用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于web of science的乔木与微气候相互关系知识图谱分析

舒柳 李岩林 黄柳菁

舒柳, 李岩林, 黄柳菁. 基于web of science的乔木与微气候相互关系知识图谱分析[J]. 四川林业科技, 2022, 43(6): 109−115 doi: 10.12172/202203050001
引用本文: 舒柳, 李岩林, 黄柳菁. 基于web of science的乔木与微气候相互关系知识图谱分析[J]. 四川林业科技, 2022, 43(6): 109−115 doi: 10.12172/202203050001
SHU L, LI Y L, . Knowledge maps analysis of the relationship between tree and microclimate based on web of science[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(6): 109−115 doi: 10.12172/202203050001
Citation: SHU L, LI Y L, . Knowledge maps analysis of the relationship between tree and microclimate based on web of science[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(6): 109−115 doi: 10.12172/202203050001

基于web of science的乔木与微气候相互关系知识图谱分析


doi: 10.12172/202203050001
详细信息
    作者简介:

    舒柳(1996—),女,在读硕士研究生,625683531@qq.com

    通讯作者: huanglj@fafu.edu.cn
  • 基金项目:  国家自然科学基金面上项目“基于叶性状分析城市植被结构和功能的关系及其对城市热环境的响应”(32071578);福建省自然科学基金面上项目“城市江心洲植物功能性状的适生机制和生态修复——以闽江流域福州河段为例”(2021J01133);福建农林大学学科交叉融合项目“基于多功能评估的闽台生态城市绿色基础设施网络构建”(YSYL-xkjc-8)

Knowledge Maps Analysis of the Relationship between Tree and Microclimate Based on Web of Science

More Information
  • 摘要: 乔木不仅是生态环境中必不可少的一环,还是城市绿地中承担降温增湿效应的主要因素,微气候是与人类关系最为密切的气候尺度,也最容易通过人工方式调节。本文利用CiteSpace软件对1990—2020年间研究乔木与微气候相互关系的相关文献进行知识图谱可视化分析,总结如下:(1)国际上对于乔木与微气候相互关系的研究趋势一直处于上升状态,并呈现精细化的主题研究势态;(2)研究力量上来看,美国、中国对该研究领域的贡献较大,中国开始得较晚,但发文数量和文献影响力也在逐年增长,是该研究领域的中坚力量。美国在发文量和机构中占据重要的地位,研究开始早,处于乔木与微气候相互关系研究的主导地位,各作者间的交流合作较多,研究主题不尽相同,形成了明显的合作团体,这些研究力量奠定了乔木与微气候相互关系研究的理论基础。(3)乔木与微气候相互关系的研究经历了“缓慢发展期—探索期—高速增长期”三个发展阶段,各阶段的研究热点有所不同,当下研究热点主要集中在城市人居环境方面;(4)国内外发展重点有所不同,国外的研究对象更趋向于宏观生态方面,研究机构之间的交流更加紧密,国内的研究对象更趋向于微观城市环境方面,研究机构集中但联系较少,加强国际间的学术交流和学科间的交流是未来研究的发展趋势。
  • 图  1  1990—2020年乔木与微气候相互关系年度发文量

    Fig.  1  Annual number of papers on the relationship between trees and microclimate from 1990

    图  2  国家合作共现图谱

    Fig.  2  Co-occurrence map of national cooperation

    图  3  机构合作共现图谱

    Fig.  3  Co-occurrence map of institutional cooperation

    图  4  作者合作共现图谱

    Fig.  4  Co-occurrence map of authors cooperation

    图  5  关键词共现聚类时间线视图

    Fig.  5  Timeline view of co-occurrence network of keywords

    表  1  关键词共现聚类信息表

    Tab.  1  Information table of co-occurrence network of keywords

    聚类号
    Cluster ID
    大小
    Size
    同质性
    Silhouette
    平均年份
    Mean year
    #0urban heat island城市热岛820.772012
    #1forest fragmentation森林破碎化780.7762007
    #2thermal comfort热舒适780.6982005
    #3climate change气候变化280.8292008
    #4soil enrichment土壤富集250.8692009
    #5agrilus长吉丁虫属230.8762005
    #6abies magnifica红杉60.9932005
    下载: 导出CSV

