用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川西亚高山天然次生林不同演替阶段土壤团聚体组成及有机碳分布特征

蔡蕾 侯笔锋 冯秋红 刘前程 李旭华 潘红丽 刘兴良

蔡蕾, 侯笔锋, 冯秋红, 等. 川西亚高山天然次生林不同演替阶段土壤团聚体组成及有机碳分布特征[J]. 四川林业科技, 2021, 42(2): 1−7 doi: 10.12172/202009210003
引用本文: 蔡蕾, 侯笔锋, 冯秋红, 等. 川西亚高山天然次生林不同演替阶段土壤团聚体组成及有机碳分布特征[J]. 四川林业科技, 2021, 42(2): 1−7 doi: 10.12172/202009210003
Cai L, Hou B F, Feng Q H, et al. Composition of soil aggregates and distribution characteristics of organic carbon in different sunccessional stages of subalpine natural secondary forest in western Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(2): 1−7 doi: 10.12172/202009210003
Citation: Cai L, Hou B F, Feng Q H, et al. Composition of soil aggregates and distribution characteristics of organic carbon in different sunccessional stages of subalpine natural secondary forest in western Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(2): 1−7 doi: 10.12172/202009210003

川西亚高山天然次生林不同演替阶段土壤团聚体组成及有机碳分布特征


doi: 10.12172/202009210003
详细信息
    作者简介:

    蔡蕾(1985—),女,助理研究员,硕士,84710426@qq.com

    通讯作者: liuxingliang@126.com
  • 基金项目:  国家“十三五”重点研发计划课题(2017YFC0505004;2016YFC0502104);省级基本科研项目(JB202016)

Composition of Soil Aggregates and Distribution Characteristics of Organic Carbon in Different Sunccessional Stages of Subalpine Natural Secondary Forest in Western Sichuan

More Information
    Corresponding author: liuxingliang@126.com
  • 摘要: 川西亚高山天然次生林是西南亚高山林区水源涵养林的主要森林类型,在该区域森林生态系统的碳收支上有重要的作用。本文采用干筛法和重铬酸钾氧化-外加热法对不同演替阶段的次生林土壤结构及有机碳分布特征进行了研究,研究发现本区域各演替阶段次生林的土壤团聚性均比较强,大团聚体的含量为冷杉+桦木混交林最高,且大团聚体的形成与有机质含量呈负相关。有机碳的含量主要是存在于大团聚体中,以>5 mm粒径的土壤团聚体有机碳贡献率最高,表现为桦木+冷杉混交林>冷杉原始林>桦木林,且有机碳含量与土壤氮含量呈正相关。虽然冷杉原始林大团聚体含量较冷杉+桦木混交林低,但有机碳总含量最高。微团聚体含量随演替阶段的升高呈升高趋势,有机碳的含量随团聚体粒径减小而基本呈增加趋势,比较不同团聚体有机碳含量与贡献率发现,虽然<0.25 mm粒径的有机碳含量高但是贡献率低,说明微团聚体对有机碳的保护力更强,且桦木+冷杉混交林>桦木林>冷杉原始林。
  • 图  1  不同演替阶段次生林团聚体分布情况

    Fig.  1  Soil aggregates distribution of secondary

    图  2  不同演替阶段次生林土壤团聚体有机碳百分比含量

    Fig.  2  Percentage of organic carbon in soil aggregates forests at different successional stages of secondary forests at different succession stages

    表  1  不同演替阶段次生林0~20 cm土壤养分情况

    Tab.  1  0−20 cm soil nutrient content of secondary forests in different successional stages

    森林类型F海拔/m坡向测树因子铵态氮/
    (mg·L−1)
    速效磷/
    (mg·L−1)
    有效钾/
    (mg·L−1)
    有机质/
    (g·kg−1)
    胸径/cm树高/cm林分密度
    桦木林3299西北13.1312.27192519.46.27280.8314.8
    桦木+冷杉混交林3453西北13.4512.69149017.67.43214.179.27
    冷杉林3145东南31.2316.4645937.57.3720010.51
    下载: 导出CSV

    表  2  不同演替阶段次生林土壤团聚体分布及组成

    Tab.  2  Distribution and composition of soil aggregates in secondary forests at different successional stages

    演替阶段各级团聚体含量(%)
    >5 mm5~2 mm2~1 mm1~0.5 mm0.5~0.25 mm0.25~0.053 mm<0.053 mm
    桦木林23.07±2.79Ba20.20±2.59Aa20.48±2.00Aa17.03±2.53Ab11.27±1.87Ac7.09±1.91Ac0.86±0.21Bd
    桦木+冷杉混交林35.18±3.38Aa18.57±1.32Ab16.55±1.26Bb11.88±1.34Bc7.42±1.43Bd4.07±0.86Be6.33±1.24Ae
    冷杉原始林27.24±1.89Ba19.59±1.03Ac21.10±1.11Ab13.59±0.85Bd9.06±0.61ABe4.22±0.43Bf5.20±0.61Af
      注:同一列中不同大写字母表示不同演替阶段间同一粒径土壤团聚体所占比例差异显著(P<0.05);同一行中不同小写字母表示同一演替阶段不同粒径间团聚体所占比例差异显著(P<0.05)
    下载: 导出CSV

    表  3  同一粒径不同演替阶段间土壤团聚体含量单因素方差分析

    Tab.  3  Single factor variance analysis of soil aggregates content at different successional stages with the same particle size

