用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机-无机肥配施对樟子松干物质积累及土壤肥力的影响

解秀清

解秀清. 有机-无机肥配施对樟子松干物质积累及土壤肥力的影响[J]. 四川林业科技, 2021, 42(5): 86−91 doi: 10.12172/202102020001
引用本文: 解秀清. 有机-无机肥配施对樟子松干物质积累及土壤肥力的影响[J]. 四川林业科技, 2021, 42(5): 86−91 doi: 10.12172/202102020001
Xie X Q. Effect of combined application of organic and inorganic fertilizers on dry matter accumulation and soil fertility of Pinus sylvestris var. mongolica[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(5): 86−91 doi: 10.12172/202102020001
Citation: Xie X Q. Effect of combined application of organic and inorganic fertilizers on dry matter accumulation and soil fertility of Pinus sylvestris var. mongolica[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(5): 86−91 doi: 10.12172/202102020001

有机-无机肥配施对樟子松干物质积累及土壤肥力的影响


doi: 10.12172/202102020001
详细信息
    作者简介:

    解秀清(1982—),女,工程师,学士,renjinlan123@163.com

Effect of Combined Application of Organic and Inorganic Fertilizers on Dry Matter Accumulation and Soil Fertility of Pinus sylvestris var. mongolica

More Information
  • 摘要: 通过研究不同比例有机肥对樟子松生长发育及土壤肥力的影响规律,以期为其育苗中科学合理施用有机肥提供理论依据。试验在田间条件下,设置空白对照(T1)、化肥对照(T2)、50%比例有机肥(T3)、100%比例有机肥(T4)4个处理,3次重复。结果表明:T3根、茎、叶干物质积累量分别比T2提高了65.92%、46.51%、36.54%,T4总干物质积累量与T1、T2之间无显著差异;T4根冠比显著高于T1与T2;T3土壤容重比T2降低了17.02%,T3、T4总孔隙度、毛管孔隙度、非毛管孔隙度、饱和含水量均显著高于T1、T2;T3碱解氮、速效磷、速效钾分别比T2提高了18.17%、21.28%、6.17%,T3、T4有机质和全氮含量均显著高于空白对照;T3与T2相比显著提高了脲酶、多酚氧化酶、蛋白酶、蔗糖酶活性,显著降低了过氧化氢酶活性。综合分析认为樟子松育苗中施用50%比例的有机肥对促进苗木生长和提高土壤肥力效果最佳。
  • 表  1  各处理施肥量

    Tab.  1  Fertilization amount of each treatment g per plant 单位:(g·株–1)

    处理
    Treatment
    尿素
    Urea
    过磷酸钙
    Calcium superphosphate
    硫酸钾
    Potassium sulphate
    有机肥
    Organic fertilizer
    T10000
    T217.399.203.740
    T38.704.601.8668.73
    T4000137.46
    下载: 导出CSV

    表  2  有机-无机肥配施对樟子松各器官干物质积累的影响

    Tab.  2  Effects of combined application of organic and inorganic fertilizers on dry matter accumulation in different organs of Pinus sylvestris var. mongolica g per plant 单位:(g·株–1)

    处理 treatment根 root茎 stem叶 leaf总重 total weight根冠比 root shoot ratio
    T11.37±0.20c0.82±0.09c1.96±0.54c4.16±0.82c0.50±0.04b
    T21.92±0.50c1.38±0.34b2.95±0.54b6.26±1.37b0.44±0.03c
    T33.20±0.55a2.02±0.30a4.02±0.60a9.25±1.45a0.53±0.01b
    T42.18±0.44b1.02±0.21c2.26±0.44bc5.46±1.09bc0.67±0.01a
      注:同列不同小写字母表示处理间差异显著(P<0.05)。下同。
      Note: different lower letters indicate significant difference among different treatment at 0.05 level. The same below.
    下载: 导出CSV

    表  3  有机-无机肥配施对樟子松苗圃地土壤物理性质的影响

    Tab.  3  Effects of combined application of organic and inorganic fertilizers on soil physical and chemical properties of Pinus sylvestris var. mongolica

