用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

区域尺度桢楠人工林土壤养分特征

唐婕 林自芳 王晓琴 程一伦 彭建 王芳 杨汉波 辜云杰

唐婕, 林自芳, 王晓琴, 等. 区域尺度桢楠人工林土壤养分特征[J]. 四川林业科技, 2021, 42(4): 26−34 doi: 10.12172/202103030001
引用本文: 唐婕, 林自芳, 王晓琴, 等. 区域尺度桢楠人工林土壤养分特征[J]. 四川林业科技, 2021, 42(4): 26−34 doi: 10.12172/202103030001
Tang J, Lin Z F, Wang X Q, et al. Soil nutrient characteristics of Phoebe zhennan plantation at regional scale[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(4): 26−34 doi: 10.12172/202103030001
Citation: Tang J, Lin Z F, Wang X Q, et al. Soil nutrient characteristics of Phoebe zhennan plantation at regional scale[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(4): 26−34 doi: 10.12172/202103030001

区域尺度桢楠人工林土壤养分特征


doi: 10.12172/202103030001
详细信息
    作者简介:

    唐婕(1981—),女,工程师,357020708@qq.com

    通讯作者: 15398954@qq.com
  • 基金项目:  四川省重点研发项目(2021YFYZ0032);四川省财政专项项目:桢楠人工林养分循环特征研究

Soil Nutrient Characteristics of Phoebe zhennan Plantation at Regional Scale

More Information
    Corresponding author: 15398954@qq.com
  • 摘要: 分析区域、龄组对桢楠人工林土壤性质的影响,从土壤养分探讨区域尺度上桢楠人工林的土壤养分特征,为桢楠人工林的可持续经营和立地质量精准评价提供理论依据。选择四川省不同区域、林龄桢楠人工林为研究对象,采用S形取样法对不同土层(0~20 cm、20~40 cm)进行养分试验研究,一般线性模型、相关分析、主成分分析等多元统计方法相结合,探究桢楠人工林土壤养分因子在不同区域、不同龄组间的差异性和相关性。结果显示,四川不同地区桢楠人工林土壤在全氮、全磷、全钾、钙和镁5项指标上差异显著(P<0.05),有机碳差异不显著。所有养分因子在不同龄组之间的差异不显著。随着土层深度的增加,各养分含量整体上呈递减趋势,具有表聚性。仅有机碳和全氮呈显著的正相关,其余各养分指标间相关性均不显著。基于主成分分析的桢楠人工林土壤养分综合得分前三位分别为雅安市荥经县、乐山市峨眉山以及雅安市雨城区。因此,要根据不同区域土壤养分特征适地进行桢楠人工林可持续经营。
  • 图  1  桢楠人工林典型样地分布

    Fig.  1  Distribution of typical plots of P. zhennan plantation

    图  2  不同地区土壤养分特征比较

    注:SOC有机碳,TN全氮,TP全磷,TK全钾,相同字母表示差异不显著,不同字母表示差异显著。

    Fig.  2  Comparison of soil nitrogen nutrient characteristics in different regions

    Note: SOC: soil organic carbon; TN: total Nitrogen; TP: total phosphorus; TK: total potassium. The same letter means no significant difference, the different letters mean significant difference.

    图  3  不同土层土壤养分差异比较

    Fig.  3  Comparison of soil nutrients in different soil layers

    图  4  桢楠人工林主成分分析图

    Fig.  4  Principal component analysis diagram of P. zhennan plantation

    图  5  各地区桢楠人工林土壤养分综合评价得分

    Fig.  5  Comprehensive evaluation score of soil nutrients of P. zhennan plantation in different regions

    表  1  桢楠人工林样地概况

    Tab.  1  General information of sample plots in P. zhennan plantation

    样地
    Plot
    样地数
    Plot No.
    林龄
    Age/a
    海拔
    Altitude/m
    坡向
    SA
    坡度
    SG/°
    QLbhs320554/0
    YCjfs3350782E10
    EMzfs3100757E5
    EMfhs3100581/0
    LSjj34434W20
    DJYpzs3300689W2
    CZgsgs3100592WN4
    DJYlys345770ES14
    DYgts3200655WN14.5
    YJyfs34001011W5
    LZkqx37443/0
      注:SA、SG分别表示坡向和坡度。QLbhs:邛崃市白鹤山,Ycjfs:雅安市雨城区金凤寺,EMzfs:峨眉山中峰寺,EMfhs:峨眉山伏虎寺,LSjj:乐山市夹江县,DJYpzs:都江堰市普照寺,CZgsgs:崇州市高山古寺,DJYlys:都江堰市灵岩山林场,DYgts:大邑县高堂寺,YJyfs:荥经县云峰寺,LZkqx:乐至县国家林业科技示范园
      Note: SA, SG represent slope aspect and slope gradient. QLbhs: Baihe mountain, Qionglai city; Ycjfs: Jinfeng temple, Yucheng district, Ya'an city; EMzfs: E'meishan Zhongfeng temple; EMfhs: E'meishan Fuhu temple; LSjj: Jiajiang county, Leshan city; DJYpzs: Puzhao temple, Dujiangyan city; CZgsgs: Chongzhou city, Gaoshan ancient temple; DJYlys: Lingyanshan forest farm, Dujiangyan city; DYgts: Dayi county
    下载: 导出CSV

