用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

基于ITS和ycf1序列的白及遗传多样性分析

李文俊, 姜丽琼, 刘琼, 肖前刚, 浣杰, 徐志萍, 杨洪燕

李文俊, 姜丽琼, 刘琼, 等. 基于ITS和 ycf1 序列的白及遗传多样性分析[J]. 四川林业科技, 2021, 42(1): 125−129. DOI: 10.12172/202007070001
引用本文: 李文俊, 姜丽琼, 刘琼, 等. 基于ITS和 ycf1 序列的白及遗传多样性分析[J]. 四川林业科技, 2021, 42(1): 125−129. DOI: 10.12172/202007070001
Li W J, Jiang L Q, Liu Q, et al. Genetic diversity analysis of Bletilla striata based on ITS and ycf1 genes[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(1): 125−129. DOI: 10.12172/202007070001
Citation: Li W J, Jiang L Q, Liu Q, et al. Genetic diversity analysis of Bletilla striata based on ITS and ycf1 genes[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(1): 125−129. DOI: 10.12172/202007070001

基于ITS和ycf1序列的白及遗传多样性分析

基金项目: 成都市农林科学院财政资金项目
详细信息
    作者简介:

    李文俊(1976—),男,高级工程师,806284405@qq.com

    通信作者:

    姜丽琼: 157041752@qq.com

Genetic Diversity Analysis of Bletilla striata Based on ITS and ycf1 Genes

More Information
  • 摘要: 在白及资源调查和收集过程中,发现白及花型、花色、花期、叶片形态等多个性状变异程度较大。本研究收集了来源于四川和云南的白及资源30份,克隆并分析其nrDNA ITS和叶绿体ycf1基因差异,发现ycf1基因差异小,ITS基因差异较大,根据ITS序列差异,将白及聚类为3个支系,结合白及的表观性状,发现白及ITS序列与其花期和叶型有相关性,与花型、花色等其他性状无明显相关,本研究为白及种质资源收集整理和开发利用提供了理论基础。
    Abstract: During the investigation and collection of Bletilla striata resources, it was found that many characteristics of Bletilla striata such as flower type, flower color, florescence, leaf shape and so on had great variation degrees. In this study, we collected 30 accessions of Bletilla striata resources from Sichuan and Yunnan province, cloned and analyzed their nrDNA ITS and chloroplast ycf1 gene differences, and found that ycf1 gene has little difference and ITS gene has large difference. According to the differences of ITS sequences, Bletilla striata was clustered into 3 branches. Combined with the apparent characteristics of Bletilla striata, it was found that the ITS sequences of Bletilla striata had obvious correlation with florescence and leaf type, but had no obvious correlation with other characteristics such as flower type and color. This study provided a theoretical basis for the collection, development and utilization of Bletilla striata germplasm resources.
  • 白及[Bletilla striata (Thunb.) H.G.Reichenbach]是兰科白及属的多年生草本植物[1],主要分布在云南、四川和贵州等地[2],白及具有广泛的药用价值及园林价值,白及以根茎入药,具有收敛止血、消肿生肌等功效,是我国重要的中药材[3],亦可作为盆栽室内观赏,点缀于较为荫蔽的花台、花境或庭院一角[4]。此外,白及亦是装裱书画的高品质粘合剂,并广泛应用于高档美容化妆品及保健等行业[5]

    白及属植物种间和种内遗传分化强烈[6],本研究在白及资源调查和收集过程中,发现白及表型变异程度较大,主要表现在株型、花型、花色、花期、花量、花茎、叶片形态、托叶宿存情况及托叶大小及抗逆性等方面,花色有白色、淡粉色、粉紫色、紫色、深紫色等,开花时间主要在3—5月之间变化,叶片形态存在宽窄差异,从表型看,白及种内差异较大。

    nrDNA ITS序列是位于真核生物nrDNA18S和26S之间的内含子[7],由于进化中的选择压力小,nrDNA ITS片段在物种水平的变异较快,有更多的突变位点以区分不同的物种,常用于物种鉴定和系统进化研究[8]。而在兰科植物中,Kurt[9]等指出兰科植物的ycf1(Hypothetical chloroplast openreading frame 1)基因具有高度变异性,并比matK基因更具有可靠的变异信息位点。本研究收集来源于四川和云南的30个白及单株,克隆并分析其nrDNA ITS序列和叶绿体ycf1序列的差异基因,以期为白及遗传分化研究鉴定提供理论基础。