    表  2  关键词共现网络主要信息表

    Tab.  2  Information table of co-occurrence network of keywords

    年份Year突现性Burst频次Frequency
    1990—1999microclimate(3.82)photosynthesis(9)soil(7.32)water(5.51)environment(4.06)stomatal conductance(4.95)forest(3.82)tree(4.62)conservation(7.23)disturbance(4.62)gas exchange(8.18)biodiversity(3.6)microclimate(386)vegetation(205)tree(152)temperature(155)growth(126)forest(122)environment(84)dynamics(72)transpiration(63)
    2000—2010establishment(4.38)canopy(5.2)light(6.48)edge effect(4.01)seedling(6.92)facilitation(4.8)plant(5.31)carbon(4.53)community(5.19)gradient(6.05)fragmentation(4.5)city(5.84)nitrogen(3.51)ecosystem(6.77)climate change(147)climate(120)impact(118)city(76)biodiversity(71)pattern(70)diversity(63)
    2011—2020shade tree(3.62)urban(6.7)shade(7.32)land use(3.79)urban heat island(5.61)mitigation(6.27)ecosystem service(5.24)urban tree(4.76)urbanization(4.49)green infrastructure(4.17)strategy(4.83)health(3.87)urban heat island(64)heat island(57)envi-met(39)urban(27)mitigation(26)shade(25)land use(22)shade tree(21)surface(21)comfort(20)
    下载: 导出CSV
  • [1] 田国行. 城市绿地景观规划的理论与方法[D]. 中国农业大学, 2005.
    [2] 杨柳. 建筑气候分析与设计策略研究[D]. 西安建筑科技大学, 2003.
    [3] 黄媛. 夏热冬冷地区基于节能的气候适应性街区城市设计方法论研究[D]. 华中科技大学, 2010.
    [4] El-Bardisy W M, Fahmy M, El-Gohary G F. Climatic Sensitive Landscape Design: Towards a Better Microclimate through Plantation in Public Schools, Cairo, Egypt[J]. Procedia - Social and Behavioral Sciences., 2016: 216.
    [5] 陈自新,苏雪痕,刘少宗,等. 北京城市园林绿化生态效益的研究[J]. 中国园林.,1998(1):55.
    [6] 马秀枝,李长生,陈高娃,等. 校园内行道树不同树种降温增湿效应研究[J]. 内蒙古农业大学学报(自然科学版).,2011,32(1):125−130.
    [7] 李锐君,周伟,侯维岩. 面向先进制造环境的工业物联网关键技术研究[J]. 仪表技术.,2017(3):4−7.
    [8] Chaomei C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology. 2005, 57(3).
    [9] 陈悦,陈超美,刘则渊,等. CiteSpace知识图谱的方法论功能[J]. 科学学研究.,2015,33(2):242−253.
    [10] 袁轶男,刘兴诏,聂晓嘉,等. 国际城市森林研究知识图谱——基于CiteSpace Ⅴ共被引分析[J]. 生态学报.,2019,39(20):7780−7787.
    [11] Vera N E, Finegan B, Newton A C. The photosynthetic characteristics of saplings of eight canopy tree species in a disturbed neotropical rain forest[J]. Photosynthetica: International Journal for Photosynthesis Research. 1999, 36(3).
    [12] Pincebourde S, Woods H A. Climate uncertainty on leaf surfaces: the biophysics of leaf microclimates and their consequences for leaf‐dwelling organisms[J]. Functional Ecology. 2012, 26(4).
    [13] Y B M, Hannah L, Gerhard Z. A cool experimental approach to explain elevational treelines, but can it explain them?[J]. American journal of botany. 2014, 101(9).
    [14] Tamang B, Andreu M G, Rockwood D L. Microclimate patterns on the leeside of single-row tree windbreaks during different weather conditions in Florida farms: implications for improved crop production[J]. Agroforestry Systems. 2010, 79(1).
    [15] Lott J E, Ong C K, Black C R. Understorey microclimate and crop performance in a Grevillea robusta -based agroforestry system in semi-arid Kenya[J]. Agricultural and Forest Meteorology. 2009, 149(6).
    [16] Cici A. Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST)[J]. International Journal of Applied Earth Observation and Geoinformation. 2020, 86(C).
    [17] Li H, Meng H, He R, et al. Analysis of Cooling and Humidification Effects of Different Coverage Types in Small Green Spaces (SGS) in the Context of Urban Homogenization: A Case of HAU Campus Green Spaces in Summer in Zhengzhou, China[J]. Atmosphere. 2020, 11(8).
