用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岷江干旱河谷区峨眉蔷薇地上生物量及模型研究

张军 章路 张琴 郑绍伟 慕长龙 黎燕琼

张军, 章路, 张琴, 等. 岷江干旱河谷区峨眉蔷薇地上生物量及模型研究[J]. 四川林业科技, 2021, 42(2): 52−56 doi: 10.12172/202012290001
引用本文: 张军, 章路, 张琴, 等. 岷江干旱河谷区峨眉蔷薇地上生物量及模型研究[J]. 四川林业科技, 2021, 42(2): 52−56 doi: 10.12172/202012290001
Zhang J, Zhang L, Zhang Q, et al. Study on aboveground biomass and model of Rosa omeiensi in dry valley of the Minjiang River[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(2): 52−56 doi: 10.12172/202012290001
Citation: Zhang J, Zhang L, Zhang Q, et al. Study on aboveground biomass and model of Rosa omeiensi in dry valley of the Minjiang River[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(2): 52−56 doi: 10.12172/202012290001

岷江干旱河谷区峨眉蔷薇地上生物量及模型研究


doi: 10.12172/202012290001
详细信息
    作者简介:

    张军(1982—),男,高级工程师,学士,115990306@qq.com

    通讯作者: 527984863@qq.com
  • 基金项目:  省财政专项课题“城市森林植源性污染防控技术研究”

Study on Aboveground Biomass and Model of Rosa omeiensi in Dry Valley of the Minjiang River

More Information
    Corresponding author: 527984863@qq.com
  • 摘要: 岷江干旱河谷区是植被恢复困难地带,研究峨眉蔷薇生物量及模型,可对岷江干旱河谷区植被保护与恢复工作提供科学理论依据。研究结果表明:①不同径级的峨眉蔷薇各器官生物量分配大小,在阴阳坡均表现为干生物量>枝生物量>皮生物量>叶生物量,占比最大的主干部分对地上生物量总量贡献较大;②峨眉蔷薇对海拔梯度的响应,在阴阳坡均表现为中坡位的峨眉蔷薇植株地上生物量占鲜重比是最低的,说明在该区域的中坡位,受土壤含水率低的影响,峨眉蔷薇植株生长受到影响,木质化程度低,在相同鲜重的情况下,地上部分生物量明显低于其他坡位;③冠幅(C)、基径(D)和树高(H)都是和灌木生物量有密切相关关系的自变量因子;而峨眉蔷薇生物量估测模型筛选结果显示,幂函数模型和三多项式模型都有令人满意的R2值,最优模型多以三次多项式为佳,因为三次多项式模型R2值更高,但由于灌木形态各异,所以应根据实际情况进行自变量因子的选择。
  • 表  1  岷江干旱河谷区样地特征表

    Tab.  1  Characteristics of sample plots in the dry valley of Minjiang River

    样地号海拔/m坡向坡度坡位主要伴生植被样本数/株盖度/%
    阳011980SE118°35°中下坡鞍叶羊蹄甲 Bauhinia brachycarpa,刺旋花 Convolvulus tragacanthoides,白刺花 Sophora davidii,小蓝雪花 Ceratostigma minus,铁杆蒿 Artemisia gmelinii1342
    阳022160SE129°33°中坡鞍叶羊蹄甲,白刺花,刺旋花,铁杆蒿,黄花亚菊 Ajania nubigena,光果莸 Caryopteris tangutica1339
    阳032320SE123°28°上坡鞍叶羊蹄甲,多花蔷薇 Rosa multiflora,鲜黄小檗 Berberis diaphana ,白刺花,铁杆蒿1648
    阴011815N 0°30°下坡刺旋花,白刺花,甘肃矮探春 Jasminum floridum,金花蚤草 Pulicaria chrysantha,黄花亚菊,光果莸,华北驼绒藜 Krascheninnikovia arborescens,小蓝雪花1245
    阴021950NW 335°36°中坡虎榛子 Ostryopsis davidiana,橿子栎 Quercus baronii,鲜黄小檗,散生栒子 Cotoneaster divaricatus1542
    阴032060NE 9°37°上坡虎榛子,橿子栎,多花蔷薇,球花荚迷,散生栒子,华北驼绒藜 Viburnum betulifolium 1352
    下载: 导出CSV

