WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

Volume 42 Issue 4
Aug.  2021
Article Contents
Turn off MathJax

Wang Z L, Wu B, Xing W X, et al. Study on genetic relationship of genus Corylus resources in Sichuan Province based on SSR markers[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(4): 78−82 doi: 10.12172/202012070002
Citation: Wang Z L, Wu B, Xing W X, et al. Study on genetic relationship of genus Corylus resources in Sichuan Province based on SSR markers[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(4): 78−82 doi: 10.12172/202012070002

Study on Genetic Relationship of Genus Corylus Resources in Sichuan Province Based on SSR Markers


doi: 10.12172/202012070002
More Information
  • Received Date: 2020-12-07
    Available Online: 2021-05-27
  • Publish Date: 2021-08-25
  • At least seven domestic wild hazelnut species are distributed in Sichuan province, which is an important distribution area for genus Corylus resources. In this study, nine SSR markers were used to analyze the population genetic diversity and genetic relationships of C. heterophylla var. sutchuenensis, C. yunnanensis, C. ferox, C. mandshurica, and C. avellana. The results showed that the mean number of effective alleles, observed heterozygosity, expected heterozygosity, and Shannon's information index of eleven test populations were 2.772, 0.644, 0.546, and 1.016, respectively, indicating that the population genetic diversity was at a medium level. In addition, the population diversity level of C. heterophylla var. sutchuenensis in Maoxian county and of C. yunnanensis in Luding county were higher than the other populations. Meanwhile, principal coordinate analysis and UPGMA cluster analysis showed that C. mandshurica was closely related with C. avellana, and that C. heterophylla var. sutchuenensis was also closely related with C. yunnanensis. This study was helpful to promote the breeding, protection and utilization of hazelnut germplasm resources in Sichuan province.
  • 加载中
  • [1] 匡可任, 李沛琼, 郑斯绪, 等. 中国植物志(21卷)[M]. 北京: 科学出版社, 46−55, 1979.
    [2] 张宇和, 柳鎏, 梁维坚, 等. 中国果树志 板栗榛子卷[M]. 北京: 中国林业出版社, 193−217, 2005.
    [3] 王贵禧. 中国榛属植物资源培育与利用研究(Ⅲ)—育种、育苗与栽培[J]. 林业科学研究,2018,31(1):122−129.
    [4] 王艳梅,苏淑钗,翟明普,等. 中国榛属植物遗传关系的SSR分析[J]. 东北林业大学学报,2008,36(11):48−51. doi: 10.3969/j.issn.1000-5382.2008.11.018
    [5] 王艳梅,翟明普,马天晓,等. 榛属7种植物与虎榛微卫星测序及分析[J]. 华中农业大学学报,2009,28(1):5−10. doi: 10.3321/j.issn:1000-2421.2009.01.002
    [6] 王艳梅,苏淑钗,翟明普,等. 中国榛属植物SSR反应体系的建立[J]. 华中农业大学学报,2007,26(5):689−692. doi: 10.3321/j.issn:1000-2421.2007.05.021
    [7] 李永强,李宏伟,高丽锋,等. 基于表达序列标签的微卫星标记 (EST-SSRs) 研究进展[J]. 植物遗传资源学报,2004,5(1):91−95. doi: 10.3969/j.issn.1672-1810.2004.01.020
    [8] 赵海燕,渠云芳,黄晋玲,等. SSR分子标记在棉花遗传育种中的应用及进展[J]. 中国农学通报,2009,25(22):57−61.
    [9] Iwaizumi MG, Tsuda Y, Ohtani M et al. Recent distribution changes affect geographic clines in genetic diversity and structure of <italic>Pinus densiflora </italic>natural populations in Japan[J]. Forest Ecol Manag, 2013, 304: 407−416. doi: 10.1016/j.foreco.2013.05.026
    [10] Mandák B, Hadincová V, Mahelka V et al. European invasion of north American <italic>Pinus strobus </italic>at large and fine scales: high genetic diversity and fine-scale genetic clustering over time in the adventive range[J]. Plos One, 2013, 8(7): e68514. doi: 10.1371/journal.pone.0068514
    [11] Bassil NV, Botta R, Mehlenbacher SA. Microsatellite markers of the european hazelnut[J]. HortScience, 2003, 38(5): 740−741.
    [12] Boccacci, P., Botta, R., Rovira, M. Genetic diversity of hazelnut (<italic>Corylus avellana</italic> L.) germplasm in northeastern Spain[J]. HortScience, 2008, 43: 667−672. doi: 10.21273/HORTSCI.43.3.667
    [13] Campa A, Trabanco E, Pérez-Vega E et al. Genetic relationship between cultivated and wild hazelnuts (<italic>Corylus avellana</italic> L.) collected in northern Spain[J]. Plant Breed, 2011, 130: 360−366. doi: 10.1111/j.1439-0523.2010.01835.x
    [14] Boccacci, P., Akkak, A., Botta, R. DNA-typing and genetic relationships among European hazelnut (<italic>Corylus avellana</italic> L.) cultivars using microsatellite markers[J]. Genome, 2006, 49: 598−611. doi: 10.1139/g06-017
    [15] 王泽亮,郑永琴,苏玲,等. 滇榛(<italic>Corylus yunnanensis</italic>)SSR引物的筛选[J]. 四川林业科技,2017,38(6):55−58.
    [16] GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 2012, 28: 2537-2539.
    [17] Rohlf, F. J. 1994. NTSYS-pc: Numerical taxonomy and multivariate analysis system, Ver. 1.80. Exeter Software, Setauket, NY.
    [18] 王滑,郝俊民,王宝庆,等. 中国核桃8个天然居群遗传多样性分析[J]. 林业科学,2007,43(7):120−124.
    [19] Wright S. Variability within and among natural populations[M]. University of Chicago Press, 439−459, 1978.
    [20] Wright S. Evolution in Mendelian populations[J]. Genetics, 1931, 16(2): 97−159. doi: 10.1093/genetics/16.2.97
    [21] Bassil N, Boccacci P, Botta R, et al. Nuclear and chloroplast microsatellite markers to assess genetic diversity and evolution in hazelnut species, hybrids and cultivars[J]. Genetic Resources and Crop Evolution, 2013, 60(2): 543−568. doi: 10.1007/s10722-012-9857-z
    [22] 陈之端. 桦木科植物的系统发育和地理分布(续)[J]. 植物分类学报,1994,32(2):101−153.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(3)

