[J]. 亚太传统医药,2019,15(5):91−93.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article views(358) PDF downloads(12) Cited by()

Related
Proportional views

Study on Ultrasonic-assisted Extraction of Costundide and Dehydrocostus Lactone from Aucklandia costus Falc. Produced in Sichuan Province

doi: 10.12172/202103050003
  • 1. College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
  • 2. Sichuan Academy of Forestry, Chengdu 610081, China
  • Corresponding author: ylnefu@163.com(YANG Lei);  mokailin@126.com(MO Kailin)

Abstract: Using the rhizomes of Aucklandia costus Falc. produced in Sichuan Province as raw materials and limonene as extraction solvent, costunolide and dehydrocostus lactone were extracted by ultrasonic cell disruption assisted extraction method. Effects of liquid-solid ratio, ultrasonic power, cavitation time, buffer time, and ultrasonic time on the yield of costunolide and dehydrocostus lactone were investigated by the quantitative method of high performance liquid chromatography. The best extraction conditions were as follows: under the ultrasonic power 350 W, ultrasonic time 40 min, the ratio of limonene to Radix Aucklandiae was 25 mL·g−1, the cavitation time was 1.5 s, and the buffer time was 2.0 s. Ultrasonic cell disruption assisted extraction method had the advantages of high efficiency, energy saving, and environmental protection.

  • 云木香(Aucklandia costus Falc.)又名木香、广木香、青木香,为菊科云木香属植物。主要分布和栽培于我国四川、云南、广西、贵州等省区。云木香在我国以根茎入药,已经被广泛用于治疗各种疾病,如哮喘、腹泻、呕吐[1]及具有缓解平滑肌痉挛,降低血压,抗菌和抗病毒,以及镇痛作用[2]。到目前为止,已经从木香中分离、鉴定出多种成分,其中包括萜内酯类、生物碱类、黄酮类、蒽醌类等,研究表明,其中木香烃内酯和去氢木香内酯等倍半萜内酯为木香中的主要活性成分[2, 3]。这两种倍半萜内酯具有治疗哮喘、改善胃功能、抗炎[4-6]、抗肿瘤[7]等多种药理学活性[8]。目前大多采用水蒸气蒸馏法、乙醇加热回流法、超临界CO2流体萃取法等进行提取[9],但都存在提取效率低,成本高,易造成污染等缺点。因此,寻求更加有效的提取木香烃内酯和去氢木香内酯的方法成为近年的研究热点。

    超声辅助提取是一种简单、高效、廉价的提取方法[10]。超声波具有强烈振动效应、聚能效应和空化效应,这一特点能够加速目标成分的溶出,缩短提取时间,从而提高目标成分产物得率[11]。柠檬烯是从柑橘皮料中分离而来的一种天然活性单萜,具有抑菌、防腐、抗肿瘤等多重功效[12],在工业上有广泛的用途,食品工业上可用作食品添加剂[13],是一种新型的绿色溶剂。本文尝试选用柠檬烯作为提取溶剂采用超声辅助提取法从木香根茎中提取木香烃内酯和去氢木香内酯。为木香的开发利用提供一定的技术支持。

1.   材料及仪器
  • 木香购于四川攀枝花市,经东北林业大学杨逢建教授鉴定。木香根茎用高速粉碎机粉碎,过筛180~250微米筛,置于干燥器中避光保存备用。对照品木香烃内酯和去氢木香内酯购自成都普思生物科技股份有限公司,色谱甲醇和乙腈购自赛莫非世尔科技(中国)有限公司),色谱级磷酸购自天津市富宇精细化工有限公司,柠檬烯购自上海阿拉丁生化科技股份有限公司。安捷伦Agilent 1260高效液相色谱仪,美国安捷伦公司,JY92-IID超声波细胞破碎仪,宁波新芝生物科技股份有限公司。

2.   实验方法
  • 采用高效液相色谱法分别测定木香烃内酯和去氢木香内酯,色谱条件为:安捷伦色谱柱,型号为Agilent 5 TC-C18,填料粒径5 μm,柱长度250 mm,直径4.6 mm,等度洗脱,流动相比例为甲醇-乙腈-0.5%磷酸水溶液(25∶30∶45, v/v/v),洗脱流速1 mL·min−1,进样量10 μL,检测波长225 nm,柱温30 ℃,检测时长35 min。

  • 分别配制0.2、0.4、0.6、0.8和1.0 mg·mL−1的木香烃内酯和去氢木香内酯的对照品溶液,依次取10 μL上述对照品溶液进样,每个浓度重复3次。计算回归方程。线性拟合得到回归方程为:

    式中:$ X $为对照品的浓度(mg/mL),$ {Y}_{A} $$ {Y}_{B} $分别为木香烃内酯和去氢木香内酯标准液对应的峰面积。

  • 称取木香粉末0.5 g,按比例加入柠檬烯中超声提取,抽滤得到粗提液。取粗提液2 mL用针式微孔滤器过滤,滤膜孔径为0.45 μm,高效液相色谱仪进样检测得到木香烃内酯和去氢木香内酯的峰面积,带入回归方程得到木香烃内酯和去氢木香内酯的浓度。两种目标成分得率计算公式:

    式中:$ Y $为产物木香烃内酯或去氢木香内酯的得率(mg·g−1),$ c $为粗提液的浓度(mg·mL−1),$ v $为粗提液的体积(mL),$ m $为加入云木香粉末的质量(mg)。

  • 精确称取一定量的云木香粉末溶于绿色溶剂柠檬烯中,超声提取,反应结束后,冷却至室温,抽滤得到粗提液,0.45 μm微孔滤膜过滤,HPLC检测。其他条件不变的情况下分别改变液料比,超声功率,空化时间,缓冲时间,超声时间以得到最佳提取方案。

3.   结果与讨论
  • 本文选用柠檬烯作为提取溶剂,设定不同的液料比,分别为10、15、20、25和30 mL·g−1,固定其他参数,在250 W超声功率下提取30 min,其空化时间1.5 s,缓冲时间2.0 s。实验结果见图1。由图1可以看出,随着液料比的逐渐加大,木香烃内酯和去氢木香内酯目标成分的得率均呈递增趋势,当液料比超过25 mg·mL−1时,目标产物木香烃内酯和去氢木香内酯的得率增加趋势变缓,过高的液料比是造成溶剂的浪费,不利于节约成本,权衡利弊,故液料比为25 mL·g−1作为最佳的料液比。

    Figure 1.  Effects of liquid-solid ratio on the yield of costunolide and dehydrocostus lactone

  • 绿色溶剂柠檬烯作为提取溶剂,设定空化时间为1.5 s、缓冲时间为2.0 s,超声提取30 min。选用液料比20 mL·g−1,实验测定不同的超声功率(150~500 W)下目标产物得率。结果见图2,可以看出,木香烃内酯和去氢木香内酯得率总体均呈先迅速增加(150~350 W),后呈略有下降趋势(350~500 W)故超声功率选用350 W。

    Figure 2.  Effects of ultrasonic power on the yield of costunolide and dehydrocostus lactone

  • 选用柠檬烯作为溶剂,20 mL·g−1的液料比,在250 W功率下考察不同超声时间(2、4、6、8、10、20、30、40、50和60 min)对两个目标产物得率的影响,结果见图3。可以看出,随着超声时间的增加,两个目标产物得率增大,当超声时间超过40 min后,两个目标产物得率增加趋势变缓,因此选择超声时间40 min即可达到满意。

    Figure 3.  Effects of ultrasonic time on the yield of costunolide and dehydrocostus lactone

  • 在固定250 W超声功率,30 min超声时间,溶剂柠檬烯与云木香原料比20 mL·g−1条件下,考察不同空化时间和缓冲时间(均为0.5~3.5 s)对两个目标成分产物得率的影响。产物得率随空化时间变化曲线如图4所示,0.5 s至1.5 s区间两个目标成分产物的得率均有增加的趋势,1.5 s之后,随着空化时间的增加,两个目标成分产物的得率变化不显著,最后选择空化时间为1.5 s为最佳的空化时间。

    Figure 4.  Effects of cavitation time on the yield of costunolide and dehydrocostus lactone

    图5所示,其他条件相同时,显示了不同缓冲时间对木香烃内酯和去氢木香内酯得率的影响,缓冲时间曲线显示在0.5~1.5 s的范围内,木香烃内酯和去氢木香内酯两个目标成分的得率有显著增加的趋势,在超过2.0 s之后,随着缓冲时间的增加,木香烃内酯和去氢木香内酯两个目标产物的得率均有不同程度的下降,因此选用2.0 s作为最佳的缓冲时间。

    Figure 5.  Effects of buffer time on the yield of costunolide and dehydrocostus lactone

4.   结论
  • 实验选用柠檬烯作为提取溶剂,通过单因素实验得到超声提取木香烃内酯和去氢木香内酯的最佳提取工艺为:液料比为20 mL·g−1,空化时间为1.5 s,缓冲时间2.0 s,超声功率为350 W,提取时间为40 min,在此工艺下木香烃内酯和去氢木香内酯的得率分别为0.57 mg·g−1和1.20 mg·g−1

Reference (13)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return