    在四川和云南采集白及野生种和栽培种共30个样本,样本植株移栽在成都市农林科学院科研基地,试验时选择成熟个体,取无病虫害的叶片立即放在液氮中,–80 ℃保存待用(见表1)。

    表  1  供试材料表
    Table  1.  Basic information of the tested materials
    样品编号取样地点野生种/栽培种
    B_1云南普洱栽培种
    B_2云南保山栽培种
    B_3云南普洱栽培种
    B_4四川都江堰虹口野生种
    B_5四川都江堰虹口野生种
    B_6四川大邑雾山野生种
    B_7四川沐川野生种
    B_8四川内江栽培种
    B_9四川内江栽培种
    B_10四川水磨野生种
    B_11四川雅安野生种
    B_12四川康定野生种
    B_13四川彭州栽培种
    B_14四川彭州栽培种
    B_15云南红河栽培种
    B_16四川内江栽培种
    B_17四川内江栽培种
    B_18四川水磨野生种
    B_19四川内江栽培种
    B_20云南普洱栽培种
    B_21四川汶川野生种
    B_22云南曲靖栽培种
    B_23四川重庆栽培种
    B_24四川水磨野生种
    B_25四川沐川野生种
    B_26四川内江栽培种
    B_27四川内江栽培种
    B_28四川内江栽培种
    B_29四川水磨野生种
    B_30四川彭州栽培种
    下载: 导出CSV 
    | 显示表格

    采用植物DNA提取试剂盒(TIANGEN公司)提取DNA,并参考吴劲松[10]文献中ITS、ycf1基因引物及相关体系进行 PCR 扩增、电泳检测、切胶回收、测序(见表2)。

    表  2  引物序列
    Table  2.  Primer sequences
    基因名称5′-3′
    nrDNA ITSP1CGTAACAAGGTTTCCGTAGGTGAAC
    P2TTATTGATATGCTTAAACTCAGCGGG
    ycf1F1ACCTGAATCATTTTATGTATTGG
    R1TTTGGTACCTCTTATTATCGACC
    下载: 导出CSV 
    | 显示表格

    利用DNAstar软件分析ITS和ycf1序列的长度和G+C含量;运用DNAMAN 工具对ITS和ycf1序列进行多序列比对,分析序列的同源性,采用邻位连接法(Neighbor-Joining method)构建系统进化树,选择检验方法为“Bootstrap method”,重复抽样次数为1000,应用软件MEGA7.0[11](Molecular evolution genetics analysis)分子进化遗传分析软件分析系统进化关系。

    对30个白及样本的nrDNA ITS和叶绿体ycf1序列进行扩增,如表3所示,获得ITS序列长度为633−742 bp,GC含量为59.97%~61.64%,ycf1序列长度为864~969 bp,GC含量为27.76%~28.47%。

    表  3  序列长度及GC含量
    Table  3.  Sequence length and GC content
    编号ITS序列长度/bpGC含量/%ycf1序列长度/bpGC含量/%
    B_170361.5989028.31
    B_270361.4590727.89
    B_369661.6496927.76
    B_470461.0889428.19
    B_570261.4090028.22
    B_672860.9990028.11
    B_770460.8086428.36
    B_870360.4688128.15
    B_972660.7489128.28
    B_1071360.8790428.21
    B_1166360.0390227.94
    B_1266460.2488628.33
    B_1371660.6193028.28
    B_1472161.0388528.47
    B_1570561.2889328.22
    B_1672160.6190527.96
    B_1771960.7890728.22
    B_1872060.6989528.22
    B_1971061.1390028.11
    B_2069961.3790028.11
    B_2171161.0489328.22
    B_2271760.9590228.05
    B_2371661.5991028.02
    B_2471761.0990628.15
    B_2566860.4887328.29
    B_2671260.6790728.00
    B_2771660.8988428.28
    B_2871760.8189928.14
    B_2973060.8290928.16
    B_3074259.9795128.08
    下载: 导出CSV 
    | 显示表格