Article views(365) PDF downloads(17) Cited by()

Related
Proportional views

Study on Genetic Relationship of Genus Corylus Resources in Sichuan Province Based on SSR Markers

doi: 10.12172/202012070002
  • Sichuan Academy of Forestry, Chengdu 610081, China

Abstract: At least seven domestic wild hazelnut species are distributed in Sichuan province, which is an important distribution area for genus Corylus resources. In this study, nine SSR markers were used to analyze the population genetic diversity and genetic relationships of C. heterophylla var. sutchuenensis, C. yunnanensis, C. ferox, C. mandshurica, and C. avellana. The results showed that the mean number of effective alleles, observed heterozygosity, expected heterozygosity, and Shannon's information index of eleven test populations were 2.772, 0.644, 0.546, and 1.016, respectively, indicating that the population genetic diversity was at a medium level. In addition, the population diversity level of C. heterophylla var. sutchuenensis in Maoxian county and of C. yunnanensis in Luding county were higher than the other populations. Meanwhile, principal coordinate analysis and UPGMA cluster analysis showed that C. mandshurica was closely related with C. avellana, and that C. heterophylla var. sutchuenensis was also closely related with C. yunnanensis. This study was helpful to promote the breeding, protection and utilization of hazelnut germplasm resources in Sichuan province.

  • 榛属(Corylus L.)植物,为落叶小乔木或灌木,较少为乔木,约有20余种,分布于亚洲、欧洲与北美洲。我国有10个种(变种),主要原生分布在西南地区与东北、华北、西北三北地区[1]。榛属植物种子不但含油丰富,还富含蛋白质、维生素及矿物质元素,为世界“四大坚果”之一,可直接食用,在巧克力、糖果、奶制品及焙烤食品产业中也广泛应用,具有较高的经济价值[2]。我国辽宁省经济林研究所等单位自20世纪60—80年代先后开展了欧榛引种、平榛选育以及平榛与欧榛的杂交育种研究,并于1999年开始选育出了一系列平欧杂交榛子良种,目前已在三北地区与山东、安徽等地推广,填补了国内榛子栽培品种的空白,开启了我国榛子园艺化栽培与产业发展的新时代[2-3]

    四川是榛属植物资源的重要分布区,尽管不同文献记述稍有差异,但国内榛子资源至少有7种在本区域有分布,包括滇榛、川榛、刺榛、毛榛、藏刺榛(C. ferox var. thibetica)、华榛(C. chinensis)、披针叶榛(C. fargesii[1],主要分布在阿坝州、凉山州、甘孜州及秦巴山区等地,目前国内外仅有少量研究将川榛、滇榛作为试验材料的一部分[4-6]。为了有效的利用这些野生榛子资源,首先需要深入了解其分布状况及遗传基础。