    [18] D A, N K, D P, et al. Evaluation of thermal perception in schoolyards under Mediterranean climate conditions. [J]. International journal of biometeorology. 2016, 60(3).
    [19] Petralli M, Massetti L, Pearlmutter D, et al. UTCI field measurements in an urban park in Florence (Italy)[J]. Miscellanea Geographica. 2020, 0(0).
    [20] Cheung P K, Fung C K W, Jim C Y. Seasonal and meteorological effects on the cooling magnitude of trees in subtropical climate[J]. Building and Environment. 2020, 177(prepublish).
    [21] Bresson, C. C, Kowalski, et al. Evidence of altitudinal increase in photosynthetic capacity: gas exchange measurements at ambient and constant CO2 partial pressures[J]. Annals of Forest Science. 2009, 66(5).
    [22] Rahman M A, Moser A, Rötzer T, et al. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany[J]. Agricultural and Forest Meteorology., 2017: 232.
  • [1] 何周建, 叶萌, 浣杰, 罗小梅, 雷雨婷.  基于CiteSpace分析青花椒产业发展热点和趋势 . 四川林业科技, 2024, 45(2): 1-6. doi: 10.12172/202308160001
    [2] 董燕, 贾飞飞.  树木径向生长对气候的响应研究进展 . 四川林业科技, 2023, 44(3): 1-9. doi: 10.12172/202207190002
    [3] 秦炜锐, 宋心强, 潘翰, 程勇, 付明霞, 刘景怡, 张远彬, 周材权, 杨彪.  大熊猫栖息地森林群落乔木层与林下八月竹关系研究 . 四川林业科技, 2023, 44(6): 62-68. doi: 10.12172/202212220001
    [4] 秦炜锐, 刘景怡, 宋心强, 潘翰, 程勇, 付明霞, 张远彬, 周材权, 杨彪.  大熊猫栖息地森林群落乔木层与林下泥巴山筇竹关系研究 . 四川林业科技, 2023, 44(5): 7-14. doi: 10.12172/202302060001
    [5] 毕文苑, 王洪成.  国内城市绿地碳汇研究回顾与展望——基于CiteSpace和VOSviewer分析 . 四川林业科技, 2023, 44(3): 10-17. doi: 10.12172/202208010001
    [6] 浣杰, 李文俊, 何周建, 罗小梅, 姜丽琼, 肖前刚.  基于文献计量的白及产业发展情况分析 . 四川林业科技, 2023, 44(1): 17-23. doi: 10.12172/202204110001
    [7] 廖汇, 时卉, 周皖榕, 任春阳.  基于CiteSpace的社会生态系统脆弱性研究 . 四川林业科技, 2023, 44(1): 1-9. doi: 10.12172/202204230001
    [8] 曾婕, 林慧娟, 薛学佳, 黄莉, 周银茁, 李霄鹤, 兰思仁.  基于CiteSpace的国内外生态智慧研究现状与趋势分析 . 四川林业科技, 2023, 44(3): 18-25. doi: 10.12172/202211150001
    [9] 何周建, 叶萌, 浣杰, 雷雨婷, 李开泰, 许秋雨.  基于CiteSpace的黄柏研究热点和趋势分析 . 四川林业科技, 2023, 44(6): 1-6. doi: 10.12172/202303060002
    [10] 陈琪, 刘俊雁, 吴彦, 何恒果, 廖雨辰, 谢雨, 李诗琦.  基于CiteSpace的景观美学文献计量分析 . 四川林业科技, 2022, 43(3): 115-122. doi: 10.12172/202109050001
    [11] 代富强, 李青, 张霞, 刘浩.  基于CiteSpace的城市生态系统服务研究知识图谱分析 . 四川林业科技, 2022, 43(1): 102-108. doi: 10.12172/202104040001
    [12] 余正勇, 陈兴.  基于CiteSpace的国内山地旅游研究的知识图谱分析 . 四川林业科技, 2022, 43(3): 123-129. doi: 10.12172/202108110003
    [13] 王洪荣, 张文, 刘波, 王纪杰.  四川省天然乔木林动态变化规律分析 . 四川林业科技, 2021, 42(4): 20-25. doi: 10.12172/202012270001
    [14] 肖庆辉, 覃发超, 胡进耀, 黄怡.  基于CiteSpace的凋落物水土保持效应研究现状及趋势 . 四川林业科技, 2021, 42(3): 111-119. doi: 10.12172/202012060001
    [15] 陶万金.  四川会理乔木林碳储量现状及其近10年的动态变化 . 四川林业科技, 2018, 39(3): 156-159. doi: 10.16779/j.cnki.1003-5508.2018.03.035
    [16] 梁政, 马豪宇, 涂利华.  瓦屋山常绿阔叶次生林乔木层物种多样性研究 . 四川林业科技, 2018, 39(2): 85-89. doi: 10.16779/j.cnki.1003-5508.2018.02.019
    [17] 郑绍伟, 李隽, 黎燕琼, 慕长龙, 陈俊华, 周大松, 谢天资, 李宇奇, 罗奕爽.  利用形态因子建立城市森林主要乔木树种三维绿量预测模型 . 四川林业科技, 2017, 38(1): 6-10. doi: 10.16779/j.cnki.1003-5508.2017.01.002
    [18] 李德文, 盛晓琼.  老河沟自然保护区中山地段几种林分的乔木特征及碳储存 . 四川林业科技, 2016, 37(4): 8-13. doi: 10.16779/j.cnki.1003-5508.2016.04.002
    [19] 韦宇, 杨正兵.  楚雄西山公园南坡植物群落乔木层结构特征分析 . 四川林业科技, 2015, 36(4): 120-124. doi: 10.16779/j.cnki.1003-5508.2015.04.026
    [20] 贾晨, 侯盛昌, 辜云杰, 罗建勋, 高洁, 周云霞.  蓬溪县乔木型香椿人工林生长特性研究 . 四川林业科技, 2015, 36(2): 108-112. doi: 10.16779/j.cnki.1003-5508.2015.02.025
  • 加载中
  • 图(5) / 表(2)
    计量
    • 文章访问数:  352
    • HTML全文浏览量:  112
    • PDF下载量:  70
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-05
    • 网络出版日期:  2022-05-09
    • 刊出日期:  2022-12-30