    表  2  土壤指标单位及测定方法

    Tab.  2  Soil index and determination method

    土壤指标Soil index 单位Unit 测定方法Determination method
    SOC % 重铬酸钾-外加热法
    TN g/kg 半微量凯氏定氮法
    TP g/kg 酸溶-钼锑抗比色法
    TK k/kg 氢氧化钠碱溶-火焰光度法
    Ca g/kg 火焰光度法
    Mg g/kg 火焰光度法
    下载: 导出CSV

    表  3  不同地区桢楠人工林土壤养分差异一般线性模型分析

    Tab.  3  General linear model analysis result of soil nutrients difference of P. zhennan plantation in different regions

    变异来源
    Source
    指标
    Index
    Ⅲ类平方和 Type
    Ⅲ sums of squares
    自由度
    df
    均方
    Mean square
    F
    地点
    Site
    SOC1988.2219220.9131.551
    TN12.162101.2163.765**
    TP1.33790.1495.149**
    TK0.013100.0015.309**
    Ca356.5001035.6506.446**
    Mg1.190100.1193.944**
    误差
    Error
    SOC7120.61950142.412
    TN17.765550.323
    TP1.442500.029
    TK0.014550.000
    Ca304.174555.530
    Mg1.660550.030
    总计
    Total
    SOC9108.84160
    TN29.92766
    TP2.77960
    TK0.02766
    Ca660.67466
    Mg2.85066
      注:SOC有机碳,TN全氮,TP全磷,TK全钾,**表示0.01水平差异极显著
      Note: SOC: soil organic carbon; TN: total Nitrogen; TP: total phosphorus; TK: total potassium, ** means significantly difference at the level of 0.01.
    下载: 导出CSV

    表  4  桢楠人工林不同龄组土壤养分差异一般线性模型分析

    Tab.  4  General linear model analysis result of soil nutrients difference of Pheobe zhennan plantation with different age groups

    变异来源
    Source
    指标
    Index
    III类平方和 Type
    Ⅲ sums of squares
    自由度
    df
    均方
    Mean square
    F
    龄级 AgeSOC101.120333.7070.508
    TN0.39630.1320.387
    TP0.02930.0100.200
    TK0.00130.0005.563
    Ca17.06735.6890.456
    Mg0.03530.0120.457
    重复 RepSOC53.765317.9220.270
    TN0.22630.0750.221
    TP0.06730.0220.463
    TK0.00130.0004.750
    Ca3.19031.0630.085
    Mg0.10330.0341.355
    误差 ErrorSOC199.072366.357
    TN1.02430.341
    TP0.14530.048
    TK0.00030.000
    Ca37.395312.465
    Mg0.07630.025
    总计 TotalSOC353.95710
    TN1.64610
    TP0.24110
    TK0.00210
    Ca57.65210
    Mg0.21410
    下载: 导出CSV

    表  5  桢楠人工林土壤性质间的相关性

    Tab.  5  Correlation between soil properties of P. zhennan plantation

    指标IndexSOCTNTPTKCaMg
    SOC1.000
    TN0.463*1.000
    TP0.2540.1721.000
    TK0.330−0.1670.1581.000
    TCa−0.079−0.2810.0490.0371.000
    TMg0.0810.0670.185−0.316−0.0491.000
      *表示显著相关(P<0.05)
    *mean significant correlation (P<0.05)
    下载: 导出CSV

    表  6  桢楠人工林土壤养分的主成分特征向量和累计贡献率

    Tab.  6  Principal component characteristic vector and cumulative contribution rate of soil nutrients of P. zhennan plantation