    方差结果粒径>5 mm5~2 mm2~1 mm1~0.5 mm0.5~0.25 mm0.25~0.053 mm<0.053 mm
    F11.7750.6323.9216.1155.5214.31016.999
    Sig.0.001**0.5460.044*0.012*0.017*0.035*0.000**
      注:同一粒径在不同演替阶段间团聚体含量P<0.05为显著标记*,P<0.01为极显著标记**
    下载: 导出CSV

    表  5  不同演替阶段次生林土壤团聚体对有机碳的贡献率

    Tab.  5  Contribution rate of soil aggregates to organic carbon in secondary forests at different successional stages

    发育阶段各级团聚体对土壤有机碳的贡献率/%
    >5 mm5~2 mm2~1 mm1~0.5 mm0.5~0.25 mm0.25~0.053 mm<0.053 mm
    桦木林3.01 Ca2.69 Aa2.73 Aa2.43 Aa1.60 Ab1.19 Ab0.15 Bc
    桦木+冷杉混交林4.67 Aa2.49 Ab2.35 Bb1.80 Bc1.12 Bd0.63 Be0.84 Ae
    冷杉原始林3.19 Ba2.19 Ac2.40 Bb1.66 Bd1.09 Be0.53 Bf0.64 Af
      注:同一列中不同大写字母表示不同演替阶段间团聚体有机碳含量差异显著(p<0.05);同一行中不同小写字母表示同一演替阶段不同粒径间团聚体有机碳含量差异显著(p<0.05). The mean difference is significant at the 0.05 level.
    下载: 导出CSV

    表  6  同一粒径不同演替阶段间土壤团聚体对有机碳贡献率单因素方差分析

    Tab.  6  Single factor variance analysis of contribution rate of soil aggregates to organic carbon at different successional stages with the same particle size

    方差结果粒径>5 mm5~2 mm2~1 mm1~0.5 mm0.5~0.25 mm0.25~0.053 mm<0.053 mm
    F11.2830.6964.1654.6425.0844.87715.23
    Sig.0.001**0.5150.038*0.0288*0.022*0.025*0.000**
      注:同一粒径在不同演替阶段间团聚体含量p<0.05为显著标记*,p<0.01为极显著标记**
    下载: 导出CSV

    表  4  不同演替阶段次生林土壤团聚体有机碳含量

    Tab.  4  Percentage of organic carbon in soil aggregates of secondary forests at different successional stages