    表  2  阴阳坡不同海拔梯度峨眉蔷薇地上生物量分配比例表

    Tab.  2  Aboveground biomass allocation ratio of Rosa omeiensis at different altitude gradients on shady and sunny slopes

    样地号基径
    区间/mm
    生物量
    区间/g
    茎干重/
    鲜重
    占总干
    重比
    皮干重/
    鲜重
    占总干
    重比
    枝干重/
    鲜重
    占总干
    重比
    叶干重/
    鲜重
    占总干
    重比
    总干重/
    鲜重
    阳010.61~1.4519.22~234.510.670.320.760.150.680.390.560.130.67
    阳020.87~1.4939.72~383.140.630.530.660.100.630.240.520.120.61
    阳030.51~2.914.90~418.550.680.360.710.130.640.420.550.080.66
    平均0.660.410.710.130.650.350.550.110.65
    阴010.87~2.1532.94~446.050.680.400.810.140.710.340.580.120.69
    阴020.66~1.1816.57~106.8 0.660.380.680.180.570.300.540.140.61
    阴030.65~1.5317.94~160.920.740.390.750.150.700.380.580.070.71
    平均0.690.390.750.160.660.340.570.110.67
    下载: 导出CSV

    表  3  峨眉蔷薇自变量因子和地上生物量相关关系分析表

    Tab.  3  Correlation analysis results between independent variable factors and aboveground biomass of Rosa omeiensis

    项目WDHCHCHDDCD2H
    W10.854**0.733*0.691**0.700**0.804**0.848**0.808**
    D0.854**10.428*0.782**0.762**0.909**0.973**0.946**
    H0.733*0.428*10.375*0.775**0.735**0.388*0.487**
    C0.691**0.782**0.375*10.854**0.721**0.869**0.711**
    HC0.700**0.762**0.775**0.854**10.897**0.804**0.775**
    HD0.804**0.909**0.735**0.721**0.897**10.886**0.941**
    DC0.848**0.973**0.388*0.869**0.804**0.886**10.946**
    D2H0.808**0.946**0.487**0.711**0.775**0.941**0.946**1
      **代表在P<0.01时极为显著。*. 代表在P<0.05时极为显著。
    下载: 导出CSV