    基于web of science的乔木与微气候相互关系知识图谱分析

    doi: 10.12172/202203050001
      作者简介:

      舒柳(1996—),女,在读硕士研究生,625683531@qq.com

      通讯作者: huanglj@fafu.edu.cn
    基金项目:  国家自然科学基金面上项目“基于叶性状分析城市植被结构和功能的关系及其对城市热环境的响应”(32071578);福建省自然科学基金面上项目“城市江心洲植物功能性状的适生机制和生态修复——以闽江流域福州河段为例”(2021J01133);福建农林大学学科交叉融合项目“基于多功能评估的闽台生态城市绿色基础设施网络构建”(YSYL-xkjc-8)

    摘要: 乔木不仅是生态环境中必不可少的一环,还是城市绿地中承担降温增湿效应的主要因素,微气候是与人类关系最为密切的气候尺度,也最容易通过人工方式调节。本文利用CiteSpace软件对1990—2020年间研究乔木与微气候相互关系的相关文献进行知识图谱可视化分析,总结如下:(1)国际上对于乔木与微气候相互关系的研究趋势一直处于上升状态,并呈现精细化的主题研究势态;(2)研究力量上来看,美国、中国对该研究领域的贡献较大,中国开始得较晚,但发文数量和文献影响力也在逐年增长,是该研究领域的中坚力量。美国在发文量和机构中占据重要的地位,研究开始早,处于乔木与微气候相互关系研究的主导地位,各作者间的交流合作较多,研究主题不尽相同,形成了明显的合作团体,这些研究力量奠定了乔木与微气候相互关系研究的理论基础。(3)乔木与微气候相互关系的研究经历了“缓慢发展期—探索期—高速增长期”三个发展阶段,各阶段的研究热点有所不同,当下研究热点主要集中在城市人居环境方面;(4)国内外发展重点有所不同,国外的研究对象更趋向于宏观生态方面,研究机构之间的交流更加紧密,国内的研究对象更趋向于微观城市环境方面,研究机构集中但联系较少,加强国际间的学术交流和学科间的交流是未来研究的发展趋势。