    发育阶段各级团聚体土壤碳含量/(g·kg−1
    >5 mm5~2 mm2~1 mm1~0.5 mm0.5~0.25 mm0.25~0.053 mm<0.053 mm
    桦木林42.70±8.89Aa42.99±8.59Aa43.41±8.72Aa44.74±8.84Aa45.81±9.19Aa48.03±8.61Aa49.39±7.90Aa
    桦木+冷杉
    混交林
    51.88±3.20Aa51.23±2.42Aa53.69±2.69Aa55.49±2.02Aa55.07±3.18Aa55.76±2.81Aa58.67±2.34Aa
    冷杉原始林60.35±9.70 Aa62.60±4.61Aa62.81±5.02Aa64.55±2.17Aa61.36±8.60Aa66.70±2.57Aa64.70±7.49Aa
      注:同一列中不同大写字母表示不同演替阶段间团聚体有机碳含量差异显著(P<0.05);同一行中不同小写字母表示同一演替阶段不同粒径间团聚体有机碳含量差异显著(P<0.05)
    下载: 导出CSV
  • [1] 姜勇,庄秋丽,梁文举. 农田生态系统土壤有机碳库及其影响因[J]. 生态学杂志,2007,26(2):278−285. doi: 10.3321/j.issn:1000-4890.2007.02.023
    [2] Tang JW, Bolstad PV, Martin JG. Soil carbonfluxes and stocksin a Great Lakes forest chronosequence[J]. Global Change Biology, 2009, 15(1): 145−155. doi: 10.1111/j.1365-2486.2008.01741.x
    [3] FeldPausoh T R, Rondon M A, Femandes E C M, et al. Carbon and nutrient accumulation in secondary forests regenerating on pasturesin central Amasonia[J]. Ecological Applications, 2004, 14(S4): 164−176.
    [4] De Kovel C G F, Van Mierlo A E M, Wilms Y J O, et al. Carbon and nitrogen in soil and vegetation at sites differing in successional age[J]. Plant Ecology, 2000, 149(1): 43−50. doi: 10.1023/A:1009898622773
    [5] 黄天颖,高唤唤,康宏樟. 黄浦江上游水源涵养林土壤团聚体组成及其碳、氮分布特征[J]. 上海交通大学学报(农业科学版),2017,35(6):1−7.
    [6] Mohammadi J, Motaghian M H. Spatial prediction of soil aggregate stability and aggregate-associated organic carbon content at the catchmem scale using geostatistical techniques[J]. Pedosphere, 2011, 2l(3): 389−399.
    [7] 张耀方. 子午岭林区不同胶结物质类型的土壤团聚体结构特征[D]. 杨陵: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2015.
    [8] Denef K, Zotarelli L, Boddey RM, et al. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols[J]. Soil Biology&Biochemistry, 2007, 39(5): 1165−1172.
    [9] 卢凌霄,宋同清,彭晚霞,等. 喀斯特峰丛洼地原生林土壤团聚体有机碳的剖面分布[J]. 应用生态学报,2012,23(5):1167−1174.
    [10] 肖复明,范少辉,汪思龙,等. 毛竹林地土壤团聚体稳定性及其对碳贮量影响研究[J]. 水土保持学报,2008,22(2):131−134. doi: 10.3321/j.issn:1009-2242.2008.02.030
    [11] 杨玉坡, 李承彪[M]. 四川森林. 北京: 中国林业出版社, 1992.
    [12] 周德彰,杨玉坡. 四川西部高山林区桦木更新特性的初步研究[J]. 林业科学,1980(2):154−156.
    [13] Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141−163. doi: 10.1111/j.1365-2389.1982.tb01755.x
    [14] 李玮,郑子成,李廷轩. 不同植茶年限土壤团聚体碳氮磷生态化学计量学特征[J]. 应用生态学报,2015,26(1):9−16.
    [15] Ma X Q, Liu C J, Hannu I, et a1. Biomass, litter fall and the nutrient fluxes in Chinese fir stands of different age in subtropical China[J]. Journal of Forestry Research, 2002, 13(3): 165−170. doi: 10.1007/BF02871691
    [16] 安韶山,张玄,张扬,等. 黄土丘陵区植被恢复中不同粒级土壤团聚体有机碳分布特征[J]. 水土保持学报,2007,21(6):109−113. doi: 10.3321/j.issn:1009-2242.2007.06.025
    [17] 赵世伟,苏静,杨永辉,等. 子午岭植被恢复过程中土壤团聚体有机碳含量的变化[J]. 水土保持学报,2006,20(3):114−117. doi: 10.3321/j.issn:1009-2242.2006.03.028
    [18] 华娟,赵世伟,张扬,等. 云雾山草原区不同植被恢复阶段土壤团聚体活性有机碳分布特征[J]. 生态学报,2009,29(9):4613−4619. doi: 10.3321/j.issn:1000-0933.2009.09.003
    [19] Oades J M. Soil organic matter and structural stability: Mechanisms and implications for management[J]. Plant and Soil, 1984, 76(1/3): 319−337.
    [20] Sis J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequest ration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099−2103. doi: 10.1016/S0038-0717(00)00179-6
    [21] 毛艳玲,杨玉盛,邹双全,等. 土地利用变化对亚热带山地红壤团聚体有机碳的影响[J]. 山地学报,2007,25(6):706−713. doi: 10.3969/j.issn.1008-2786.2007.06.010
    [22] Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregate[J]. European Jourual of Soil Science, 2000, 5l(4): 595−605.
    [23] 马瑞萍,刘雷,安韶山,等. 黄土丘陵区不同植被群落土壤团聚体有机碳及其组分的分布[J]. 中国生态农业学报,2013,21(3):324−332.
  • [1] 刘思泽, 刘宏强, 黄雪梅, 王雪, 杨靖宇, 陈德朝.  不同恢复模式对退化高寒沼泽湿地土壤轻重组有机碳的影响 . 四川林业科技, 2023, 44(6): 69-76. doi: 10.12172/202303160002
    [2] 李小永, 田小琴.  岩溶生态系统退化与土壤有机碳贮量 . 四川林业科技, 2023, 44(4): 82-87. doi: 10.12172/202210120001
    [3] 孟庆银.  土壤有机碳全氮与杉木幼苗生长相关性研究 . 四川林业科技, 2022, 43(5): 73-78. doi: 10.12172/202112020002
    [4] 刘兴良, 刘杉, 蔡蕾, 李旭华, 徐峥静茹, 潘红丽, 冯秋红, 张利, 刘千里.  中国天然次生林研究动态及其进展 . 四川林业科技, 2022, 43(1): 1-11. doi: 10.12172/202112140001
    [5] 解秀清.  有机-无机肥配施对樟子松干物质积累及土壤肥力的影响 . 四川林业科技, 2021, 42(5): 86-91. doi: 10.12172/202102020001
    [6] 王亚丽, 许武成, 杜忠.  马尾松低效人工林土壤易氧化有机碳在不同改造措施下的分布特征 . 四川林业科技, 2021, 42(1): 35-39. doi: 10.12172/202006070001
    [7] 李桾溢, 才晓源, 张远东, 缪宁.  川西鹧鸪山典型林线杜鹃-冷杉林的物种多样性研究 . 四川林业科技, 2020, 41(5): 7-12. doi: 10.12172/202005080002
    [8] 冯秋红, 王毅, 刘兴良, 蔡蕾, 刘世荣, 祝玮, 孙治宇.  川西亚高山不同林龄云杉人工林林地水源涵养能力比较研究 . 四川林业科技, 2020, 41(1): 5-10. doi: 10.12172/201910290001
    [9] 苏宇, 刘邵谋, 张炜, 吴世磊, 贺维.  不同修复模式边坡土壤水文效应及团聚体特征 . 四川林业科技, 2020, 41(6): 89-96. doi: 10.12172/202009070001
    [10] 罗辑, 李伟, 贾国清, 杨丹荔, 何咏梅.  亚高山暗针叶林的土壤呼吸 . 四川林业科技, 2019, 40(2): 1-4. doi: 10.16779/j.cnki.1003-5508.2019.02.001
    [11] 刘骞, 曾文津, 赵宇, 贾蕊萌, 李越.  城市不同功能分区草坪绿地土壤有机碳与碱解氮垂直分布特征 . 四川林业科技, 2019, 40(1): 25-29. doi: 10.16779/j.cnki.1003-5508.2019.01.005
    [12] 冯秋红, 王毅, 李登峰, 刘兴良, 谢大军, 林小洪, 金丹, 张利, 张鑫.  不同措施对川西亚高山桦木天然次生林群落演替进程的影响及综合效益评价 . 四川林业科技, 2019, 40(5): 5-10. doi: 10.16779/j.cnki.1003-5508.2019.05.002
    [13] 冯秋红, 蒲远凤, 李登峰, 陈素芬, 刘兴良, 陈艳, 康永鸿, 陈进.  疏伐桦木对川西亚高山岷江冷杉+桦木混交林林下岷江冷杉更新的影响研究 . 四川林业科技, 2018, 39(3): 35-39. doi: 10.16779/j.cnki.1003-5508.2018.03.007
    [14] 冯秋红, 王勇, 谢大军, 李登峰, 徐峥静茹, 刘兴良, 孙治宇.  修枝对川西亚高山不同林龄云杉人工林生物多样性的短期影响研究 . 四川林业科技, 2018, 39(1): 6-9. doi: 10.16779/j.cnki.1003-5508.2018.01.002
    [15] 潘业田, 郝凯婕, 张翠翠, 李贤伟, 王晓虹, 范赟.  川西亚高山云杉低效林林窗改造下土壤水溶性有机碳的季节动态 . 四川林业科技, 2016, 37(1): 27-32. doi: 10.16779/j.cnki.1003-5508.2016.01.005
    [16] 冯秋红, 黄劲松, 徐峥静茹, 谢大军, 刘兴良, 潘红丽, 刘世荣.  密度调控对川西亚高山云杉人工林生物量和生物多样性的影响 . 四川林业科技, 2016, 37(3): 10-14. doi: 10.16779/j.cnki.1003-5508.2016.03.002
    [17] 张发会, 吴雪仙, 蔡小虎, 王琛.  川西亚高山3种不同林分类型对土壤理化性质的影响 . 四川林业科技, 2015, 36(3): 8-12. doi: 10.16779/j.cnki.1003-5508.2015.03.003
    [18] 曾念念, 何传龙, 黄从德, 季荣飞, 张健, 李贤伟.  不同间伐强度对柏木低效人工林土壤有机碳的影响 . 四川林业科技, 2015, 36(3): 25-30. doi: 10.16779/j.cnki.1003-5508.2015.03.006
    [19] 王纪杰, 鲍爽, 梁关峰, 俞元春.  不同林龄桉树人工林土壤有机碳的变化 . 四川林业科技, 2015, 36(4): 18-21. doi: 10.16779/j.cnki.1003-5508.2015.04.002
    [20] 董田建, 程力, 张学强.  洪雅林场3种植被恢复模式下土壤理化性质的调查分析 . 四川林业科技, 2015, 36(1): 43-47. doi: 10.16779/j.cnki.1003-5508.2015.01.010
  • 加载中
  • 图(2) / 表(6)
    计量
    • 文章访问数:  419
    • HTML全文浏览量:  89
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-21
    • 网络出版日期:  2021-01-13
    • 刊出日期:  2021-04-20