    表  4  峨眉蔷薇地上生物量模型

    Tab.  4  Aboveground Biomass Model of Rosa omeiensis

    对应关系因变量回归方程相关系数标准差FP样本数
    D-WDy = 646.37x3 − 1 449.9x2 + 1 211.8x − 296.84R2 = 0.954627.65 70.02<0.00130
    y = 116.1169x3.211R2 = 0.93530.17172.73<0.00130
    H-WHy = 286.7x3 − 594.99x2 + 581.45x − 147.55R2 = 0.938632.15 50.95<0.00130
    C-WCy = 2 451.4x3 − 4 564.1x2 + 2 879.7x − 519.18R2 = 0.891942.65 27.49<0.00130
    HD-WDHy = 126.88482x1.4191R2 = 0.96920.85375.04<0.00130
    y = 14.773x3 − 11.985x2 + 131.2x − 8.7881R2 = 0.932321.56117.34<0.00130
    DC-WDCy = 246.14x3 − 513.59x2 + 463.98x − 42.172R2 = 0.967323.45 98.65<0.00130
    HC-WHCy = 115.01x3 − 238.68x2 + 321.87x − 23.58R2 = 0.919618.52160.19<0.00130
    D2H-WD2Hy = 9.2257x3 − 43.052x2 + 155.91x + 2.9289R2 = 0.951120.88125.17<0.00130
    y = 124.3118x0.9831R2 = 0.953621.52351.19<0.00130
    下载: 导出CSV
  • [1] 刘兴良,慕长龙,向成华,等. 四川西部干旱河谷自然特征及植被恢复与重建途径[J]. 四川林业科技,2001,22(2):10−17.
    [2] 叶延琼,陈国阶,樊宏. 岷江上游脆弱生态环境刍论[J]. 长江流域资源与环境,2002,11(4):383−387.
    [3] 刘国华,张洁瑜,张育新,等. 岷江干旱河谷三种主要灌丛地上生物量的分布规律[J]. 山地学报,2003,21(1):24−32.
    [4] 刘国华,马克明,傅伯杰,等. 岷江干旱河谷主要灌丛类型地上生物量研究[J]. 生态学报,2003,23(9):1757−1764.
    [5] 朱炳海. 中国之气候[M]. 北京: 科学出版社, 1962.
    [6] 刘文彬. 岷江上游半干旱河谷灌木种群的主要类型[J]. 山地研究,1994,2(1):27−31.
    [7] 朱志诚,贾东林. 陕北黄土高原铁秆蒿群落生物量初步研究[J]. 生态学报,1993,13(3):243−251.
    [8] Mariessii, A., Betule, E., Toshihicoko, H. Growth patterns of tree height and stem diameter in populations of Abies veitchi[J]. Ecology, 1991, 79: 1085−1095. doi: 10.2307/2261100
    [9] 黎燕琼,郑绍伟,龚固堂,等. 不同年龄柏木混交林下主要灌木黄荆生物量及分配格局[J]. 生态学报,2010,30(11):2809−2818.
    [10] 郭威星,蓝登明,王玉婕,等. 荒漠草原6种灌丛地上生物量分析[J]. 内蒙古林业调查设计,2019,42(6):87−89, 93.
    [11] 严代碧,岳永杰,郑绍伟,等. 岷江上游干旱河谷区土壤水分含量及其动态[J]. 南京林业大学学报(自然科学版),2006,30(4):64−68.
    [12] 曾慧卿,刘琪璟,冯宗炜,等. 红壤丘陵区林下灌木生物量估算模型的建立及其应用[J]. 应用生态学报,2007,18(10):2185−2190.
    [13] 张峰,上官铁梁,李素珍. 关于灌木生物量建模方法的改进[J]. 生态学报,1993,12(6):67−69.
  • [1] 张丽, 马光良, 赵博, 李相君, 王光剑, 王履娟, 孙鹏.  料慈竹经济秆材生物量模型 . 四川林业科技, 2023, 44(5): 41-47. doi: 10.12172/202302020001
    [2] 方芳, 洪晓玲, 刘玲玲, 范正文, 朱弘.  指数施肥对杂交新美柳幼苗生长及生物量积累的影响 . 四川林业科技, 2023, 44(1): 47-51. doi: 10.12172/202203110001
    [3] 陈国婵, 郭晓春, 蒙进芳, 张林涛, 贾代顺, 刘倬志, 宋顺超.  广南县油茶芽苗砧嫁接育苗技术研究 . 四川林业科技, 2021, 42(6): 112-119. doi: 10.12172/202103180001