    变量
    Variables
    主成分1
    Principal component 1
    主成分2
    Principal component 2
    主成分3
    Principal component 3
    SOC0.545−0.071−0.167
    TN0.530−0.123−0.224
    TP0.4670.344−0.291
    TK0.447−0.0240.824
    TCa−0.0680.6690.332
    TMg−0.0010.643−0.220
    贡献率Contribution/%35.30%25.98%12.67%
    累计贡献率Cumulative contribution rate/%35.30%61.28%73.96%
    下载: 导出CSV
  • [1] 刘晓彤,李海奎,曹磊. 区域尺度杉木林和马尾松林土壤特征[J]. 中南林业科学大学学报,2020,40(9):113−123.
    [2] Elser JJ, Bracken MES, Cleland EE, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135−1142. doi: 10.1111/j.1461-0248.2007.01113.x
    [3] 王海伦. 湖南会同杉木人工林不同林龄养分含量动态研究P[D]. 长沙: 中南林业科技大学, 2019.
    [4] 董悦,张永清,刘彩彩. 晋中市土壤养分空间分布与影响因子的相关性[J]. 生态学报,2018,38(23):8621−8629.
    [5] 王戈,唐源盛,杨汉波,等. 桢楠优良种源/家系苗期评价和选择研究[J]. 四川林业科技,2019,40(3):63−66.
    [6] 邓波,余云云,赵慧,等. 桢楠资源培育的研究进展[J]. 安徽农业大学学报,2018,45(3):428−432.
    [7] 李晓清,龙汉利,张炜,等. 四川盆周山地3种珍贵阔叶用材树种木材物理力学性质研究[J]. 西部林业科学,2013,1:8−10. doi: 10.3969/j.issn.1672-8246.2013.04.002
    [8] 张炜,江波,蒋晔,等. 四川省桢楠天然群体种子表型多样性的初步研究[J]. 四川林业科技,2009,30(6):75−78. doi: 10.3969/j.issn.1003-5508.2009.06.014
    [9] 唐诚,王春胜,庞圣江,等. 广西大青山西南桦人工林土壤养分特征及其与立地生产力的关系[J]. 林业科学研究,2018,31(2):164−169.
    [10] 国家林业局. 森林土壤分析方法[S]. 北京: 中国标准出版社, 2000.
    [11] Nohrstedt H. Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences[J]. Scandinavian Journal of Forest Research, 2001, 16(6): 555−573. doi: 10.1080/02827580152699385
    [12] Scholten T, Goebes P, Kühn P, et al. On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems-a study from SE China[J]. Journal of Plant Ecology, 2017, 10(1): 111−127. doi: 10.1093/jpe/rtw065
    [13] 马天舒,丁伟林,肖复明,等. 不同年龄阶段陈山红心杉人工林土壤理化性质[J]. 中南林业科技大学学报,2020,40(12):114−124.
    [14] 许宇星,王志超,竹万宽,等. 雷州半岛不同林龄桉树人工林土壤化学计量特征[J]. 云南农业大学学报(自然科学),2019,34(3):486−493.
    [15] 牟凌,张丽,陈子豪,等. 四川盆地西缘4种人工林土壤有机碳组分特征[J]. 甘肃农业大学学报,2020,55(3):121−126.
    [16] 王滨,吴福忠,杨万勤,等. 四川盆地桢楠和马尾松人工林土壤磷截留及淋溶流失特征[J]. 环境科学学报,2016,36(4):1375−1382.
    [17] 范川,李贤伟,李平,等. 川中丘陵区柏木低效林不同改造模式土壤有机碳特征[J]. 土壤通报,2014,45(6):1437−1444.
    [18] 王艳丽,字洪标,程瑞希,等. 青海省森林土壤有机碳储量及其垂直分布特征[J]. 生态学报,2019,39(11):4096−4105.
    [19] 卫玮,党坤良. 秦岭南坡林地土壤有机碳密度空间分异特征[J]. 林业科学,2019,55(5):11−19. doi: 10.11707/j.1001-7488.20190502
    [20] 董佳琦,张勇,傅伟军,等. 香榧主产区林地土壤养分空间异质性及其肥力评价[J]. 生态学报,2021,41(6).
    [21] 王丹丹. 林地管理对香榧生长及土壤肥力的影响[D]. 合肥: 安徽农业大学, 2019: 71.
  • [1] 陈宇, 庞涛, 瞿相, 彭建, 杨汉波, 代林利, 辜云杰.  造林密度对楠木幼龄林生长、土壤理化性质与酶活性的影响 . 四川林业科技, 2024, 45(): 1-12. doi: 10.12172/202402200001