    处理
    treatment
    容重/g/cm3
    bulk density
    总孔隙度/%
    total porosity
    毛管孔隙度/%
    capillary porosity
    非毛管孔隙度/%
    non capillary porosity
    饱和含水量/%
    saturated water content
    T11.12±0.20ab48.60±1.92b44.75±1.16b3.85±0.80b45.67±1.60b
    T21.25±0.10a45.50±2.31c42.21±2.04b3.28±0.27c42.76±2.00c
    T31.04±0.13bc52.65±2.89a48.08±3.44a4.57±0.56a48.64±1.43a
    T40.93±0.12c53.77±3.20a49.33±3.62a4.43±0.43a50.05±3.02a
    下载: 导出CSV

    表  4  有机-无机肥配施对樟子松苗圃地土壤养分含量的影响

    Tab.  4  Effects of combined application of organic and inorganic fertilizers on soil nutrients content of Pinus sylvestris var. mongolica

    处理
    treatment
    有机质/%
    organic matter
    全氮/(g·kg−1)
    total nitrogen
    碱解氮/(mg·kg−1)
    alkali hydrolyzed nitrogen
    速效磷/(mg·kg−1)
    available phosphorus
    速效钾/(mg·kg−1)
    available potassium
    T12.08±0.20b2.84±0.30c18.03±1.00c12.45±1.43c84.45±2.21c
    T22.12±0.10b3.14±0.32b21.45±1.44b16.87±1.87b96.68±4.22b
    T32.25±0.24a3.58±0.37a25.35±2.30a20.46±2.04a102.65±6.00a
    T42.39±0.35a3.71±0.50a22.05±2.00b18.75±1.73ab85.42±2.23c
    下载: 导出CSV

    表  5  有机-无机肥配施对樟子松苗圃地土壤酶活性的影响

    Tab.  5  Effects of combined application of organic and inorganic fertilizers on soil enzyme activities of Pinus sylvestris var. mongolica