    [4] 郑勇, 斯顺江, 别鹏飞, 赵润, 陈秀明.  川南地区丛生竹硬头黄竹带状皆伐对其生长及产量的影响 . 四川林业科技, 2019, 40(3): 51-56,76. doi: 10.16779/j.cnki.1003-5508.2019.03.010
    [5] 郑绍伟, 李隽, 黎燕琼, 慕长龙, 陈俊华, 周大松, 谢天资, 李宇奇, 罗奕爽.  利用形态因子建立城市森林主要乔木树种三维绿量预测模型 . 四川林业科技, 2017, 38(1): 6-10. doi: 10.16779/j.cnki.1003-5508.2017.01.002
    [6] 徐玉梅, 杨德军, 邱琼, 陈勇, 钟萍, 罗娅.  不同育苗基质对火焰树小苗生长量的影响试验研究 . 四川林业科技, 2016, 37(1): 65-67. doi: 10.16779/j.cnki.1003-5508.2016.01.014
    [7] 冯秋红, 黄劲松, 徐峥静茹, 谢大军, 刘兴良, 潘红丽, 刘世荣.  密度调控对川西亚高山云杉人工林生物量和生物多样性的影响 . 四川林业科技, 2016, 37(3): 10-14. doi: 10.16779/j.cnki.1003-5508.2016.03.002
    [8] 王延茹, 侯广维, 彭培好, 林林, 杨世之, 周琼.  四川香椿人工林生物量与碳储量研究 . 四川林业科技, 2016, 37(4): 24-27. doi: 10.16779/j.cnki.1003-5508.2016.04.005
    [9] 黄云奉, 刘屹, 黄世友, 何邦亮, 陈丽洁, 黎燕琼.  不同林龄马尾松生长及生物量分配研究 . 四川林业科技, 2015, 36(4): 72-75. doi: 10.16779/j.cnki.1003-5508.2015.04.014
    [10] 龙汉利, 郭洪英, 辜云杰.  不同幼龄巨桉生物量及主要营养元素分配 . 四川林业科技, 2015, 36(2): 15-19. doi: 10.16779/j.cnki.1003-5508.2015.02.003
    [11] 沈金亮, 冯永林, 张建设, 邓东周, 邵文, 王刚, 孙志鹏, 王刚.  北川自然保护区植被恢复模式区4种主要树种生物量研究 . 四川林业科技, 2014, 35(4): 27-31. doi: 10.16779/j.cnki.1003-5508.2014.04.006
    [12] 许林红, 李思广, 蒋云东, 张快富, 罗娅.  西南桦、山桂花、肉桂人工林林下物种多样性和生物量对比研究 . 四川林业科技, 2014, 35(6): 51-55. doi: 10.16779/j.cnki.1003-5508.2014.06.010
    [13] 陈燕芬.  莲都区公益林植被生物量与碳储量动态变化研究 . 四川林业科技, 2014, 35(2): 66-69. doi: 10.16779/j.cnki.1003-5508.2014.02.016
    [14] 张建设, 王刚, 王刚.  植物生物量研究综述 . 四川林业科技, 2014, 35(1): 44-48. doi: 10.16779/j.cnki.1003-5508.2014.01.010
    [15] 高天雷, 武萍, 尹学明.  土壤侵蚀模型研究进展 . 四川林业科技, 2014, 35(4): 42-44. doi: 10.16779/j.cnki.1003-5508.2014.04.009
    [16] 叶珍林, 吴友贵, 周荣飞, 叶彬, 鲍毅新.  浙江省百山祖自然保护区小型兽类群落结构的垂直变化 . 四川林业科技, 2013, 34(3): 61-65. doi: 10.16779/j.cnki.1003-5508.2013.03.013
    [17] 吕铭志, 周泽江, 盛连喜, 张立.  青藏高原东缘湿地生态系统生物量差异 . 四川林业科技, 2013, 34(6): 22-26. doi: 10.16779/j.cnki.1003-5508.2013.06.006
    [18] 袁晖, 何显平, 兰立达, 李德文.  大气CO2浓度和温度升高对紫花苜蓿生物量及其分配的影响 . 四川林业科技, 2013, 34(1): 48-51. doi: 10.16779/j.cnki.1003-5508.2013.01.011
    [19] 郭小军, 赖元长, 先开炳.  洪雅退耕还林地苦竹生物量与碳储量研究 . 四川林业科技, 2013, 34(1): 11-16. doi: 10.16779/j.cnki.1003-5508.2013.01.003
    [20] 李智华.  西北地区山杨立木生物量模型研建 . 四川林业科技, 2013, 34(4): 55-58. doi: 10.16779/j.cnki.1003-5508.2013.04.015
  • 加载中
  • 计量
    • 文章访问数:  346
    • HTML全文浏览量:  102
    • PDF下载量:  16
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-29
    • 网络出版日期:  2021-03-09
    • 刊出日期:  2021-04-20