    English Abstract

    • 随着城市化的快速发展和气候变化的加剧,城市热岛效应逐年加强,给生态环境和人类的生存环境带来了重大影响。面对危机,人们在探求一条人类与自然协调发展的道路。通过实践证明,绿地是解决城市热岛效应问题、改善城市生态环境的有效措施之一,而乔木是绿地中实现降温增湿等效应的主要因素[1]。微气候是指靠近地面边界层部分,温湿度受地面植被、土壤、海拔和地形等影响的气候尺度,与人类生活密切相关[2, 3]。乔木由于其冠幅、冠型、叶片大小、叶面积大小等性状的作用,使得其在降温增湿方面有良好的效应,有越来越多的证据表明树木遮荫在局部范围内具有降温的功效[4-6],关于乔木与微气候效应相互关系的研究日益增多,涉及领域繁多,但目前还没有明确的方向性。

      本文利用CiteSpace文献计量软件对1990—2020年间关于乔木与微气候相互关系的相关文献进行整合分析,从发文数量、知识基础、热点和发展趋势总结讨论,在乔木与微气候相互关系的整体发展脉络中梳理出其发展阶段、研究的主要力量分布、具体在哪些领域发展、现今有怎样的发展趋势和热点。为气候变化下生态环境和城市人居环境的优化提供思路和理论依据。

      • Web of science核心集合数据库研究领域涵盖广泛,收录了大量权威学术期刊,是获取全球学术信息的重要数据库[7]。本研究以Web of Science Core Collection 文献库为基础进行文献检索,通过编写检索式来限定检索范围,编制检索式为TS=“Microclimat*”and TS=“Tree*”,选择类型为“Article”,通过手动筛选与研究相关度较高的文献,最终共得到1990年至2020年样本文献1464篇,检索时间为2021年10月12日。

        CiteSpaceⅢ信息可视化软件是一款基于分析和可视共现网络的Java应用程序,它以Web of Science导出的纯文本数据为主要数据源,可用于探讨科学文献可视化的模式和发展趋势[8]。本文基于CiteSpace5.3.R11版本软件和Excel软件,通过对筛选文献进行除重,最终得到1232篇样本文献,通过选择不同节点类型绘制知识图谱,对期刊的国家分布、机构分布、作者分布、共被引关系、关键词词频和共现情况等进行分析。

      • 文献发文量通常可以反映某一主题研究规模,根据对样本文献的发文量统计可知(见图1),在乔木与微气候相互关系的研究中,整体呈波动上升趋势,大致可分为三个阶段:第一阶段为缓慢发展期(1990—1999),文献年平均量较少,从1990年至1999年处于萌芽生长期开始探讨微气候—植被—温度之间的关系;第二阶段为探索期(2000—2010),对于微气候研究的发展日益成熟,该领域呈现出由宏观向微观过渡的研究趋势,但仍处于探索阶段;第三阶段为高速增长期(2011—2020),文献年均发文量迅猛增长,近四年甚至已经突破百位数,表明乔木与微气候之间有较大的关联,在微气候—植被—温度的关系上也有了较为成熟的科学理论依据。

        图  1  1990—2020年乔木与微气候相互关系年度发文量

        Figure 1.  Annual number of papers on the relationship between trees and microclimate from 1990