    处理
    treatment
    脲酶/(mg·g−1)
    urease
    多酚氧化酶/(mg·g−1)
    polyphenol oxidase
    蛋白酶/(μg·g−1)
    protease
    蔗糖酶/(mg·g−1)
    sucrase
    过氧化氢酶/(mg·g−1)
    catalase
    T10.47±0.36c2.89±0.80b1.03±0.12b5.64±0.60b8.76±0.76a
    T20.86±0.07b2.51±0.31c1.18±0.15b6.24±0.53b7.23±0.51b
    T31.06±0.15ab3.02±0.33ab1.35±0.14a8.76±0.70a4.80±0.75c
    T41.21±0.12a3.12±0.40a1.41±0.21a9.13±1.00a5.22±0.50c
    下载: 导出CSV
  • [1] 王光火,朱祖祥. pH对土壤吸持磷酸根的影响及其原因[J]. 土壤学报,1991(1):1−6. doi: 10.3321/j.issn:0564-3929.1991.01.006
    [2] 张青青,杨永洁,王慷林,等. 不同容器类型及施肥对云南松苗木生长的影响[J]. 西部林业科学,2020,49(3):92−98, 116.
    [3] 郑昕雨,赵昌博,智中正,等. 化肥减施对日光温室黄瓜生长和土壤肥力的影响[J]. 江西农业大学学报,2020,42(6):1151−1158.
    [4] 崔纪平. 不同施肥处理对‘金叶’锦带生理特性的影响[J]. 中国农学通报,2020,36(16):61−66.
    [5] 张吉立. 旅游景观园林早熟禾合理施肥试验研究[J]. 中国土壤与肥料,2012(4):65−69. doi: 10.3969/j.issn.1673-6257.2012.04.013
    [6] 张吉立. 硝酸铵配施有机肥对观赏草坪质量的影响[J]. 河北科技师范学院学报,2020,34(2):25−30, 37.
    [7] 李红霞. 有机肥对新疆杨生长和保护酶活性的影响[J]. 陕西林业科技,2019,47(5):27−31. doi: 10.3969/j.issn.1001-2117.2019.05.005
    [8] 张然,史雷,马龙,等. 有机无机肥配施对旱地冬小麦产量及土壤物理性质的影响[J]. 水土保持学报,2020,34(6):325−330, 336.
    [9] 刘思佳,胡业殊. 不同比例有机-无机肥配施对黑土土壤速效养分的影响[J]. 农业与技术,2020,40(3):44−46.
    [10] 赵满兴,刘慧,王静,等. 减量复合肥配施生物有机肥对番茄土壤肥力及酶活性的影响[J]. 农学学报,2020,10(2):56−61. doi: 10.11923/j.issn.2095-4050.cjas20190600069
    [11] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2015.
    [12] 林治国. 施肥对黑果枸杞苗木生长影响的技术研究[J]. 林业勘查设计,2020,49(3):37−39. doi: 10.3969/j.issn.1673-4505.2020.03.016
    [13] 文野,李丹,李甜江,等. 叶面施肥对窄叶西南红山茶苗木生长的影响[J]. 西南林业大学学报,2016,36(2):62−66.
    [14] 谭长强,黄志玲,申文辉,等. 基质及遮阴对台湾桤木生长和光合生理的影响[J]. 湖北农业科学,2020,59(12):90−93.
    [15] 张吉立. 不同氮磷肥施用量对城市景观草坪生长与养分吸收的影响[J]. 中国土壤与肥料,2014(6):63−66. doi: 10.11838/sfsc.20140611
    [16] 朱明霞,白婷,靳玉龙,等. 施肥对春青稞干物质积累、分配及产量的影响[J]. 中国农学通报,2020,36(25):7−13.
    [17] 钟泽林,冯文龙,余伟,等. 生物有机肥对烟株根系及土壤理化性质的影响[J]. 安徽农业科学,2021,49(2):138−142, 146. doi: 10.3969/j.issn.0517-6611.2021.02.038
    [18] 吕晓菡,章明奎,严建立. 绿肥配施有机肥改良新建红壤橘园的效果研究[J]. 土壤通报,2020,51(1):164−170.
    [19] 张龙辉,李源环,邓小华,等. 施用石灰和绿肥及生物有机肥后的酸性土壤pH和理化性状动态变化[J]. 中国烟草学报,2019,25(3):60−66.
    [20] 赵旭,宋清晖,王晓慧,等. 几种有机肥对玉米光合特性及土壤酶活性的影响[J]. 中国农学通报,2021,37(3):36−42. doi: 10.11924/j.issn.1000-6850.casb2020-0341
  • [1] 郑川玲, 王慷林, 李莲芳, 张青青, 杨永洁, 杨历雨, 沈松, 吴俊多, 刘进, 杨博.  NaOH和壳聚糖对柚木种子发芽过程营养物质的动态影响 . 四川林业科技, 2023, 44(1): 52-58. doi: 10.12172/202203140003
    [2] 刘思泽, 刘宏强, 黄雪梅, 王雪, 杨靖宇, 陈德朝.  不同恢复模式对退化高寒沼泽湿地土壤轻重组有机碳的影响 . 四川林业科技, 2023, 44(6): 69-76. doi: 10.12172/202303160002
    [3] 李小永, 田小琴.  岩溶生态系统退化与土壤有机碳贮量 . 四川林业科技, 2023, 44(4): 82-87. doi: 10.12172/202210120001
    [4] 乔一娜, 高荣, 曹双成, 付广军, 杨伟, 郝新忠, 石长春.  榆林沙区樟子松人工林立地质量数量化评价 . 四川林业科技, 2023, 44(3): 121-127. doi: 10.12172/202208300003
    [5] 孟庆银.  土壤有机碳全氮与杉木幼苗生长相关性研究 . 四川林业科技, 2022, 43(5): 73-78. doi: 10.12172/202112020002
    [6] 唐宏伟, 黄伊嘉, 吴斌.  固体酸催化生物质转化的研究进展 . 四川林业科技, 2021, 42(4): 114-121. doi: 10.12172/202011170002
    [7] 范富强, 魏琴, 莫开林.  油樟叶渣制备生物质材料工艺筛选 . 四川林业科技, 2021, 42(5): 64-68. doi: 10.12172/202102040002
    [8] 蔡蕾, 侯笔锋, 冯秋红, 刘前程, 李旭华, 潘红丽, 刘兴良.  川西亚高山天然次生林不同演替阶段土壤团聚体组成及有机碳分布特征 . 四川林业科技, 2021, 42(2): 1-7. doi: 10.12172/202009210003
    [9] 王亚丽, 许武成, 杜忠.  马尾松低效人工林土壤易氧化有机碳在不同改造措施下的分布特征 . 四川林业科技, 2021, 42(1): 35-39. doi: 10.12172/202006070001
    [10] 谢川, 陈俊华, 谢天资, 林静, 赵昊天, 蒋雨轩, 骆宗诗, 慕长龙.  成都市龙泉山城市森林公园土壤肥力空间格局及其影响因子 . 四川林业科技, 2021, 42(4): 47-54. doi: 10.12172/202012140003
    [11] 叶润根, 陈国建, 王震, 何谦, 张春叶.  重庆山区不同土地利用下的土壤肥力质量研究 . 四川林业科技, 2021, 42(1): 29-34. doi: 10.12172/202010190005
    [12] 郝云庆, 易津鑫, 郑文丽, 李文俊, 吴军佑, 李伟.  不同恢复方式下二郎山公路创面土壤酶活性与土壤肥力变化特征 . 四川林业科技, 2020, 41(1): 19-26. doi: 10.12172/201908270001
    [13] 刘骞, 曾文津, 赵宇, 贾蕊萌, 李越.  城市不同功能分区草坪绿地土壤有机碳与碱解氮垂直分布特征 . 四川林业科技, 2019, 40(1): 25-29. doi: 10.16779/j.cnki.1003-5508.2019.01.005
    [14] 侯正扬, 田忠琼, 李文英, 毛维莉, 甘小洪, 欧拉提子.  野生大熊猫采食对峨热竹粗灰分和干物质含量的影响 . 四川林业科技, 2018, 39(1): 50-53. doi: 10.16779/j.cnki.1003-5508.2018.01.010
    [15] 丁锐, 赖霜菊, 赵柳, 杨明府, 严雄, 刘雪梅, 李波, 闵安民, 王正前.  广元核桃林地土壤肥力诊断与综合评价 . 四川林业科技, 2018, 39(6): 71-75. doi: 10.16779/j.cnki.1003-5508.2018.06.016
    [16] 苏涛.  有机无机复混肥使用量对马尾松幼龄林生长及单株材积的影响 . 四川林业科技, 2016, 37(1): 56-58. doi: 10.16779/j.cnki.1003-5508.2016.01.011
    [17] 潘业田, 郝凯婕, 张翠翠, 李贤伟, 王晓虹, 范赟.  川西亚高山云杉低效林林窗改造下土壤水溶性有机碳的季节动态 . 四川林业科技, 2016, 37(1): 27-32. doi: 10.16779/j.cnki.1003-5508.2016.01.005
    [18] 曾念念, 何传龙, 黄从德, 季荣飞, 张健, 李贤伟.  不同间伐强度对柏木低效人工林土壤有机碳的影响 . 四川林业科技, 2015, 36(3): 25-30. doi: 10.16779/j.cnki.1003-5508.2015.03.006
    [19] 王纪杰, 鲍爽, 梁关峰, 俞元春.  不同林龄桉树人工林土壤有机碳的变化 . 四川林业科技, 2015, 36(4): 18-21. doi: 10.16779/j.cnki.1003-5508.2015.04.002
    [20] 张驰.  竹织叶野螟危害对毛竹叶片次生物质含量的影响 . 四川林业科技, 2013, 34(1): 76-77. doi: 10.16779/j.cnki.1003-5508.2013.01.019
  • 加载中
  • 计量
    • 文章访问数:  528
    • HTML全文浏览量:  254
    • PDF下载量:  8
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-02-02
    • 网络出版日期:  2021-07-14
    • 刊出日期:  2021-09-30