    岷江干旱河谷区峨眉蔷薇地上生物量及模型研究

    doi: 10.12172/202012290001
      作者简介:

      张军(1982—),男,高级工程师,学士,115990306@qq.com

      通讯作者: 527984863@qq.com
    基金项目:  省财政专项课题“城市森林植源性污染防控技术研究”

    摘要: 岷江干旱河谷区是植被恢复困难地带,研究峨眉蔷薇生物量及模型,可对岷江干旱河谷区植被保护与恢复工作提供科学理论依据。研究结果表明:①不同径级的峨眉蔷薇各器官生物量分配大小,在阴阳坡均表现为干生物量>枝生物量>皮生物量>叶生物量,占比最大的主干部分对地上生物量总量贡献较大;②峨眉蔷薇对海拔梯度的响应,在阴阳坡均表现为中坡位的峨眉蔷薇植株地上生物量占鲜重比是最低的,说明在该区域的中坡位,受土壤含水率低的影响,峨眉蔷薇植株生长受到影响,木质化程度低,在相同鲜重的情况下,地上部分生物量明显低于其他坡位;③冠幅(C)、基径(D)和树高(H)都是和灌木生物量有密切相关关系的自变量因子;而峨眉蔷薇生物量估测模型筛选结果显示,幂函数模型和三多项式模型都有令人满意的R2值,最优模型多以三次多项式为佳,因为三次多项式模型R2值更高,但由于灌木形态各异,所以应根据实际情况进行自变量因子的选择。

    English Abstract

    • 岷江是长江主要支流,生态地位突出,而岷江干旱河谷区域受“焚风效应”严重影响,导致辐射强、气温高、风速大、蒸发量大于降水量,土壤瘠薄、干燥,植被以灌、草丛为主,并形成稳定的灌木群落[1, 2]。灌木在岷江干旱河谷区水土保持和植被恢复中具有重要的生态地位,而生物量是灌木群落结构和功能的主要测度指标之一,研究灌木生物量对于研究灌木生长发育规律以及在生态系统中的作用和地位等都具有重要意义。现已有研究证明了该区几种主要灌丛地上生物量的分布规律[3, 4]。岷江干旱河谷区有丰富的蔷薇资源,而峨眉蔷薇(Rosa omeiensis)是优良的抗旱树种和绿化景观树种,其中分布广,适应性强,抗病性强,其根和果实有止血,止痢等功效,多用于治疗吐血,衄血,崩漏,带下病,赤白痢疾。本文在大量野外调查的基础上,研究了岷江干旱河谷区不同海拔梯度峨眉蔷薇单株地上生物量及估测模型,目的是分析峨眉蔷薇的生物量与环境因子的关系,找到该区域峨眉蔷薇最适合的单株生物量估测模型,从而为岷江干旱河谷区植被保护与恢复工作提供科学理论依据。

      • 岷江上游干旱河谷分布于松潘镇江关以下,经茂县凤仪镇至汶川县绵虒间的岷江正河,以及黑水县的黑水河谷和理县朴头乡以下的杂谷脑河谷等岷江支流。杂谷脑河是四川岷江的一级支流,发源于四川省阿坝藏族羌族自治州理县西北的鹧鸪山北麓的洪水沟,纵贯理县全境,经汶川县城汇入岷江,全长157 km。根据理县杂谷脑河干旱河谷地段9个乡镇和理县、汶川两县县城的气候资料统计,该地段年均气温11.0 ℃,≥0 ℃积温3800~4500 ℃,无霜期190 d,≥10 ℃活动积温3 200~3 800 ℃,年降水量400~600 mm,降雨主要集中于4—10月,全年日照时数是在1 200~2 000 h[5]。该区土壤属灰褐土类,pH值为7.4~8.4。区域原生植被主要以灌木和草本为主,植物个体多具有丛生、根深、叶小、具刺、被毛、低矮等相同特点[6]。近年来,为了恢复植被,栽植了一些抗旱能力较强的乡土树种和外来树种,如岷江柏、辐射松、刺槐等。