      • 通过分析不同国家、机构、作者的发文情况(见图2图3图4),从发文国家和机构来看:中国在该领域的研究较美国晚,但发文数量和文献影响力也在逐年增长,是该研究领域的中坚力量;美国在发文量和机构中占据重要的地位,研究开始早,处于乔木与微气候相互关系研究的主导地位,在该领域有深远的影响,处在乔木对微气候影响的研究桥梁路径上,具有很强的信息控制力。从作者网络来看,在乔木与微气候相互关系的研究中,各作者间的交流合作较多,形成了明显的合作团体,但多半是各国家国内学者之间的合作,各自研究主题也不尽相同。

        图  2  国家合作共现图谱

        Figure 2.  Co-occurrence map of national cooperation

        图  3  机构合作共现图谱

        Figure 3.  Co-occurrence map of institutional cooperation

        图  4  作者合作共现图谱

        Figure 4.  Co-occurrence map of authors cooperation

      • 在CiteSpace中通过对样本文献进行共被引分析,参数设置为:Note Types:Keyword;Links Strength:Cosine;Selection Criteria:Top50%,其它默认设置。最后点击“GO!”运行软件后,得到文献共被引网络图谱,共形成了6个有效聚类,其节点数为324,连线数为2436,网络密度为0.0466。而模块化程度值为0.4121,网络轮廓值为0.5283,当模块值Q>0.3时,表示网络划分聚类结构显著;当平均轮廓值>0.5时,聚类合理,当>0.7时,聚类高效可信[9]。这表明整个文献共被引网络聚类效果良好。

      • 时间线视图侧重于表达聚类之间的关系和某个聚类里文献的历史跨度,是将同一聚类排布在同一水平线附近,可以直接高效的展示聚类之间的关系,时间线视图分析是对研究历程兴衰过往、现有热点的最直观表现[10]。参考整体时间线图谱(见图5)和表1关键词聚类信息,我们能了解到:

        图  5  关键词共现聚类时间线视图

        Figure 5.  Timeline view of co-occurrence network of keywords

        表 1  关键词共现聚类信息表

        Table 1.  Information table of co-occurrence network of keywords

        聚类号
        Cluster ID
        大小
        Size
        同质性
        Silhouette
        平均年份
        Mean year
        #0urban heat island城市热岛820.772012
        #1forest fragmentation森林破碎化780.7762007
        #2thermal comfort热舒适780.6982005
        #3climate change气候变化280.8292008
        #4soil enrichment土壤富集250.8692009
        #5agrilus长吉丁虫属230.8762005
        #6abies magnifica红杉60.9932005

        (一)从整体形态上看该领域形成了“microclimate”“vegetation”“growth”、“temperature”“tree”“climate change”等几个主要的研究主题,其他主题研究随着时间的推移应运而生,但这几个主要的研究主题还是有很强的联系;从时间上分为两个阶段,以2010年作为分界点,1990—2010年,研究主题的特点是广而泛,每一个聚类都有涉及,且已经形成了一些经典的主题,例如“microclimate”“vegetation”以及“growth”,并且这些主题一直在被研究和探讨。2011—2020年,研究主题的特点是精而新,聚类集中而且出现了很多新的研究主题,例如“shade tree”“urban”“land use”“urban heat island”等。

        在六个聚类中,产生过较大影响的聚类是聚类#0、聚类#2和聚类#5,持续对现今产生影响的是聚类#0。

        (三)在六个聚类中,研究起步较晚但在近些年都有一些新突破,关注度得到提升的是聚类#3和聚类#4,但近些年最受关注和最值得关注的是聚类#1,节点数量大且多,文献突现性高。反之,聚类#6近年来的影响力一直较低。

      • 关键词是文献重要内容的高度概括,关键词的突现性也反映了某些迅速增长的主题,通过进一步分析关键词频次以及突现性较高的关键词,参考表1表2图5,并深入阅读与其相关的重要文献,总结出乔木与微气候相互关系的研究热点和趋势主要集中在以下几方面:

        表 2  关键词共现网络主要信息表

        Table 2.  Information table of co-occurrence network of keywords

        年份Year突现性Burst频次Frequency
        1990—1999microclimate(3.82)photosynthesis(9)soil(7.32)water(5.51)environment(4.06)stomatal conductance(4.95)forest(3.82)tree(4.62)conservation(7.23)disturbance(4.62)gas exchange(8.18)biodiversity(3.6)microclimate(386)vegetation(205)tree(152)temperature(155)growth(126)forest(122)environment(84)dynamics(72)transpiration(63)
        2000—2010establishment(4.38)canopy(5.2)light(6.48)edge effect(4.01)seedling(6.92)facilitation(4.8)plant(5.31)carbon(4.53)community(5.19)gradient(6.05)fragmentation(4.5)city(5.84)nitrogen(3.51)ecosystem(6.77)climate change(147)climate(120)impact(118)city(76)biodiversity(71)pattern(70)diversity(63)
        2011—2020shade tree(3.62)urban(6.7)shade(7.32)land use(3.79)urban heat island(5.61)mitigation(6.27)ecosystem service(5.24)urban tree(4.76)urbanization(4.49)green infrastructure(4.17)strategy(4.83)health(3.87)urban heat island(64)heat island(57)envi-met(39)urban(27)mitigation(26)shade(25)land use(22)shade tree(21)surface(21)comfort(20)

        (一)从研究阶段分析:

        (1)缓慢发展期(1990—1999):本阶段出现频次最高的几个关键词为“microclimate(微气候)”“vegetation(植被)”“temperature(温度)”等,随着全球气候变暖的影响,以及城市工业化进程的推进,研究者们开始探索微气候—植被—温度之间的关系和影响。出现了“photosynthesis(光合作用)” “growth(生长)”“environment(环境)”“forest(森林)”等一系列突现词,该阶段在乔木与微气候的相互关系的研究中,主要探讨了乔木对微气候的影响,研究对象集中在宏观层面的森林和生态方面,也有部分涉及在热带农业的生产上。

        (2)探索期(2000—2010):该阶段出现频次最高的几个关键词是“climate change(气候变化)”“climate(气候)”“impact(影响)”“city(城市)”等,在经历了对于微气候—植被—温度之间关系的初步探索之后,随着城市热岛效应的加剧,以及森林破碎化程度升高,由森林转向与人类更为靠近的城市热环境的探索,但重心还是在林业方面。出现了“ecosystem(生态系统)”“seedling(苗)”“gradient(梯度)”“city(城市)”等突现词,对于森林边缘环境、林下微气候的研究呈现精细化的研究。

        (3)高速增长期(2011—2020):该阶段出现频次最高的几个关键词是“urban heat island(城市热岛)”“envi-met(envi-met模型)”“mitigation(缓和)”等,研究重心转移到城市规划设计上以及更加关注人在热环境下的感受,出现了“shade tree(遮荫树)”“comfort(舒适)”“health(健康)”“ecosystem service(生态系统服务)”等突现词。对于乔木与微气候的相互关系研究主要体现在不同对象上的变化,有宏观层面的城市与乡村、城市公园、城市公共空间等,也有微观层面的居住区、校园绿地、街旁绿地等。

        (二)从研究内容上分析:

        (1)乔木对微气候的影响:主要集中在林业、农业、风景园林几个领域。在林业上,从不同海拔高度、林下小气候、叶片微气候等方面进行研究。 Vera, NE[11]对新热带雨林不同开放度样地的8种冠层树种幼树叶片气体交换特征、林下小气候和树冠辐射特征进行了研究,他最早提出了林下微气候的说法,为小气候条件的异质性在对叶栖生物找到合适的小生境方面提供帮助;Pincebourde, Sylvain[12]解释了树叶微气候的形成过程;Bader, Maaike Y[13]通过研究不同海拔的林地植被生长状况,介绍了一种研究高山植被和树冠小气候对树木生长影响的实验方法。在农业上,主要从防风林对作物的影响、遮荫树对农业产量的影响等。Tamang, Bijay[14]证明了单行树防风林可以减少风和改变小气候,以提高作物产量;Lott, J E[15]研究了分散的树木对小气候条件、气体交换和玉米生产力的影响。在风景园林方面,从城市规划、校园绿地、公园绿地、住宅绿地、城市公共空间绿地、街道绿地等方面进行研究。例如Alexander, Cici[16]为了了解导致城市热岛效应的产生的因素,以植被指数归一化差分指数(NDVI)为模型,利用 Landsat 8的前7个波段的所有组合计算了光谱指数,并分析了它们与地表温度(LST)的关系,证明了树木和建筑物的覆盖面积有助于调节城市地表温度的潜力;Li, Huawei[17]通过对某校园绿地中16个地点的气象参数进行测量,证明了树木的降温增湿效应也与光合有效辐射和叶片角度有关;Antoniadis, D[18]在街道中研究街道峡谷效应下不同树木种植密度对空气质量的影响;Petralli, Martina[19]采用通用热气候指数(UTCI)对佛罗伦萨市不同绿地环境下的人体热舒适性进行评价。