    简单序列重复(Simple Sequence Repeat,SSR)分子标记在植物中分布广泛、多态性丰富,且具有共显性、表现稳定等特点,已成为植物群体遗传多样性与遗传结构等研究的有效手段,持续推动了遗传改良进程[7-10]。在榛属植物研究中,美国俄勒冈州立大学Mehlenbacher实验室首先开发出了专用的SSR分子标记[11],目前已广泛应用于榛子遗传多样性、遗传结构分析及遗传图谱构建、亲缘关系研究等方面[12-14],有效推动了榛子资源的培育与利用研究。

    本研究使用前期筛选的9对引物[15]分析了目前收集到的川榛、滇榛、刺榛、毛榛、欧榛资源的亲缘关系,以利于下一步杂交育种亲本的选择,并期望最终推动四川榛子资源的良种选育与保护利用。

1.   材料与方法
  • 选择54份榛子资源参与本项目研究,具体信息见表1,其中欧榛为国外引进资源。采集新鲜叶片,使用变色硅胶干燥,并保存于-80℃冰箱备用。

    编号采集地参试资源份数
    A冕宁5滇榛
    B泸定5滇榛
    M石棉5滇榛
    C茂县5川榛
    E盐源5滇榛
    F木里5滇榛
    K汉源5滇榛
    L康定5滇榛
    J引进5欧榛
    N冕宁5刺榛
    O茂县4毛榛
    总计54

    Table 1.  General information of the test hazelnut germplasm resources

  • 利用9对SSR引物对样品进行分型分析,引物信息、基因组DNA提取、PCR扩增体系、程序与SSR产物电泳分型桐以前研究[15]。遗传参数采用GenAlEx6.51b2软件计算[16],个体Nei’s遗传距离利用NTSYS-pc 2.10s计算、并进行UPGMA聚类分析[17],利用计算的参数对参试榛子群体遗传多样性与亲缘关系进行解析。

2.   结果与分析
  • 本文使用SSR分子标记技术对54份榛子资源进行了遗传多样性分析,SSR位点遗传参数见表2。其中,等位基因数(Na)、有效等位基因数(Ne)、Shannon's信息指数(I)、观察杂合度(Ho)、期望杂合度(He)分别介于2.455~5.000、1.877~4.083、0.667~1.461、0.445~0.818、0.381~0.732之间。平均每个位点扩增出3.596个等位基因,Ch07检测到的平均等位基因数最多、为5.000,Ch03检测到的最少、为2.455。平均有效等位基因数为2.772,其中最多的位点是Ch07、为4.083,而Ch08最少、为1.877。

    位点NaNeIHoHeFFisFitFstNm
    Ch013.0912.2850.8580.5820.478−0.211−0.2160.2940.4200.346
    Ch032.4551.9700.6690.4910.404−0.184−0.2160.3220.4430.315
    Ch044.3643.3781.2540.7820.636−0.242−0.2290.1150.2800.643
    Ch054.6363.7211.3870.8000.718−0.123−0.1140.0920.1851.100
    Ch064.3643.3641.2680.8180.665−0.220−0.2300.0190.2020.987
    Ch075.0004.0831.4610.7360.732−0.009−0.0060.1640.1691.228
    Ch082.6361.8870.6670.4450.381−0.171−0.1680.2820.3850.399
    Ch092.7272.0730.7670.6360.455−0.375−0.4000.1450.3890.392
    Ch103.0912.1840.8120.5050.442−0.107−0.1420.2930.3810.407
    均值3.5962.7721.0160.6440.546−0.180−0.1910.1920.3170.646
      注: Na:等位基因数;Ne:有效等位基因数;I:Shannon's 信息指数;Ho:观察杂合度;He:期望杂合度;F:固定系数;Fis:群体内近交系数;Fit:群体总近交系数;Fst:群体间遗传分化系数;Nm:基因流

    Table 2.  SSR genetic parameters of total populations

    有效等位基因数、杂合度与Shannon’s信息指数反映了群体等位基因分布的丰富与均匀程度[18]。本研究中,11个群体的有效等位基因数介于2.030~3.427之间、均值,观察杂合度范围介于0.467~0.756,期望杂合度变动于0.396~0.678,Shannon’s信息指数范围为0.680~1.296,4个参数的均值分别为2.772、0.644、0.546、1.016(见表2)。基于上述数据,参试的11个榛子群体的遗传多样性处于中等水平,且11个群体中茂县川榛(C)与泸定滇榛(B)群体多样性水平较高,而盐源滇榛(E)与茂县毛榛(O)群体遗传多样性水平较低。