      • 本研究在2016年9月下旬植物停止生长时进行调查,分别于岷江干旱河谷区(理县甘堡乡)两边的阴坡和阳坡由山脚至山顶沿海拔各设3个梯度,海拔间隔约为100~150 m,在阴、阳坡各海拔梯度人畜干扰少的地段选择有代表性的植被类型,设置1—2个20 ×20 m 2的标准样地,在样地内对峨眉蔷薇进行每木检尺,测定基径(D)、树(H)、冠幅(C)等指标。按不同径级,结合峨眉蔷薇分布密度,每个样地选择5—10株样木,采取直接收获法,刈割全部灌木地上部分称其总鲜重,再按干、枝、皮、叶、花(果)等不同部位,分别称鲜重并取样,将样品带回实验室在85 ℃的通风干燥箱内烘干至绝对干重,称重并计算出各部位干重及单株地上部分总干重(W干样)。同时采用GPS全球定位仪调查海拔、坡度、坡向等环境因子(见表1)。

        表 1  岷江干旱河谷区样地特征表

        Table 1.  Characteristics of sample plots in the dry valley of Minjiang River

        样地号海拔/m坡向坡度坡位主要伴生植被样本数/株盖度/%
        阳011980SE118°35°中下坡鞍叶羊蹄甲 Bauhinia brachycarpa,刺旋花 Convolvulus tragacanthoides,白刺花 Sophora davidii,小蓝雪花 Ceratostigma minus,铁杆蒿 Artemisia gmelinii1342
        阳022160SE129°33°中坡鞍叶羊蹄甲,白刺花,刺旋花,铁杆蒿,黄花亚菊 Ajania nubigena,光果莸 Caryopteris tangutica1339
        阳032320SE123°28°上坡鞍叶羊蹄甲,多花蔷薇 Rosa multiflora,鲜黄小檗 Berberis diaphana ,白刺花,铁杆蒿1648
        阴011815N 0°30°下坡刺旋花,白刺花,甘肃矮探春 Jasminum floridum,金花蚤草 Pulicaria chrysantha,黄花亚菊,光果莸,华北驼绒藜 Krascheninnikovia arborescens,小蓝雪花1245
        阴021950NW 335°36°中坡虎榛子 Ostryopsis davidiana,橿子栎 Quercus baronii,鲜黄小檗,散生栒子 Cotoneaster divaricatus1542
        阴032060NE 9°37°上坡虎榛子,橿子栎,多花蔷薇,球花荚迷,散生栒子,华北驼绒藜 Viburnum betulifolium 1352
      • 估测灌木地上生物量,选择自变量十分重要。既可采用由D、H、C等单一变量,也可以采用D、D2、C、C2、C2H、D2H、HC、HD、DC等多因子相组合的复合变量。本文采用EXCEL对峨眉蔷薇的基径、树高、冠幅进行统计,采用SPSS13.0的Bivariate Correlation分析对基径、树高、冠幅与峨眉蔷薇生物量的相关性进行分析,最终选择预测模型自变量,同时建立峨眉蔷薇生物量预测回归方程,选出拟合性好,相关系数高的模型作为峨眉蔷薇生物量预测模型。可选择许多种线性、对数、指数、幂函数以及多项式等回归模型来进行灌木生物量预测模型的建立[7, 8],常用的回归方程有一元方程y=a+bx、幂函数方程y=axb、指数函数y=aebx等。

      • 表2为阴阳坡不同海拔梯度样地峨眉蔷薇地上生物量分配比例表,从表中可以看出,不论阴阳坡,不同径级的峨眉蔷薇茎和枝在地上生物量(即干重)中占比最大,阳坡为0.41,阴坡为0.39,其中茎占比略大于枝,阳坡为0.35,阴坡为0.34,叶占比最小,阴阳坡均为0.11,而皮占比略大于叶,阳坡为0.13,阴坡为0.16;而从地上总生物量对鲜重的占比来看(生物量占鲜重比越大,说明植株含水率越低,木质化程度高),阳坡中,呈现出中下坡(0.67)>上坡(0.66)>中坡(0.61)的趋势,阴坡中,上坡(0.71)>下坡(0.69)>中坡(0.61)的趋势,说明不论阴阳坡,中坡位的峨眉蔷薇植株干鲜重比例都是最低的。