    川西亚高山天然次生林不同演替阶段土壤团聚体组成及有机碳分布特征

    doi: 10.12172/202009210003
      作者简介:

      蔡蕾(1985—),女,助理研究员,硕士,84710426@qq.com

      通讯作者: liuxingliang@126.com
    基金项目:  国家“十三五”重点研发计划课题(2017YFC0505004;2016YFC0502104);省级基本科研项目(JB202016)

    摘要: 川西亚高山天然次生林是西南亚高山林区水源涵养林的主要森林类型,在该区域森林生态系统的碳收支上有重要的作用。本文采用干筛法和重铬酸钾氧化-外加热法对不同演替阶段的次生林土壤结构及有机碳分布特征进行了研究,研究发现本区域各演替阶段次生林的土壤团聚性均比较强,大团聚体的含量为冷杉+桦木混交林最高,且大团聚体的形成与有机质含量呈负相关。有机碳的含量主要是存在于大团聚体中,以>5 mm粒径的土壤团聚体有机碳贡献率最高,表现为桦木+冷杉混交林>冷杉原始林>桦木林,且有机碳含量与土壤氮含量呈正相关。虽然冷杉原始林大团聚体含量较冷杉+桦木混交林低,但有机碳总含量最高。微团聚体含量随演替阶段的升高呈升高趋势,有机碳的含量随团聚体粒径减小而基本呈增加趋势,比较不同团聚体有机碳含量与贡献率发现,虽然<0.25 mm粒径的有机碳含量高但是贡献率低,说明微团聚体对有机碳的保护力更强,且桦木+冷杉混交林>桦木林>冷杉原始林。

    English Abstract

    • 土壤是全球陆地生态系统中最大的碳库[1],气候变化和生态系统中植被类型的不同会引起土壤呼吸过程的变化,因此演替进程是影响森林生态系统碳库动态的一个极为重要的影响因素[2]。随着演替阶段的变化,森林生态系统的群落结构、物种组成以及物种丰富度都会产生巨大的变化,生物量的积累以及碳分配也会发生变化,进而影响森林生态系统土壤碳库变化和碳吸存潜力[3-4]