    有机-无机肥配施对樟子松干物质积累及土壤肥力的影响

    doi: 10.12172/202102020001
      作者简介:

      解秀清(1982—),女,工程师,学士,renjinlan123@163.com

    摘要: 通过研究不同比例有机肥对樟子松生长发育及土壤肥力的影响规律,以期为其育苗中科学合理施用有机肥提供理论依据。试验在田间条件下,设置空白对照(T1)、化肥对照(T2)、50%比例有机肥(T3)、100%比例有机肥(T4)4个处理,3次重复。结果表明:T3根、茎、叶干物质积累量分别比T2提高了65.92%、46.51%、36.54%,T4总干物质积累量与T1、T2之间无显著差异;T4根冠比显著高于T1与T2;T3土壤容重比T2降低了17.02%,T3、T4总孔隙度、毛管孔隙度、非毛管孔隙度、饱和含水量均显著高于T1、T2;T3碱解氮、速效磷、速效钾分别比T2提高了18.17%、21.28%、6.17%,T3、T4有机质和全氮含量均显著高于空白对照;T3与T2相比显著提高了脲酶、多酚氧化酶、蛋白酶、蔗糖酶活性,显著降低了过氧化氢酶活性。综合分析认为樟子松育苗中施用50%比例的有机肥对促进苗木生长和提高土壤肥力效果最佳。