    遗传分化系数(Fst)是衡量群体间分化程度的指标,根据Fst值(见表2),参试群体31.7%的遗传变异存在于群体间、68.3%存在于群体内,说明群体间、群体内的变异均是榛子总群体遗传变异的来源。同时Fst>0.25表示群体间的遗传分化很大[19-20],因此本文认为参试榛子总群体间的遗传分化很大,与遗传分化很大相一致,群体间的平均基因流值(Nm)仅为0.646,这也与参试材料包括滇榛、川榛、毛榛、刺榛、欧榛相一致。

    同时从各群体来说,观察杂合度均高于期望杂合度(见表3),表明参试的各榛子群体杂合子过剩,群体内有较高的基因交流。

    群体NaNeIHoHeF%P
    冕宁A3.5562.3770.9200.5330.487−0.104100.00%
    泸定B4.5563.4101.2600.7110.636−0.134100.00%
    石棉M4.1113.0631.1380.6000.591−0.009100.00%
    茂县C4.4443.4271.2960.7560.678−0.119100.00%
    盐源E3.0002.0300.7650.4670.422−0.11788.89%
    木里F3.1112.7510.9340.6440.528−0.24388.89%
    汉源K3.3332.5831.0030.7330.571−0.281100.00%
    康定L3.5562.7681.0240.6890.556−0.187100.00%
    欧榛J3.8893.1231.1430.7560.604−0.26288.89%
    刺榛N3.6672.9141.0120.6670.533−0.24788.89%
    毛榛O2.3332.0440.6800.5280.396−0.35066.67%
    均值3.5962.7721.0160.6440.546−0.18092.93%
      注: %P:多态性位点比率,其他同表2

    Table 3.  Genetic diversity of the test populations

  • 基于参试个体的遗传距离,分别进行了Population assignment(见图1)分析与主坐标(PCoA)分析(见图2)。Population assignment分析则显示刺榛、毛榛与欧榛为1类,川榛与滇榛为1类。主坐标分析显示榛子资源分为刺榛、毛榛与欧榛、川榛与滇榛3类。说明毛榛与欧榛的亲缘关系较近,川榛与滇榛的亲缘关系也较近。

    Figure 1.  Population assignment analysis

    Figure 2.  Principal coordinate analysis

    进一步利用个体Nei’s遗传距离构建UPGMA聚类图(见图3),结果显示相关系数为0.31时,54个榛子种质资源个体可聚类为毛榛、欧榛、刺榛、川榛与滇榛4类。而且从聚类图上可以看出毛榛与欧榛的亲缘关系较近,川榛与滇榛的亲缘关系也较近,与主坐标分析结果相似,也与王艳梅的结果相一致[4]

    Figure 3.  UPGMA clustering analysis based on Nei's genetic distance

3.   讨论
  • 本研究使用9个SSR分子标记分析了四川不同县域的川榛、滇榛、刺榛、毛榛与引进的欧榛资源的群体遗传多样性与亲缘关系,结果显示参试的榛子群体的遗传多样性处于中等水平,且川榛与滇榛的亲缘关系较近,毛榛与欧榛的亲缘关系也较近。

    一般来说,在较近的地理区域内,由于环境与气候条件比较接近,自然选择压力趋于一致,在一定程度上增加了种间的基因交流,因此地理较近的种遗传相似性较大、亲缘关系较近。川榛与滇榛的亲缘关系较近也说明了这一点,川榛主要分布于阿坝州,滇榛主要分布于凉山州,而且根据文献资料与我们的调查,川榛与滇榛在凉山冕宁、甘孜泸定均有分布。而毛榛与欧榛地理距离远、亲缘关系较近,川榛与毛榛(参试资源分布于茂县)、刺榛与滇榛(冕宁均有分布)亲缘关系相对较远,可能跟其进化历史有关。Bassil等通过研究认为:亚洲在冰期是榛属植物的避难地,随后其通过地中海扩散到欧洲,通过大西洋陆桥与(或)白令陆桥扩散到北美洲[21],与桦木科桤木属植物系统发育相一致[22]。因此,我们推测在进化历史上毛榛与欧榛可能有较近的共同祖先,而川榛与毛榛、刺榛与滇榛尽管目前地理距离较近,然而进化历史上却来自不同的分支。当然,这种推测需要进一步的研究来证实。对于杂交育种,从本文研究结果来说,川榛与滇榛、毛榛与欧榛可能比较容易得到杂交子代,当然这也需要下一步的试验结果来验证。

    同时对四川榛子资源来说,尽管目前采集到了部分资源,然而部分资源数量不足,藏刺榛、披针叶榛目前尚未采集到资源,因此要对四川榛子资源进行较全面的评价与利用,也需要进一步的调查与研究。

Reference (22)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return