      土壤团聚体作为土壤结构的基本单元,是反映土壤肥力的一项重要指标[5]。不同粒级的团聚体在营养元素的保持、供应及转化能力等方面发挥着不同的作用。对不同演替阶段次生林土壤团聚体的稳定性进行研究可以反映出土壤生态特征以及土壤有机碳的储存能力,揭示土壤特征与演替进程的关系。有机碳在团聚体中的分布形式决定了土壤储存和保留有机碳的能力[6],有机碳水平的提高能促进土壤结构的形成并增强其稳定性。有研究表明,不同粒级团聚体的有机碳含量存在明显差异,一部分认为团聚体有机碳含量随粒级的增加而降低[7-8],另一部分研究则提出了与之相悖的观点,指出大部分土壤有机碳储存在大粒径团聚体中,﹤0.25 mm粒级团聚体有机碳含量相对较低[9-10]

      川西亚高山森林是我国西南亚高山林区水源涵养林的重要组成部分,以冷杉为主的原始暗针叶林在经历大规模采伐利用后,天然次生林已成为该区域的主要森林类型[11-12],因此,研究不同演替阶段的次生林类型的土壤结构及有机碳分布特征,对于准确评估本区森林生态系统的碳收支及大尺度的碳循环模型构建具有非常重要的意义。

      • 研究区位于四川省理县米亚罗林区,地理坐标31º24′—31º55′N,102º35′—103º4′E。该区位于青藏高原东缘褶皱带最外缘部分,具有典型的高山峡谷地貌。气候受太平洋、印度洋及青藏高原三大气团影响,年均温 6 ℃~12 ℃,极端最高气温 32 ℃,极端最低气温−16 ℃。夏季温凉多雨,冬季寒冷干燥,最冷月(1 月)平均气温为−8 ℃,最热月(7 月)均温为 12.6 ℃,≥10 ℃年积温为 1200 ℃~1400 ℃,年蒸发量为 1000~1 900 mm,常年无霜期 200 d,年均降水量为 600~1100 mm,具有降水次数多、强度小的特点。米亚罗林区植被垂直成带明显,其类型和生境随海拔及坡向而分异。原生森林分布于海拔2400~4 200m之间,以亚高山暗针叶林为主,主要优势树种为岷江冷杉(Abies faxoniana),桦木(Betula sp.)、云杉(Picea asperata)、野樱(Pruns tatsienensis)等乔木有分布;灌木主要有臭樱(Maddenia hypoleuca)、红刺悬钩子(Rubus aurantiacus)、红脉忍冬(Lonicera nervosa)、绣线菊(Spiraea salicifolia)等;草本植物主要有野草莓(Fragaria vesca)、婆婆纳(Veronica didyma)、柳叶菜(Epelobium hirsutum)、六叶葎(Galium asperuloides)、橐吾(Ligularia sibirica)等。

        该区成土母岩主要为千枚岩、板岩、白云岩等的残坡积风化物,极易风化,主要土壤类型为山地棕色森林土,土壤养分情况见表1

        表 1  不同演替阶段次生林0~20 cm土壤养分情况

        Table 1.  0−20 cm soil nutrient content of secondary forests in different successional stages

        森林类型F海拔/m坡向测树因子铵态氮/
        (mg·L−1)
        速效磷/
        (mg·L−1)
        有效钾/
        (mg·L−1)
        有机质/
        (g·kg−1)
        胸径/cm树高/cm林分密度
        桦木林3299西北13.1312.27192519.46.27280.8314.8
        桦木+冷杉混交林3453西北13.4512.69149017.67.43214.179.27
        冷杉林3145东南31.2316.4645937.57.3720010.51
      • 在研究区内依据林分组成,选取桦木纯林、桦木林+冷杉混交林、冷杉原始林作为次生林不同演替阶段的研究对象,分别代表初级演替、中级演替、高级演替三个演替阶段。每个演替阶段设置3~5个20 m×20 m的样方进行植物群落调查并在其中设1 m×1 m的小样方3~5个,采用5点取样法对0~20 cm的表土进行取样,土壤样品用硬质塑料盒盛装,带回实验室,风干、剔除石块和根系后用于分析土壤团聚体结果,并测定土壤碳含量。

      • 有机碳采用重铬酸钾氧化-外加热法测定。

        土壤团聚体分类采用干筛法分离出>5 mm、5~2 mm、2~1 mm、1~0.5 mm、0.5~0.25 mm、0.25~0.053 mm、<0.053 mm共7级土壤团聚体,并计算各粒径土壤团聚体对土壤碳的贡献率(%)[9]。计算公式如下:

        $$ \begin{split} & {\text{团聚体对土壤有机碳的贡献率}} =\\ & \frac{{\text{该级团聚体中有机碳含量}}\times {\text{该级团聚体的含量}}}{{\text{土壤总有机碳含量}}} \\ &\times 100{\text \%} \\[-10pt] \end{split} $$ (1)
        $$ {\text{某级团聚体含量}} = \frac{{\text{该级团聚体的重量}}}{{\text{各粒级土壤团聚体重之和}}} \times 100{\text \%} $$ (2)
      • 所用测定结果用采Microsfot Excel 2012进行整理和初步分析,用SPSS 16.0进行方差分析,多重比较分析采用LSD检验。