    English Abstract

    • 人工林土壤肥力衰退问题是一个世界性难题,德国早在1869年进行了初步研究,1986年Baison在澳大利亚研究认为,林地土壤肥力降低与木材吸收养分量具有明显的相关性[1]。随着研究的不断深入,林木育苗中施肥在部分地区已经推广应用,生产实践中取得了较好的经济效益[2]。随着人工施用化肥年限的增长,部分苗圃出现了土壤板结、次生盐渍化、土壤物理性质变差等问题,直接导致了土壤养分供应能力降低,苗木生长不良等问题[3-4]。为此,在林木施肥过程中添加一定比例的有机肥是培肥土壤的重要的途径之一[5]。张吉立[6]研究认为,化肥配施一定比例的有机肥可以显著促进早熟禾株高生长和干物质积累量;李红霞[7]研究认为,新疆杨育苗中施用一定比例的有机肥显著促进了植株生长,有机肥处理的苗木干物质积累量显著高于单纯施用化肥处理;张然[8]研究认为,有机肥与无机肥配施可以显著降低土壤容重,提高土壤孔隙率和持水率,显著改善土壤物理性状;刘思佳[9]研究认为,施用一定比例的有机肥可以显著提高土壤内碱解氮、速效钾、速效磷含量,并且有机质含量与对照相比极显著提高;赵满兴[10]研究认为,土壤施用一定比例的有机肥可以显著提高土壤内脲酶活性,降低过氧化氢酶活性,有利于促进土壤养分转化,促进植物生长。在前人的相关研究中,关于有机肥对樟子松幼苗生长发育及苗圃土壤肥力变化的相关研究较少,本文通过分析不同比例有机肥对樟子松苗木生长发育及土壤物理和化学性质的影响规律,以期为育苗实践中培育优质壮苗和提高苗圃土壤肥力提供理论依据。

      • 试验于2020年3月至10月在山西省杨树丰产林实验局试验苗圃中进行。试验所选樟子松苗木为1年生实生苗。试验苗圃内土壤基础肥力状况为:有机质21.32 g·kg–1,碱解氮19.04 mg·kg–1,P2O5为15.08 mg·kg–1,K2O为89.67 mg·kg–1,pH=7.84。试验所选用有机肥为腐熟芝麻饼肥,有机质含量为158.7 g·kg–1,氮含量为58.2 g·kg–1,P2O5含量为33.5 g·kg–1,K2O含量为13.6 g·kg–1

      • 本试验共设4个处理,其中T1为空白对照,T2为单纯施用化肥对照,T3为施用50%比例的有机肥(以施用纯氮量计),T4为100%有机肥处理,各处理施肥量见表1。试验所使用的氮肥为尿素,含氮量46%,磷肥为重过磷酸钙,P2O5含量为50%,钾肥为硫酸钾,K2O含量为50%。2020年3月2日,在苗圃内开挖30 cm宽,深10 cm的栽植沟,按照试验设计,将肥料称量好,将肥料与土按照1∶5比例混匀后均匀撒施入沟中,然后覆盖1 cm左右厚度的表土,将樟子松苗木按照株距为40 cm距离栽植入沟中,覆土后浇透水一次。生长季节内分别于4月13日、5月21日、6月20日各浇水一次,7月10日除草一次。每处理共计50株苗木,随机区组试验设计,3次重复。

        表 1  各处理施肥量

        Table 1.  Fertilization amount of each treatment g per plant 单位:(g·株–1)

        处理
        Treatment
        尿素
        Urea
        过磷酸钙
        Calcium superphosphate
        硫酸钾
        Potassium sulphate
        有机肥
        Organic fertilizer
        T10000
        T217.399.203.740
        T38.704.601.8668.73
        T4000137.46
      • 于2020年10月10日到田间取样。干物质积累量测定时整株挖取樟子松幼苗后带回实验室冲洗干净,按照根、茎、叶分开,放于105 ℃烘箱中杀青30 min后,在75 ℃下烘干至恒重,用精度为0.01 g电子天平称重,每个处理取样5株,取平均值作为最终结果。土壤容重取样时,直接用环刀在早春苗木移栽时开挖的栽植沟内取样,带回实验室,分别进行总孔隙度、毛管孔隙度、非毛管孔隙度、饱和含水量,容重,土壤取样深度为5~15 cm深土层,每处理取样5次,取平均值作为最终结果[11]。土壤养分和酶活性测定时土壤取样方法采用抖根法,取样时将苗木表土5 cm刮除,将苗木挖起后,清除周围杂土,将根系上携带的土壤抖落至报纸上,收集起来测定土壤速效养分及酶活性。其中有机质含量采用重铬酸钾容量法,全氮测定采用凯氏定氮法,碱解氮采用碱解扩散法,速效磷采用钼锑抗比色法,速效钾采用火焰光度计法测定;脲酶苯酚-次氯酸钠比色法,多酚氧化酶采用邻苯三酚比色法,蛋白酶采用茚三酮比色法,蔗糖酶采用3,5-二硝基水杨酸比色法,过氧化氢酶高锰酸钾滴定法测定。试验方法均参照鲍士旦主编《土壤农化分析》教材进行[11]