    [2] 王辰鹄, 陈其兵, 魏明, 刘诗雨, 刘宗放, 喻彦.  白夹竹笋营养成分与产地土壤养分的多元分析 . 四川林业科技, 2023, 44(2): 73-79. doi: 10.12172/202206220001
    [3] 朱培琦, 何鑫, 贾慧文, 曹秀龙, 陈松阳, 邱坚.  桢楠和闽楠木材构造特征对比分析研究 . 四川林业科技, 2022, 43(6): 48-56. doi: 10.12172/202112280001
    [4] 江磊, 秦富仓, 李龙, 赵金洋, 王露.  基于分形维数的黄土丘陵沟壑区不同人工林对土壤结构和养分的影响 . 四川林业科技, 2022, 43(3): 71-79. doi: 10.12172/202108160001
    [5] 余小晏, 孙明旭, 李健, 隗金心, 肖兴翠, 辜云杰, 杨汉波.  容器类型和规格对桢楠幼苗生长的影响 . 四川林业科技, 2021, 42(6): 96-101. doi: 10.12172/202106250001
    [6] 何芝然, 覃本友, 杨滨豪, 杨勇智, 肖兴翠, 龙汉利, 辜云杰.  基质配比对桢楠苗期生长的影响 . 四川林业科技, 2020, 41(4): 99-105. doi: 10.12172/202005180001
    [7] 刘赞, 胡立志, 杨露, 文亮.  三种土壤条件下桢楠幼树的生长和光合生理特性比较 . 四川林业科技, 2020, 41(5): 26-33. doi: 10.12172/202004270003
    [8] 王戈, 唐源盛, 杨汉波, 辜云杰, 殷国兰.  桢楠优良种源/家系苗期评价和选择研究 . 四川林业科技, 2019, 40(3): 63-66. doi: 10.16779/j.cnki.1003-5508.2019.03.012
    [9] 谭飞, 熊河先, 郭浩.  涝害对桢楠幼树生长及光合生理特性的影响 . 四川林业科技, 2019, 40(5): 38-44. doi: 10.16779/j.cnki.1003-5508.2019.05.008
    [10] 王伟平, 李绍才, 孙海龙, 缪宁, 马瑞, 陶文静, 杨皓.  杉木和柳杉人工林的土壤理化性质对比 . 四川林业科技, 2018, 39(5): 68-73. doi: 10.16779/j.cnki.1003-5508.2018.05.016
    [11] 王恩平, 余天宇, 靳伟, 贾晨, 辜云杰.  宜宾油樟人工林生长特性 . 四川林业科技, 2017, 38(5): 101-104. doi: 10.16779/j.cnki.1003-5508.2017.05.024
    [12] 张快富, 陈绍安, 许林红, 钟萍, 陈伟.  西双版纳加勒比松人工林群落特征研究 . 四川林业科技, 2017, 38(1): 87-89. doi: 10.16779/j.cnki.1003-5508.2017.01.022
    [13] 辜云杰, 甘伟, 龙汉利, 贾晨, 殷国兰.  桢楠优树半同胞家系苗期测定及优良家系选择 . 四川林业科技, 2017, 34(6): 5-8. doi: 10.16779/j.cnki.1003-5508.2017.06.002
    [14] 张琴, 余柏均, 张晓庆, 马海燕, 彭彩云, 肖玖金.  四川盆周西缘山地3种典型人工林土壤渗透性研究 . 四川林业科技, 2016, 37(5): 7-11. doi: 10.16779/j.cnki.1003-5508.2016.05.002
    [15] 王晓丽, 辜云杰, 贾晨, 高洁, 张时林, 罗建勋.  简阳“蜀台红香椿”人工林生长特性 . 四川林业科技, 2015, 36(4): 90-94. doi: 10.16779/j.cnki.1003-5508.2015.04.018
    [16] 余道平, 彭启新, 胡庭兴, 谢孔平, 李小杰.  桢楠多胚现象与多胚苗形态发育的研究 . 四川林业科技, 2015, 36(1): 35-37. doi: 10.16779/j.cnki.1003-5508.2015.01.008
    [17] 李晓清, 陈宇, 张炜, 龙汉利, 殷国兰, 辜云杰.  桢楠(Phoebe zhennan)不同种源幼苗比较研究 . 四川林业科技, 2015, 36(2): 20-23. doi: 10.16779/j.cnki.1003-5508.2015.02.004
    [18] 姬慧娟, 徐国栋, 张利, 马文宝, 文艺, 何建社, 刘兴良.  地震滑坡区覆盖生态毯对土壤湿度和养分的影响 . 四川林业科技, 2014, 35(6): 47-50. doi: 10.16779/j.cnki.1003-5508.2014.06.009
    [19] 彭秀, 曾静, 李秀珍.  间作对油茶幼林生长及土壤养分的影响 . 四川林业科技, 2013, 34(4): 14-17. doi: 10.16779/j.cnki.1003-5508.2013.04.004
    [20] 李晓清, 杜宜建, 朱纯燕, 尹贤利, 龙汉利, 张炜, 辜云杰.  四川桢楠栽培气候区划与应用研究 . 四川林业科技, 2013, 34(2): 16-19. doi: 10.16779/j.cnki.1003-5508.2013.02.003
  • 加载中
  • 图(5) / 表(6)
    计量
    • 文章访问数:  556
    • HTML全文浏览量:  164
    • PDF下载量:  17
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-03-03
    • 网络出版日期:  2021-06-07
    • 刊出日期:  2021-08-25