      • 3个演替阶段次生林粒径含量与粒径大小基本上呈正相关趋势,含量随粒径减小而降低,且均表现为>5 mm粒径团聚体分布均占主导地位。其中 >5 mm和<0.053 mm粒径的土壤团聚体在中级演替阶段(桦木+冷杉混交林)分布含量最高,2~1 mm粒径的团聚体在高级演替阶段(冷杉原始林)分布大于其他两个演替阶段,而1~0.5 mm、0.5~0.25 mm、0.25~0.053 mm 3个粒径的团聚体含量均是初级演替(桦木林)>高级演替(冷杉原始林)>中级演替(桦木+冷杉混交林)(见表2)。单因素方差分析发现,同一演替阶段内各径级团聚体含量分布存在显著差异;而同一粒径不同演替阶段间除了5~2 mm粒径外,其余6个粒径均存在显著差异(见表3)。

        表 2  不同演替阶段次生林土壤团聚体分布及组成

        Table 2.  Distribution and composition of soil aggregates in secondary forests at different successional stages

        演替阶段各级团聚体含量(%)
        >5 mm5~2 mm2~1 mm1~0.5 mm0.5~0.25 mm0.25~0.053 mm<0.053 mm
        桦木林23.07±2.79Ba20.20±2.59Aa20.48±2.00Aa17.03±2.53Ab11.27±1.87Ac7.09±1.91Ac0.86±0.21Bd
        桦木+冷杉混交林35.18±3.38Aa18.57±1.32Ab16.55±1.26Bb11.88±1.34Bc7.42±1.43Bd4.07±0.86Be6.33±1.24Ae
        冷杉原始林27.24±1.89Ba19.59±1.03Ac21.10±1.11Ab13.59±0.85Bd9.06±0.61ABe4.22±0.43Bf5.20±0.61Af
          注:同一列中不同大写字母表示不同演替阶段间同一粒径土壤团聚体所占比例差异显著(P<0.05);同一行中不同小写字母表示同一演替阶段不同粒径间团聚体所占比例差异显著(P<0.05)

        表 3  同一粒径不同演替阶段间土壤团聚体含量单因素方差分析

        Table 3.  Single factor variance analysis of soil aggregates content at different successional stages with the same particle size

        方差结果粒径>5 mm5~2 mm2~1 mm1~0.5 mm0.5~0.25 mm0.25~0.053 mm<0.053 mm
        F11.7750.6323.9216.1155.5214.31016.999
        Sig.0.001**0.5460.044*0.012*0.017*0.035*0.000**
          注:同一粒径在不同演替阶段间团聚体含量P<0.05为显著标记*,P<0.01为极显著标记**

        对同一演替阶段不同粒径团聚体含量进行多重比较发现初级演替阶段(桦木林)的团聚体在>1 mm粒径含量间不存显著差异,1~0.5 mm与0.5~0.053 mm、0.25~0.053 mm与<0.053 mm 粒径存在显著差异;中级演替阶段(桦木+冷杉混交林)、高级演替阶段(冷杉原始林)>0.25 mm粒径大团聚体与 <0.25 mm 粒径微团聚体间均存在显著差异,其中冷杉林的大团聚体(>0.25 mm)间各粒径均有显著差异,混交林在>5 mm与5~1 mm、2~1 mm与1~0.5 mm、1~0.5 mm与0.5~0.25 mm间存在显著差异,而微团聚体(<0.25 mm)在高级演替阶段(冷杉原始林)和中级演替阶段(桦木+冷杉混交林)均无显著差异。

        虽然单因素方差分析结果显示除了5~2 mm粒径外,其余6个粒径均存在显著差异,但对同一粒径不同演替阶段团聚体含量进行多重比较发现,同一粒径内并不是3个演替阶段均存在显著差异,如>5 mm粒径是桦木+冷杉混交林与桦木林、冷杉原始林存在显著差异,而桦木林与冷杉原始林间无显著差异。

        图1可见,各演替阶段次生林均以土壤大团聚体(>0.25 mm)为主,大团聚体比例皆达90%左右,微团聚体(<0.25 mm)分布较少。各演替阶段次生林土壤大团聚体含量(>0.25 mm)表现为冷杉+桦木混交林最高,微团聚体含量(<0.25 mm)表现为冷杉+桦木混交林>冷杉原始林>桦木林,且桦木林与混交林、冷杉原始林间存在显著差异,这说明土壤团聚性呈“∩型”随着演替阶段上升在中级演替阶段达到最高,随着演替进程的发展到高级阶段又下降。

        图  1  不同演替阶段次生林团聚体分布情况

        Figure 1.  Soil aggregates distribution of secondary

      • 3个演替阶段土壤有机碳总含量介于159.24~561.28 g·kg−1之间,对不同演替阶段有机碳总含量进行比较,冷杉原始林>桦木+冷杉混交林>桦木林,但差异不显著。不同演替阶段各级团聚体的土壤有机碳含量均是冷杉原始林最高,桦木+冷杉混交林次之,桦木林最低,且差异性显著。土壤大团聚体(>0.25 mm)有机碳的含量百分比分别为70.32%、70.21%、68.72%,微团聚体(<0.25 mm)有机碳的含量百分比分别为29.68%、29.79%、31.28%,其中0.053—0.25 mm粒径有机碳含量为14.61%、15.15%、15.05%,<0.053 mm有机碳的含量百分比为15.37%、15.58%、14.60%,微团聚体的两个径级间有机碳含量比例相当,差异不显著(见图2)。

        对同一演替阶段土壤有机碳含量与各团聚体粒径的相关性进行分析,发现其二者相关性不显著,但有机碳的含量随团聚体粒径减小而基本呈增加趋势(见表4),3个演替阶段均是所有<0.25 mm粒径的有机碳含量均值高于其他粒径,所有>2 mm粒径团聚体有机碳含量均值最低,这与刘敏英等[18]的研究结果一致。