      • 图表制作使用excel 2010版软件,方差分析使用DPS 7.05版软件。

      • 表2可知,不同处理对各器官干物质积累的影响存在差异。T3处理根、茎、叶干物质积累量均处于最高值,与空白对照相比分别提高了1.82 g·株–1、1.20 g·株–1、2.06 g·株–1,差异显著,表明该处理与空白对照相比可以显著提高3个器官的干物质积累量。T3分别比T2处理提高了1.27 g·株–1、0.64 g·株–1、1.08 g·株–1,差异显著,表明施用50%比例的有机肥与单纯施用化肥处理相比对提高樟子松各器官干物质积累量效果显著;T4根系干物质积累高于空白对照0.81 g/株,差异显著,T4显著高于T2,表明单纯施用有机肥与不施肥和施用化肥处理相比有利于显著促进樟子松根系生长。T4茎、叶干物质积累量分别高于空白对照0.20 g·株–1、0.30 g·株–1,无显著差异,表明单纯施用有机肥在当年不会显著促进樟子松茎、叶生长;T4叶片干物质积累量与T2之间无显著差异,表明单纯施用化肥和单纯施用有机肥对樟子松叶片干物质积累的影响处于同一水平。T3总重分别高于T1、T2、T4处理5.09 g·株–1、2.99 g·株–1、3.79 g·株–1,差异显著,表明该处理与其他3个处理相比可以显著促进樟子松生长,提高干物质积累量。从根冠比变化来看,T4处于最高值,其次为T3,两个处理之间差异显著,T2处于最低值,显著低于T2、T4、T5处理,表明施用有机肥处理与化肥处理相比有利于提高樟子松根冠比,对促进根系生长效果显著优于单纯施用化肥处理。

        表 2  有机-无机肥配施对樟子松各器官干物质积累的影响

        Table 2.  Effects of combined application of organic and inorganic fertilizers on dry matter accumulation in different organs of Pinus sylvestris var. mongolica g per plant 单位:(g·株–1)

        处理 treatment根 root茎 stem叶 leaf总重 total weight根冠比 root shoot ratio
        T11.37±0.20c0.82±0.09c1.96±0.54c4.16±0.82c0.50±0.04b
        T21.92±0.50c1.38±0.34b2.95±0.54b6.26±1.37b0.44±0.03c
        T33.20±0.55a2.02±0.30a4.02±0.60a9.25±1.45a0.53±0.01b
        T42.18±0.44b1.02±0.21c2.26±0.44bc5.46±1.09bc0.67±0.01a
          注:同列不同小写字母表示处理间差异显著(P<0.05)。下同。
          Note: different lower letters indicate significant difference among different treatment at 0.05 level. The same below.
      • 表3可知,不同处理对土壤物理性质的各项指标影响存在差异。T2容重高于空白对照0.14 g/cm3,无显著差异,T3、T4分别低于T2处理0.21 g/cm3、0.32 g/cm3,差异显著,表明施用有机肥与单纯施用化肥处理相比显著降低了土壤容重。T2处理总孔隙度、毛管孔隙度、非毛管孔隙度分别低于空白对照3.10%、2.53%、0.57%,其中总孔隙度和非毛管孔隙度两个处理之间存在显著差异,表明单纯施用化肥对总孔隙度和非毛管孔隙度产生显著影响,但是对毛管孔隙度的影响不显著。T3处理3种孔隙度分别高于空白对照4.05%、3.33%、0.72%,差异显著,T3显著高于T2,表明施用50%比例的有机肥与空白对照和单纯施用化肥处理相比显著提高了土壤的孔隙度。T4与T3之间无显著差异,表明单纯施用有机肥与施用50%比例的有机肥对土壤孔隙度的影响处于同一水平。T3、T4饱和含水量分别高于空白对照2.98%、4.38%,差异显著,T2低于空白对照2.91%,差异显著,T2显著低于T3处理,表明施用有机肥显著提高了樟子松苗圃地土壤的饱和含水量。