        表 2  阴阳坡不同海拔梯度峨眉蔷薇地上生物量分配比例表

        Table 2.  Aboveground biomass allocation ratio of Rosa omeiensis at different altitude gradients on shady and sunny slopes

        样地号基径
        区间/mm
        生物量
        区间/g
        茎干重/
        鲜重
        占总干
        重比
        皮干重/
        鲜重
        占总干
        重比
        枝干重/
        鲜重
        占总干
        重比
        叶干重/
        鲜重
        占总干
        重比
        总干重/
        鲜重
        阳010.61~1.4519.22~234.510.670.320.760.150.680.390.560.130.67
        阳020.87~1.4939.72~383.140.630.530.660.100.630.240.520.120.61
        阳030.51~2.914.90~418.550.680.360.710.130.640.420.550.080.66
        平均0.660.410.710.130.650.350.550.110.65
        阴010.87~2.1532.94~446.050.680.400.810.140.710.340.580.120.69
        阴020.66~1.1816.57~106.8 0.660.380.680.180.570.300.540.140.61
        阴030.65~1.5317.94~160.920.740.390.750.150.700.380.580.070.71
        平均0.690.390.750.160.660.340.570.110.67
      • 表3可以看出,峨眉蔷薇地上部分生物量W与D、H、C、D2H、HC、HD、DC等多因子或多因子组合的复合变量有着极显著的相关关系。在所有因子中,以D与W相关性最高(0.854),而C与W相关性最低(0.691);在单因子中,也以D与W相关性最高(0.854),H与W相关性次之(0.733),而C与W相关性相对较低(0.691);在复合因子中,以DC与W相关性最高(0.848),而HC与W相关性相对较低(0.70)。在单因子之间,D与C之间也有着较为明切的关系(0.762),而H与C和D之间相关性均不太显著。

        表 3  峨眉蔷薇自变量因子和地上生物量相关关系分析表

        Table 3.  Correlation analysis results between independent variable factors and aboveground biomass of Rosa omeiensis

        项目WDHCHCHDDCD2H
        W10.854**0.733*0.691**0.700**0.804**0.848**0.808**
        D0.854**10.428*0.782**0.762**0.909**0.973**0.946**
        H0.733*0.428*10.375*0.775**0.735**0.388*0.487**
        C0.691**0.782**0.375*10.854**0.721**0.869**0.711**
        HC0.700**0.762**0.775**0.854**10.897**0.804**0.775**
        HD0.804**0.909**0.735**0.721**0.897**10.886**0.941**
        DC0.848**0.973**0.388*0.869**0.804**0.886**10.946**
        D2H0.808**0.946**0.487**0.711**0.775**0.941**0.946**1
          **代表在P<0.01时极为显著。*. 代表在P<0.05时极为显著。

        通过选择与生物量密切相关的测树因子和复合因子为自变量,进行曲线拟合,筛选出估测峨眉蔷薇单株地上生物量的统计模型(见表4)。从筛选出的模型来看,预测生物量最优模型多以三次曲线和幂函数为佳,其中以单因子D和HD、DC、D2H复合因子为自变量对峨眉蔷薇地上生物量预测模型最佳,其相关系数R2均为0.95以上,又以单因子C为自变量对峨眉蔷薇地上生物量预测模型较差,其相关系数R2为0.8919。