    区域尺度桢楠人工林土壤养分特征

    doi: 10.12172/202103030001
      作者简介:

      唐婕(1981—),女,工程师,357020708@qq.com

      通讯作者: 15398954@qq.com
    基金项目:  四川省重点研发项目(2021YFYZ0032);四川省财政专项项目:桢楠人工林养分循环特征研究

    摘要: 分析区域、龄组对桢楠人工林土壤性质的影响,从土壤养分探讨区域尺度上桢楠人工林的土壤养分特征,为桢楠人工林的可持续经营和立地质量精准评价提供理论依据。选择四川省不同区域、林龄桢楠人工林为研究对象,采用S形取样法对不同土层(0~20 cm、20~40 cm)进行养分试验研究,一般线性模型、相关分析、主成分分析等多元统计方法相结合,探究桢楠人工林土壤养分因子在不同区域、不同龄组间的差异性和相关性。结果显示,四川不同地区桢楠人工林土壤在全氮、全磷、全钾、钙和镁5项指标上差异显著(P<0.05),有机碳差异不显著。所有养分因子在不同龄组之间的差异不显著。随着土层深度的增加,各养分含量整体上呈递减趋势,具有表聚性。仅有机碳和全氮呈显著的正相关,其余各养分指标间相关性均不显著。基于主成分分析的桢楠人工林土壤养分综合得分前三位分别为雅安市荥经县、乐山市峨眉山以及雅安市雨城区。因此,要根据不同区域土壤养分特征适地进行桢楠人工林可持续经营。

    English Abstract

    • 土壤养分影响树木的健康生长和生态系统的稳定,因此土壤性质是评价土壤质量的重要指标[1]。植物结构元素:碳与限制元素:氮、磷相互作用调节植物生长[2]。微量元素是自然界中广泛存在的低含量的化学元素,也是植物生长发育所必需的[3]。了解土壤养分特性不仅能避免土壤养分失衡,还有助于保持土壤肥力水平从而提高作物品质和产量[4]。因此,对人工林土壤养分的研究,有利于理解人工林土壤养分和组成对人工林生长的促进和限制作用,以及人工林地力维持机制,为森林质量精准提升和可持续经营提供重要的理论和实践基础。

      桢楠(Phoebe zhennan)是我国特有的珍贵用材树种,其材质坚硬致密、香味清雅,素有“木中金子”之称,位居四大名木之首,是建筑、高档家具和雕刻艺术品的绝佳用料[5, 6]。由于历代砍伐利用,致使桢楠天然林资源近于枯竭,目前市场上的桢楠木材主要源于“四旁”和枯死的桢楠林木[7, 8]。近年来,随着市场对珍贵木材需求的不断增加,桢楠人工林规模逐年增加。但是,在桢楠人工林快速发展的过程中,由于立地选择不当、经营管理粗放等诸多问题,导致大量的桢楠人工林生产力不高。尽管影响人工林生产力的因素复杂多样,但林地土壤养分状况无疑是一个至关重要的因素[9]。四川省是桢楠最适生区域和栽培面积最大的地区之一,本研究以桢楠人工林为研究对象,通过设置典型样地开展土壤养分测定,分析不同地区、龄组对桢楠人工林土壤养分的影响,探讨区域尺度上桢楠人工林的土壤养分特征,为桢楠人工林立地质量精准评价和可持续经营提供理论依据。

      • 研究区位于我国西南地区的四川省,处于26°03′ N—34°19′ N,97°21′ E—108°12′ E之间,分属三大气候,分别为四川盆地中亚热带湿润气候,川西南山地亚热带半湿润气候,川西北高山高原高寒气候,年均温16~18 ℃。四川省降水量的区域分布多寡差异显著,年降水量最多的区域达1 700 mm以上,最少雨区却不足400 mm。四川地貌复杂,以山地为主要特色,具有山地、丘陵、平原和高原4种地貌类型,土壤类型丰富,东西部明显分异,有25个土类,主要有赤红壤、红壤、黄壤、黄棕壤、黄褐土等。

      • 考虑到不同林龄、坡向、坡位等因素,在四川桢楠人工林保存较好的11个县(区)内分别设置3个20×20 m的典型样地,并进行海拔、林龄、坡向等立地因子调查。林分年龄为4~400 a,共有幼龄林、中龄林、成熟林和过熟林4个龄组。各样地的分布、地形因子和林分年龄见表1图1