        表 3  有机-无机肥配施对樟子松苗圃地土壤物理性质的影响

        Table 3.  Effects of combined application of organic and inorganic fertilizers on soil physical and chemical properties of Pinus sylvestris var. mongolica

        处理
        treatment
        容重/g/cm3
        bulk density
        总孔隙度/%
        total porosity
        毛管孔隙度/%
        capillary porosity
        非毛管孔隙度/%
        non capillary porosity
        饱和含水量/%
        saturated water content
        T11.12±0.20ab48.60±1.92b44.75±1.16b3.85±0.80b45.67±1.60b
        T21.25±0.10a45.50±2.31c42.21±2.04b3.28±0.27c42.76±2.00c
        T31.04±0.13bc52.65±2.89a48.08±3.44a4.57±0.56a48.64±1.43a
        T40.93±0.12c53.77±3.20a49.33±3.62a4.43±0.43a50.05±3.02a
      • 表4可知,T3、T4有机质含量分别比空白对照提高了0.16%、0.31%,差异显著,表明施用有机肥显著提高了苗圃地土壤内的有机质含量;T3显著高于T2,表明施用有机肥与单纯施用化肥相比也可以显著提高土壤有机质含量。全氮含量T3、T4之间无显著差异,两个处理分别高于空白对照0.75 g/kg、0.88 g/kg,差异显著,T2显著高于空白对照,T3与T4均显著高于空白对照,表明施用有机肥与单纯施用化肥相比显著提高了土壤内的全氮含量。T3处理碱解氮含量最高,分别高于T1、T2、T4处理7.32 mg/kg、3.90 mg/kg、3.30 mg/kg,差异显著,T4、T2均显著高于空白对照,表明施用50%比例的有机肥对提高苗圃地土壤内速效氮含量效果显著优于单纯施用化肥和100%有机肥处理。施用有机肥提高了土壤内的速效磷含量,其中T3处于最高值,分别高于T1、T2处理8.01 mg/kg、3.59 mg/kg,差异显著,T3与T4之间无显著差异,T4与T2之间无显著差异,表明施用50%比例的有机肥与单纯施用化肥相比显著提高了土壤内的速效磷含量。T2、T3速效钾含量分别高于空白对照12.24 mg/kg、18.20 mg/kg,差异显著,T3显著高于T2,表明施用50%比例的有机肥与单纯施用化肥相比显著提高了樟子松苗圃内的速效钾含量;T4仅高于空白对照0.98 mg/kg,无显著差异,表明施用100%比例的有机肥仍然可以显著提高速效钾含量,但是效果并未达到显著水平。

        表 4  有机-无机肥配施对樟子松苗圃地土壤养分含量的影响

        Table 4.  Effects of combined application of organic and inorganic fertilizers on soil nutrients content of Pinus sylvestris var. mongolica

        处理
        treatment
        有机质/%
        organic matter
        全氮/(g·kg−1)
        total nitrogen
        碱解氮/(mg·kg−1)
        alkali hydrolyzed nitrogen
        速效磷/(mg·kg−1)
        available phosphorus
        速效钾/(mg·kg−1)
        available potassium
        T12.08±0.20b2.84±0.30c18.03±1.00c12.45±1.43c84.45±2.21c
        T22.12±0.10b3.14±0.32b21.45±1.44b16.87±1.87b96.68±4.22b
        T32.25±0.24a3.58±0.37a25.35±2.30a20.46±2.04a102.65±6.00a
        T42.39±0.35a3.71±0.50a22.05±2.00b18.75±1.73ab85.42±2.23c
      • 表5可知,T4处理脲酶活性处于最高值,分别高于其他3个处理0.74 mg/g、0.35 mg/g、0.15 mg/g,其中T3与T4之间无显著差异,T4显著高于T2,T3显著高于空白对照,表明施用有机肥与空白对照相比有利于显著提高土壤脲酶活性。T4处理多酚氧化酶、蛋白酶、蔗糖酶分别高于T3处理0.09 mg/g、0.06 μg/g、0.37 mg/g,无显著差异,表明施用不同比例的有机肥对樟子松苗圃地土壤3种酶活性的影响处于同一水平;T3处理多酚氧化酶、蛋白酶、蔗糖酶活性分别高于T2处理0.51 mg/g、0.17 μg/g、2.52 mg/g,差异显著,表明施用50%比例的有机肥与单纯施用化肥处理相比显著提高了土壤内3种酶活性;T2蛋白酶、蔗糖酶活性与空白对照之间无显著差异,表明单纯施用化肥虽然提高了两种酶活性,但是效果并不明显。T1处理过氧化氢酶活性处于最高值,分别高于其他3个处理1.54 mg/g、3.97 mg/g、3.55 mg/g,差异显著,T3显著低于T2,T4与T3之间无显著差异,表明施用有机肥与单纯施用化肥处理相比显著降低了苗圃内过氧化氢酶活性。