        表 4  峨眉蔷薇地上生物量模型

        Table 4.  Aboveground Biomass Model of Rosa omeiensis

        对应关系因变量回归方程相关系数标准差FP样本数
        D-WDy = 646.37x3 − 1 449.9x2 + 1 211.8x − 296.84R2 = 0.954627.65 70.02<0.00130
        y = 116.1169x3.211R2 = 0.93530.17172.73<0.00130
        H-WHy = 286.7x3 − 594.99x2 + 581.45x − 147.55R2 = 0.938632.15 50.95<0.00130
        C-WCy = 2 451.4x3 − 4 564.1x2 + 2 879.7x − 519.18R2 = 0.891942.65 27.49<0.00130
        HD-WDHy = 126.88482x1.4191R2 = 0.96920.85375.04<0.00130
        y = 14.773x3 − 11.985x2 + 131.2x − 8.7881R2 = 0.932321.56117.34<0.00130
        DC-WDCy = 246.14x3 − 513.59x2 + 463.98x − 42.172R2 = 0.967323.45 98.65<0.00130
        HC-WHCy = 115.01x3 − 238.68x2 + 321.87x − 23.58R2 = 0.919618.52160.19<0.00130
        D2H-WD2Hy = 9.2257x3 − 43.052x2 + 155.91x + 2.9289R2 = 0.951120.88125.17<0.00130
        y = 124.3118x0.9831R2 = 0.953621.52351.19<0.00130
      • 不论阴阳坡,不同径级的峨眉蔷薇各器官生物量分配大小表现为干生物量>枝生物量>皮生物量>叶生物量,占比最大的主干部分对地上生物量总量贡献较大,这与前人研究较为吻合[9];而从地上总生物量对鲜重的占比来看,不论阴阳坡,中坡位的峨眉蔷薇都是最低的,而郭威星[10]在荒漠化地区研究灌丛地上生物量,结果表明灌丛地上生物量与土壤含水率的关系极显著。严代碧[11]研究了岷江干旱河谷区不同海拔梯度土壤水分变化,结果表明,该区域不论阴阳坡,中坡位土壤含水率是相对最低的。本文研究结果表明,不论阴阳坡,中坡位的峨眉蔷薇植株地上生物量占鲜重比是最低的,说明在该区域中坡位,受土壤含水率低的影响,峨眉蔷薇植株生长受到影响,木质化率低,在相同鲜重的情况下,地上部分生物量明显低于其他坡位。

        峨眉蔷薇生物量估测模型筛选结果显示,幂函数模型和三多项式模型都有令人满意的R2值,最优模型多以三次多项式为佳,因为三次多项式模型R2值更高。而且利用软件模拟,可以通过增加回归模型形式复杂程度而有效地提高R2值。但估测模型并非R2值越高就越准确,因为模型越复杂,涉及的因子就越多,过多的模型因子会带来不可避免的因子测量误差的叠加。曾慧卿[12]研究了江西泰和县红壤丘陵区林下灌木生物量估算模型的建立,结果表明,对于大部分物种而言,单一模型的估测精度高于混合模型,只有小部分物种的混合模型优于单一模型。)因此研究者应根据研究需要选用具有一定R2值的简易估测模型。

        从建立生物量模型的自变量因子来看,以单因子D和HD、DC、D2H复合因子为自变量对峨眉蔷薇地上生物量预测模型最佳,这和前人提出的以冠幅(C)和高度(H)的复合因子以及采用基径(D)和高度(H)的复合因子D2H为自变量有所不同[13],因为峨眉蔷薇的形态既不是圆形也不是球形,且自变量因子D的相关度与其代表的器官(茎)在生物量分配中占比最大也有密切的关联。

        虽然冠幅(C)、基径(D)和树高(H)都是和灌木生物量有密切相关关系的因子,但由于灌木形态,所以应根据实际情况进行自变量因子的选择;而且不同地区不同物种的灌木生物量预测模型,受海拔、降水量等环境因子影响,并不一定适用于该地区其他灌木物种,甚至不适用于不同地区相同灌木物种。因此通过遥感技术,以期找到一种通用的预测或估算灌木生物量方法,是现在灌木生物量研究的热点,也将是研究的主要方向。

    参考文献 (13)

    目录

      /

      返回文章
      返回