        表 1  桢楠人工林样地概况

        Table 1.  General information of sample plots in P. zhennan plantation

        样地
        Plot
        样地数
        Plot No.
        林龄
        Age/a
        海拔
        Altitude/m
        坡向
        SA
        坡度
        SG/°
        QLbhs320554/0
        YCjfs3350782E10
        EMzfs3100757E5
        EMfhs3100581/0
        LSjj34434W20
        DJYpzs3300689W2
        CZgsgs3100592WN4
        DJYlys345770ES14
        DYgts3200655WN14.5
        YJyfs34001011W5
        LZkqx37443/0
          注:SA、SG分别表示坡向和坡度。QLbhs:邛崃市白鹤山,Ycjfs:雅安市雨城区金凤寺,EMzfs:峨眉山中峰寺,EMfhs:峨眉山伏虎寺,LSjj:乐山市夹江县,DJYpzs:都江堰市普照寺,CZgsgs:崇州市高山古寺,DJYlys:都江堰市灵岩山林场,DYgts:大邑县高堂寺,YJyfs:荥经县云峰寺,LZkqx:乐至县国家林业科技示范园
          Note: SA, SG represent slope aspect and slope gradient. QLbhs: Baihe mountain, Qionglai city; Ycjfs: Jinfeng temple, Yucheng district, Ya'an city; EMzfs: E'meishan Zhongfeng temple; EMfhs: E'meishan Fuhu temple; LSjj: Jiajiang county, Leshan city; DJYpzs: Puzhao temple, Dujiangyan city; CZgsgs: Chongzhou city, Gaoshan ancient temple; DJYlys: Lingyanshan forest farm, Dujiangyan city; DYgts: Dayi county

        图  1  桢楠人工林典型样地分布

        Figure 1.  Distribution of typical plots of P. zhennan plantation

      • 采用S形取样法分别采集每个20×20 m样地内5点的0~20 cm、20~40 cm土层土壤,同一土层土壤均匀混合,装入土壤袋,风干过100目筛后进行土壤化学性质分析(表2)。土壤化学性质按国家林业局土壤养分分析标准测定土壤有机碳(SOC)、全氮(TN)、全磷(TP)、全钾(TK)、钙(Ca)和镁(Mg)的含量[10]

        表 2  土壤指标单位及测定方法

        Table 2.  Soil index and determination method

        土壤指标Soil index 单位Unit 测定方法Determination method
        SOC % 重铬酸钾-外加热法
        TN g/kg 半微量凯氏定氮法
        TP g/kg 酸溶-钼锑抗比色法
        TK k/kg 氢氧化钠碱溶-火焰光度法
        Ca g/kg 火焰光度法
        Mg g/kg 火焰光度法
      • 以测定的SOC、TN和TP等6个指标为因变量,采用一般线性模型,分析不同龄组、林地、土层间土壤性质差异,若存在显著性差异,则进行S-N-K多重比较分析。以测定的6项土壤指标为对象,采用Pearson系数进行土壤性质之间的相关性分析。

        对不同地区的土壤性质进行主成分分析,计算得到特征值和贡献率,然后计算某一地区的综合得分,结合全国第二次普查养分分级标准进行土壤养分分级和土壤质量评价。主成分综合评价模型为:$ F=\sum {W}_{i}\times F\left(Xi\right) $,式中,F为综合评价得分,Wi为各土壤因子的权重,反映各评价指标的重要性。

        前期数据处理在Excel中进行,后期主要采用一般线性模型分析、多因素方差分析、相关性分析和主成分分析法在SPSS和Origin软件中进行。

      • 由一般线性模型分析可知(见表3):四川不同地区桢楠人工林土壤在全氮(TN)、全磷(TP)、全钾(TK)、钙(Ca)和镁(Mg)5项指标上差异显著(P<0.05),有机碳(SOC)差异不显著。由数据对比分析可知(见图2),荥经县桢楠人工林土壤TN和TK含量显著高于其他地区,邛崃市桢楠人工林土壤Ca、Mg含量显著高于其他地区。按照《全国第二次土壤普查养分分级标准》,所有样地SOC含量均较高,为第1级(>4%)。TN含量处于1级(YJyfs)~5级(QLbhs)之间,TP含量为3级(QLbhs、EMzfs和YJyfs)~5级(CZgsgs、DJYlys和DYgts)之间。所有样地土壤TK含量均低于0.30 g/kg,属极低水平。

        表 3  不同地区桢楠人工林土壤养分差异一般线性模型分析

        Table 3.  General linear model analysis result of soil nutrients difference of P. zhennan plantation in different regions

        变异来源
        Source
        指标
        Index
        Ⅲ类平方和 Type
        Ⅲ sums of squares
        自由度
        df
        均方
        Mean square
        F
        地点
        Site
        SOC1988.2219220.9131.551
        TN12.162101.2163.765**
        TP1.33790.1495.149**
        TK0.013100.0015.309**
        Ca356.5001035.6506.446**
        Mg1.190100.1193.944**
        误差
        Error
        SOC7120.61950142.412
        TN17.765550.323
        TP1.442500.029
        TK0.014550.000
        Ca304.174555.530
        Mg1.660550.030
        总计
        Total
        SOC9108.84160
        TN29.92766
        TP2.77960
        TK0.02766
        Ca660.67466
        Mg2.85066
          注:SOC有机碳,TN全氮,TP全磷,TK全钾,**表示0.01水平差异极显著
          Note: SOC: soil organic carbon; TN: total Nitrogen; TP: total phosphorus; TK: total potassium, ** means significantly difference at the level of 0.01.