        图  2  不同演替阶段次生林土壤团聚体有机碳百分比含量

        Figure 2.  Percentage of organic carbon in soil aggregates forests at different successional stages of secondary forests at different succession stages

      • 表5所示,3个演替阶段次生林类型的土壤团聚体对有机碳的贡献率均是>5 mm粒径最高,<0.25 mm粒径最低。土壤团聚体对有机碳的贡献率主要集中在大团聚(>0.25 mm),微团聚体(<0.25 mm)占的比重较少。单因素方差分析发现,同一演替阶段内各级团聚体对有机碳贡献率存在显著差异;而同一粒径不同演替阶段间分析结果显示,>5 mm、2~1 mm、1~0.5 mm、0.5~0.25 mm、0.25~0.053 mm这5个粒径对有机碳的贡献率在不同演替阶段间存在显著差异,5~2 mm、<0.053 mm 这2个粒径对土壤的贡献率在不同演替阶段间无显著差异(表6)。其中 >5 mm粒径的土壤团聚体在中级演替阶段(桦木+冷杉混交林)分布含量最高,2~1 mm粒径的团聚体在高级演替阶段(冷杉原始林)分布大于其他两个演替阶段,而1~0.5 mm、0.5~0.25 mm、0.25~0.053 mm 3个粒径的团聚体含量均是初级演替(桦木林)>高级演替(冷杉原始林)>中级演替(桦木+冷杉混交林)(见表6)。

        表 5  不同演替阶段次生林土壤团聚体对有机碳的贡献率

        Table 5.  Contribution rate of soil aggregates to organic carbon in secondary forests at different successional stages

        发育阶段各级团聚体对土壤有机碳的贡献率/%
        >5 mm5~2 mm2~1 mm1~0.5 mm0.5~0.25 mm0.25~0.053 mm<0.053 mm
        桦木林3.01 Ca2.69 Aa2.73 Aa2.43 Aa1.60 Ab1.19 Ab0.15 Bc
        桦木+冷杉混交林4.67 Aa2.49 Ab2.35 Bb1.80 Bc1.12 Bd0.63 Be0.84 Ae
        冷杉原始林3.19 Ba2.19 Ac2.40 Bb1.66 Bd1.09 Be0.53 Bf0.64 Af
          注:同一列中不同大写字母表示不同演替阶段间团聚体有机碳含量差异显著(p<0.05);同一行中不同小写字母表示同一演替阶段不同粒径间团聚体有机碳含量差异显著(p<0.05). The mean difference is significant at the 0.05 level.

        表 6  同一粒径不同演替阶段间土壤团聚体对有机碳贡献率单因素方差分析

        Table 6.  Single factor variance analysis of contribution rate of soil aggregates to organic carbon at different successional stages with the same particle size

        方差结果粒径>5 mm5~2 mm2~1 mm1~0.5 mm0.5~0.25 mm0.25~0.053 mm<0.053 mm
        F11.2830.6964.1654.6425.0844.87715.23
        Sig.0.001**0.5150.038*0.0288*0.022*0.025*0.000**
          注:同一粒径在不同演替阶段间团聚体含量p<0.05为显著标记*,p<0.01为极显著标记**

        对同一演替阶段不同粒径团聚体的有机碳贡献率进行多重比较发现,初级演替阶段(桦木林)在>0.5 mm粒径时,团聚体的大小与有机碳贡献率是无显著差异的,而在0.5~0.053 mm与>0.5 mm粒径间、0.25~0.053 mm与<0.053 mml粒径间团聚体的机碳贡献率存在显著差异;中级演替阶段(桦木+冷杉混交林)除了5~2 mm与2~1 mm粒径间有机碳贡献率无显著差异,其余径级均具有显著差异;高级演替阶段(冷杉原始林)各粒径间团聚体对有机碳的贡献率均有显著差异。这说明随着演替阶段的上升,粒径的大小与土壤有机碳贡献率的联系更加紧密,并基本表现为随粒径增加有机碳贡献率增加。

        对同一粒径不同演替阶段次生林土壤团聚体对有机碳的贡献率进行多重比较发现,>5 mm粒径时3个演替阶段的有机碳贡献率分别存在显著差异,且中级演替(桦木+冷杉混交林)>高级演替(冷杉原始林)>初级演替(桦木林);而在2~1 mm、1~0.5 mm、0.5~0.25 mm、0.25~0.053 mm、<0.053 mm这5个粒径间仅表现为桦木林与混交林、桦木林与冷杉林之间具有显著差异。说明演替阶段不同对>5 mm粒径的团聚体有机碳贡献率具有显著影响。

        比较不同团聚体有机碳含量与贡献率发现,虽然<0.25 mm粒径的有机碳含量高但是贡献率低,说明微团聚体对有机碳的保护力更强,且桦木+冷杉混交林>桦木林>冷杉原始林(见表4表5)。

        表 4  不同演替阶段次生林土壤团聚体有机碳含量

        Table 4.  Percentage of organic carbon in soil aggregates of secondary forests at different successional stages