        (2)微气候对乔木的影响:主要体现在林业和风景园林方面。在林业上,研究主要集中在海拔高度对树木生长模式和适应能力的表现、微气候的改良对苗木生长状况的影响以及气候物理条件(土壤条件、臭氧环境)对树木生长的影响。例如Cheung, Pui Kwan[20]调查了季节和气象因素对副热带湿润气候树木降温幅度的影响;Bresson, Caroline C[21]研究了高海拔地区树种的光合能力,表明树种是通过适应遗传进化的方式来应对极端环境条件的。在风景园林方面,主要集中在基于不同的气象因子对不同树木种类、树木排列方式等的实验研究,例如Rahman, Mohammad A[22]通过对比两个街道峡谷区,发现峡谷区气象因子变量都与这两个地点生长的树木的树干通量密度有很强的相关性等。

      • (一)国际上对于乔木与微气候相互关系的研究中,研究趋势一直处于上升状态,并且呈现精细化的主题研究势态。2011—2020:文献年均发文量迅猛增长,近四年甚至已经突破百位数,表明乔木与微气候之间有较大的关联。

        (二)研究力量上,就发文国家和机构来看,中国的发文数量和文献影响力在逐年增长,是该研究领域的中坚力量;美国居于第一位,表明美国研究开始早,处于乔木与微气候相互关系研究的主导地位,在该领域有深远的影响;就发文作者网络来看,各作者间的交流合作较多,形成了明显的合作团体,多半是各国国内学者之间的合作,各自研究主题也不尽相同,可以多加强该研究领域同主题或同方向的国际间的交流合作。这些研究力量奠定了乔木与微气候相互关系研究的理论基础。

        (三)1990—2020年在乔木与微气候相互关系的研究中,经历了缓慢发展期—探索期—高速增长期三个阶段。第一阶段为缓慢发展期(1990—1999):处于萌芽生长期开始探讨微气候—植被—温度之间的关系,乔木与微气候的出现形式常常以某些特定的植物群落例如铁杉、白桦等。多以树木群落作为研究对象,着眼于整个林区和某些特定气候带和区域,甚至整个生态环境;第二阶段为探索期(2000—2010):基于气候变化的大环境,乔木与微气候相互关系的研究发展日益成熟,该领域在乔木上的表现方式多以冠层、叶片微环境等作为研究对象,呈现出精细化的研究趋势,更加关注在大环境下林下微气候的变化;第三阶段为高速增长期(2011—2020):随着文献数量猛增,研究的领域涉及的专业更为丰富,并且形成的新热点主要围绕在人类居住环境上,更加关注人在通过乔木的生理效应调节后的感受。在这一阶段,乔木出现的形式更加具象,例如乔木的种类、种植排列方式、排列方式与街道(建筑)布局形式的最优化、以及乔木单体的性状对微气候的影响,整体上有了较为成熟的科学理论依据。

        (四)总的来说,在乔木与微气候相互关系的研究中,整体研究方向由生态环境的大格局向城市人居环境发展;国外的研究对象更趋向于宏观生态方面,国内的研究对象更趋向于微观城市环境方面;国外的机构作者学术交流更为紧密,国内的机构呈一家独大之势。基于这些现状,我们应该加强国际间的交流学习与合作,以及多学科的交叉学习,为现今气候变化问题提供更科学的理论依据,为建设更适宜的人居环境提供策略。

    参考文献 (22)

    目录

      /

      返回文章
      返回