        图  2  不同地区土壤养分特征比较

        Figure 2.  Comparison of soil nitrogen nutrient characteristics in different regions

      • SOC和TN含量由幼龄林至过熟林阶段呈逐渐增加的趋势,分别为20.42%~32.31%和1.18~1.67 g/kg;Ca含量呈先增加后减少的趋势,为2.99~5.88 g/kg;其余养分指标在各龄组间无明显变化趋势。由多因素的一般线性模型分析可知,桢楠人工林所有6个土壤养分指标在幼龄林、中龄林、成熟林和过熟之间均无显著性差异(见表4)。

        表 4  桢楠人工林不同龄组土壤养分差异一般线性模型分析

        Table 4.  General linear model analysis result of soil nutrients difference of Pheobe zhennan plantation with different age groups

        变异来源
        Source
        指标
        Index
        III类平方和 Type
        Ⅲ sums of squares
        自由度
        df
        均方
        Mean square
        F
        龄级 AgeSOC101.120333.7070.508
        TN0.39630.1320.387
        TP0.02930.0100.200
        TK0.00130.0005.563
        Ca17.06735.6890.456
        Mg0.03530.0120.457
        重复 RepSOC53.765317.9220.270
        TN0.22630.0750.221
        TP0.06730.0220.463
        TK0.00130.0004.750
        Ca3.19031.0630.085
        Mg0.10330.0341.355
        误差 ErrorSOC199.072366.357
        TN1.02430.341
        TP0.14530.048
        TK0.00030.000
        Ca37.395312.465
        Mg0.07630.025
        总计 TotalSOC353.95710
        TN1.64610
        TP0.24110
        TK0.00210
        Ca57.65210
        Mg0.21410
      • 随着土层深度的增加,桢楠人工林土壤各养分含量整体上呈递减趋势,具有表聚性(见图3)。除DJYpzs、DYgts外,其余地区桢楠人工林土壤表层(0~20 cm)土壤SOC含量均显著高于风化层(20~40 cm)土层(P<0.05)。EMzfs土壤表层TP含量显著高于风化层,而EMfhs土壤表层TP含量显著低于风化层,其余地区土层间差异不显著。土壤全K、Mg含量随土层增加逐渐增加,表现出较为明显的表聚性。

        图  3  不同土层土壤养分差异比较

        Figure 3.  Comparison of soil nutrients in different soil layers

      • 对11处桢楠不同林龄人工林土壤养分含量间进行相关性分析,不同指标相关性见表5。仅SOC和TN间呈显著的正相关关系,其余各性质指标间均不存在显著相关性。

        表 5  桢楠人工林土壤性质间的相关性

        Table 5.  Correlation between soil properties of P. zhennan plantation

        指标IndexSOCTNTPTKCaMg
        SOC1.000
        TN0.463*1.000
        TP0.2540.1721.000
        TK0.330−0.1670.1581.000
        TCa−0.079−0.2810.0490.0371.000
        TMg0.0810.0670.185−0.316−0.0491.000
          *表示显著相关(P<0.05)
        *mean significant correlation (P<0.05)
      • 对桢楠人工林6项土壤因子进行主成分分析,找出影响土壤质量的主要土壤因子,并对不同地区土壤质量进行排序及评价。桢楠人工林不同地区主成分前3项的贡献率分别为35.30%、25.98%和12.67%,主成分前3项的累计贡献率达73.96%,已包含了大部分信息,因此提取前3个主成分(见图4表6)。由表5可以看出,不同土壤养分因子对主成分的贡献与反馈特征不同,SOC、TN和TK对第1主成分的影响较大,第1主成分可以看作是这些指标的综合性因子,Ca和Mg对第2主成分的影响较大,第2主成分可以看作是Ca和Mg的综合性因子,而TP对第1和第2主成分的影响均较大。

        图  4  桢楠人工林主成分分析图

        Figure 4.  Principal component analysis diagram of P. zhennan plantation

        表 6  桢楠人工林土壤养分的主成分特征向量和累计贡献率

        Table 6.  Principal component characteristic vector and cumulative contribution rate of soil nutrients of P. zhennan plantation

        变量
        Variables
        主成分1
        Principal component 1
        主成分2
        Principal component 2
        主成分3
        Principal component 3
        SOC0.545−0.071−0.167
        TN0.530−0.123−0.224
        TP0.4670.344−0.291
        TK0.447−0.0240.824
        TCa−0.0680.6690.332
        TMg−0.0010.643−0.220
        贡献率Contribution/%35.30%25.98%12.67%
        累计贡献率Cumulative contribution rate/%35.30%61.28%73.96%