        发育阶段各级团聚体土壤碳含量/(g·kg−1
        >5 mm5~2 mm2~1 mm1~0.5 mm0.5~0.25 mm0.25~0.053 mm<0.053 mm
        桦木林42.70±8.89Aa42.99±8.59Aa43.41±8.72Aa44.74±8.84Aa45.81±9.19Aa48.03±8.61Aa49.39±7.90Aa
        桦木+冷杉
        混交林
        51.88±3.20Aa51.23±2.42Aa53.69±2.69Aa55.49±2.02Aa55.07±3.18Aa55.76±2.81Aa58.67±2.34Aa
        冷杉原始林60.35±9.70 Aa62.60±4.61Aa62.81±5.02Aa64.55±2.17Aa61.36±8.60Aa66.70±2.57Aa64.70±7.49Aa
          注:同一列中不同大写字母表示不同演替阶段间团聚体有机碳含量差异显著(P<0.05);同一行中不同小写字母表示同一演替阶段不同粒径间团聚体有机碳含量差异显著(P<0.05)
      • 有研究认为[13],微团聚体的形成是大团聚体形成的前提条件,空间尺度上土壤团聚体由微团聚体向大团聚体逐级连续层次性形成,而在时间尺度上胶结物质从多糖(暂时稳定)向菌丝根系(短时间稳定)及芳香类物质(持久稳定)层次性变化。李玮[14]等的研究表明,种植年限的增加有利于团聚体胶结物质的积累,从而有利于大团聚体的形成与稳定;Ma[15]等也认为,中龄林和成熟林的土壤团聚性要强于幼龄林。本研究显示,处于中级演替阶段的冷杉+桦木混交林大团聚体含量最高,土壤团聚性呈“∩型”随着演替阶段上升在中级演替阶段达到最高,随着演替进程的发展到高级阶段又下降,这与李玮[14]、Ma[15]、Tisdall[13]的研究结论不一致。这可能是由于大团聚体的稳定性在很大程度上取决于植物根系和菌丝,当根系和菌丝被分解而得不到补给时,稳定性大团聚体的数量随有机质含量的上升而减少,本研究桦木冷杉混交林比冷杉原始林的有机质含量低,可能就是导致混交林大团聚体含量高于冷杉原始林的重要原因。

      • 3个演替阶段土壤有机碳总含量介于159.24~561.28 g·kg−1之间,冷杉原始林>桦木+冷杉混交林>桦木林。不同演替阶段各级团聚体的土壤有机碳含量均是冷杉原始林最高,桦木+冷杉混交林次之,桦木林最低,且土壤大团聚体(>0.25 mm)有机碳的含量百分比远高于微团聚体(<0.25 mm)有机碳的含量百分比。说明各演替阶段土壤有机碳的含量主要是存在于大团聚体中,这与前人的研究结论[16-18]相同。对照土壤养分中铵态氮的含量来看,氮含量和有机碳变化规律趋于一致,这与黄天颖[2]等人对黄浦江上游水源涵养林碳、氮分布特征研究结论相同,原因可能在于土壤碳、氮变化通常相辅相成,团聚体氮元素含量随有机碳含量的变化而变化。

        冷杉原始林的大团聚体分布较其他两个演替阶段稍低,但冷杉原始林有机碳总含量最高,出现这一结果可能是随着演替阶段的前进,干扰因子减少,植物及微生物群落结构趋于稳定,大团聚的更新降低,使得大团体内微团聚体的形成数量增大,而这种从大团聚体中心形成的微团聚体含有很高的且不易分解的有机碳含量,因此出现大团聚体含量低但有机碳总含量高的情况[19-20]

        对同一演替阶段土壤各粒径团聚体中有机碳含量分布的研究表明,有机碳含量与各团聚体粒径的相关性不显著,但有机碳的含量随团聚体粒径减小而基本呈增加趋势。3个演替阶段均是<0.25 mm粒径的有机碳含量高于其他粒径,>2 mm粒径团聚体有机碳含量最低。本研究,<0.25 mm微团聚体有机碳含量最高,究其原因可能是小团聚体的固碳方式决定的。小团聚体主要靠有机和无机胶体紧密结合固持碳,固持的碳不易为微生物分解释放[21],而大团聚体主要靠有机物、多糖等结合,因此大团聚体中的有机碳比微团聚体中的有机碳年轻,有机碳更容易矿化,而微团聚体中的有机碳则大多是高度腐殖化的惰性组[22-23]

      • 3个演替阶段次生林类型的土壤团聚体对有机碳的贡献率均是>5 mm粒径最高,<0.25 mm粒径最低。土壤团聚体对有机碳的贡献率主要集中在大团聚(>0.25 mm),微团聚体(<0.25 mm)占的比重较少。演替阶段不同对>5 mm粒径的团聚体有机碳贡献率具有显著影响。随着演替阶段的上升,粒径的大小与土壤有机碳贡献率的联系更加紧密,并基本表现为随粒径增加有机碳贡献率增加。比较不同团聚体有机碳含量与贡献率发现,虽然<0.25 mm粒径的有机碳含量高但是贡献率低,说明微团聚体对有机碳的保护力更强,且桦木+冷杉混交林>桦木林>冷杉原始林。

        综上所述,对于川西山地天然次生林而言,大团聚体是有机碳的主要来源,而微团聚体能更加持久的稳固碳元素,比较三个演替阶段的次生林发现处于中级演替阶段的桦木+冷杉混交林对该区域森林固碳具有重要作用,而处于高级演替阶段的冷杉林的有机碳含量最高也说明了正向演替对森林固碳是具体促进作用的。

    参考文献 (23)

    目录

      /

      返回文章
      返回