        表 5  有机-无机肥配施对樟子松苗圃地土壤酶活性的影响

        Table 5.  Effects of combined application of organic and inorganic fertilizers on soil enzyme activities of Pinus sylvestris var. mongolica

        处理
        treatment
        脲酶/(mg·g−1)
        urease
        多酚氧化酶/(mg·g−1)
        polyphenol oxidase
        蛋白酶/(μg·g−1)
        protease
        蔗糖酶/(mg·g−1)
        sucrase
        过氧化氢酶/(mg·g−1)
        catalase
        T10.47±0.36c2.89±0.80b1.03±0.12b5.64±0.60b8.76±0.76a
        T20.86±0.07b2.51±0.31c1.18±0.15b6.24±0.53b7.23±0.51b
        T31.06±0.15ab3.02±0.33ab1.35±0.14a8.76±0.70a4.80±0.75c
        T41.21±0.12a3.12±0.40a1.41±0.21a9.13±1.00a5.22±0.50c
      • 土壤施肥是提高土壤肥力促进苗木生长的有效措施,目前很多苗圃都采取人工施肥的方式来改善苗木营养状况,以培养适应市场需要的优质壮苗[12]。人工施肥是促进植物生长和提高干物质积累量的有效手段[13-15],本试验中,单纯施用化肥与空白对照相比显著提高了各器官干物质积累量,这与朱明霞[16]的研究结果相似;施用有机肥处理与单纯施用化肥相比促进了根系生长,提高了根冠比,钟泽林[17]研究认为这与有机肥改善了土壤通气状况,提高持水保水能力有关;从不同有机肥施用比例对樟子松各器官干物质积累的影响来看,50%比例的有机肥与100%比例有机肥相比更有利于樟子松生长发育和干物质积累量增加。从土壤物理性质变化上来看,施用有机肥显著降低了土壤容重,提高了孔隙度和饱和含水量,吕晓菡[18]研究认为这与有机肥提高了土壤有机质含量有关。从土壤养分含量变化上来看,施用有机肥提高了土壤有机质含量,同时,50%比例的有机肥处理显著提高了土壤内碱解氮、速效磷、速效钾含量,这与张龙辉[19]的研究结果一致,而100%有机肥处理速效养分含量低于50%有机肥处理,这可能与有机肥养分释放相对较慢有关。樟子松苗木施用有机肥提高了土壤内脲酶、多酚氧化酶、蛋白酶、蔗糖酶活性,这与赵旭[20]的研究结果一致,分析原因认为这可能与有机肥有利于土壤微生物繁殖和活动有关。不同比例的有机肥处理来看,50%有机肥处理与空白对照、单纯施用化肥和100%比例有机肥相比对促进樟子松生长和提高苗圃地土壤肥力效果最显著。

      • (1)施用50%比例的有机肥与空白对照和单纯施用化肥处理相比显著提高了各器官干物质积累量,提高了根冠比。100%有机肥处理与单纯施用化肥处理相比差异不显著。

        (2)施用有机肥处理显著降低了土壤容重,提高了土壤总孔隙度和毛管孔隙度,有利于增加土壤饱和含水量。

        (3)施用50%比例的有机肥有利于提高土壤有机质含量,增加土壤碱解氮、速效磷、速效钾等养分含量,与单纯施用化肥处理相比显著提高了土壤酶活性。

        (4)50%比例的有机肥处理对促进樟子松生长和改善土壤理化性质效果优于其他3个处理。

    参考文献 (20)

    目录

      /

      返回文章
      返回