        主成分分析可以反映土壤质量状况,得分越高代表土壤质量越好。由综合评价模型计算得到各区域桢楠人工林的综合得分前三位分别为YJyfs、EMzfs和YCjfs(见图5),这3个地区的土壤养分充足,最为适宜桢楠生长发育,推测雅安和乐山是发展桢楠人工林的较适宜区域。

        图  5  各地区桢楠人工林土壤养分综合评价得分

        Figure 5.  Comprehensive evaluation score of soil nutrients of P. zhennan plantation in different regions

      • 土壤养分影响林木生长与林分生产力[11, 12]。本研究以四川省11个地区4个龄组桢楠人工林为研究对象,分析土壤与其之间的关系,为桢楠人工林土壤质量评价以及提高桢楠人工林可持续经营水平奠定了基础。土壤碳、氮、磷是植物生长发育和物质循环的重要化学元素,它们的含量和分布影响植物的生长发育[13, 14]。本研究发现,不同地区桢楠人工林在全部6个土壤养分指标间差异显著。各地区桢楠人工林土壤有机碳(SOC)、全氮(TN)含量均较高,与牟凌等[15]对四川盆地西缘桢楠人工林土壤SOC含量研究结果相一致。一方面由于桢楠属于阔叶树种,凋落物分解相对较快,产生的有机质混入矿质土,使得土壤SOC含量较高;另一方面研究区域雨水中等,林下土壤受淋溶作用影响不大。同时也表明,研究区域内土壤C、N养分含量均较高,能够满足桢楠人工林生长所需养分,是发展桢楠人工林的适宜区域。桢楠人工林土壤TP含量均处于较低水平,在为3~5级之间。其原因可能与雨季桢楠人工林土壤对磷的截留量较低,表现为净流失有关[16]

        在土壤垂直剖面上,植物凋落物与土壤微生物主要集中在表层,凋落物的矿化以及腐殖质都在表层,这有利于SOC、N等养分的积累[17]。本研究发现,随着土层深度的增加,桢楠人工林土壤所有养分指标含量均下降,即表明土壤养分具有表聚现象。这与已有的许多研究结果相符[15, 18, 19]。就不同龄组而言,桢楠人工林土壤的6项养分指标之间并无显著性差异,但土壤SOC、TN有所增加。一方面,随着林龄的增加,林下植被种类与数量、林层结构均会发生变化,凋落物的数量与厚度也会随之增加,养分归还量进而有所提升;另一方面,林地经营年限的增长,立地环境基本稳定,有机质积累速率逐渐大于分解速率,再加上有机肥的施用等经营措施,使土壤SOC含量逐渐增长[20, 21]。刘晓彤等[1]对杉木和马尾松不同龄级人工林土壤养分特征研究结果显示,随着林龄的增加,林地土壤养分含量也随之增加,马尾松以近熟林、杉木以成熟林土壤质量最好。陈山红心杉随着林龄的增加,土壤有机碳的积累也逐渐增加,而土壤全N含量表现为随林龄的增加先上升后减小的趋势[13]。与本研究桢楠人工林土壤TN含量变化趋势有所不同。表明桢楠人工林在消耗N元素的同时,也能通过凋落物分解等渠道及时有效地补充N元素。Ca含量随着林龄的增加呈现上升的趋势,Mg含量随着林龄的变化不明显,这与其他树种,如杉木人工林所得出的土壤Ca、Mg结论不一致,其具体的原因还需要进一步结合桢楠树种特性及其根系吸收土壤元素情况而定[13]

        土壤肥力评价有助于各地区农林业管理者、相关研究人员和决策者更加深入的了解区域农业生产管理系统的土壤质量情况[20]。本研究选取土壤SOC、TN等6个指标,通过主成分分析研究发现,桢楠人工林不同地区的土壤养分综合得分总体表现出较高的肥力水平,雅安和乐山最佳,其余区域差异不明显。土壤肥力水平不仅取决于土壤养分和植物吸收能力,还受各因子协调程度的影响。根据实地调查,部分地区林农大量施用复合肥以达到提高生长量的目的,虽然使桢楠林地的土壤养分得到明显提升,但一味地追求高的生长量,而不注重肥效造成了肥料浪费、环境污染等问题。因此,在桢楠人工林培育过程中,应根据桢楠人工林地土壤养分的实际情况,合理利用化肥,采用测土配方施肥,既满足桢楠植株生长所需,又不会造成环境污染,最终实现桢楠人工林的精准提升和可持续发展。

    参考文献 (21)

    目录

      /

      返回文章
      返回