    通过比对,确定本研究涉及材料nrDNA ITS序列和叶绿体ycf1序列存在不同程度的变异,根据ycf1基因共鉴定出5个单倍型,存在4个变异位点,B_4和B_5属于B型,B_11属于C型,B_12属于D型,B_16属于E型,其余25个样本属于A型,具体变异情况见表4

    相比较叶绿体ycf1基因,nrDNA ITS基因变异程度较大,共鉴定出11个单倍型,存在32个变异位点,其中B_1、B_2、B_3、B_6、B_15、B_23属于A型,B_4、B_5、B_14属于B型,B_7、B_16、B_17、B_18、B_25、B_26、B_27、B_28属于C型,B_8、B_9、B_10属于D型,B_19、B_20、B_21、B_29属于E型,B_11、B_12、B_13、B_22、B_24、B_30分别属于F、G、H、I、J、K型,具体变异情况见表5

    表  4  叶绿体ycf1基因变异情况
    Table  4.  Variation of ycf1 genes in chloroplasts
    单倍型1234
    A型TGC
    B型AGC
    C型TAA
    D型TAC
    E型ATGC
      注:“·”表示与单倍型A型核苷酸相同,“−”表示缺失或插入。
    下载: 导出CSV 
    | 显示表格
    表  5  nrDNA ITS基因变异情况
    Table  5.  Variation of nrDNA ITS genes
    单倍型12345678910111213141516
    ACGTTCACCGAACTGG
    B···············
    C······T·······A
    D······T·······A
    E···············
    FTAC·TGTT·GGT·AA
    GTAC·TGTT·GGT·AA
    HTAAC·TGTTTGGT·AA
    ITACCTGTTGGTCAA
    J······T·······
    K···············
    单倍型17181920212223242526272829303132
    ACACGCTCAGGTCTC
    B········T·····
    C···A·····A····
    D···A··········
    E········T··T··
    FT·AT·T···G·CT
    GTGAT·T··G·G·CT
    HATCTGC·G·CT
    IT··AT·T···G·CT
    J···A··········
    K·····C···T··T··
      注:“·”表示与单倍型A型核苷酸相同,“−”表示缺失或插入。
    下载: 导出CSV 
    | 显示表格

    本研究中,共得到白及30条ITS序列,共鉴定出11个单倍型,表现出很高的杂合性,构建NJ树,发现30份白及材料分为3个支系,A型、B型、E型聚为一支,B_8和F、G、H、I、J、K型聚为一支,C型和D型聚为一支(见图1)。

    图  1  基于ITS序列的白及系统发育树
    Figure  1.  Phylogenetic tree of Bletilla striata based on ITS sequence

    白及属植物具有较高的遗传多样性。孙宇龙[12]等通过SRAP分子标记探讨了12个白及野生居群的遗传多样性和居群遗传结构,表明白及物种有着丰富的遗传多样性,认为白及居群间存在中等水平的遗传分化。周天华[13]等构建白及SSR指纹图谱,认为白及属在种间水平均有较高的遗传多样性,物种间遗传分化强烈,物种间的基因流较弱。

    本研究比较30个白及样本的ITS序列和ycf1序列,发现ycf1序列变异较小,ITS序列变异较大,种内遗传多样性丰富。相比较A型,B_12、B_13、B_13和B_22的ITS序列变异较大,分别发生了20、22、24和21个基因位点变异,此四个样本变异情况相似,且在表观上均表现出叶型狭长、花期晚的性状,根据ITS序列差异,将30份白及材料聚类为3个支系,结合白及的表观性状,发现白及ITS序列与其花期和叶型有相关性,与花型、花色等其他性状无明显相关。

    种质资源是中药材遗传育种和品种选育的基础,目前,市场上流通的白及药材种质来源广泛,质量参差不齐。种源不清、种子种苗质量参差不齐,是影响白及规范化种植和白及药材质量的重要因素[14]。本研究收集白及种质资源,克隆并分析白及nrDNA ITS和叶绿体ycf1序列,为白及种质资源开发利用奠定了基础。后续将对这批白及种质资源的化学成分、抗逆性和其他品质性状进行深入研究,以期为选育产量高、抗逆性强、品质优的新品种提供材料基础。

  • 图  1   基于ITS序列的白及系统发育树

    Figure  1.   Phylogenetic tree of Bletilla striata based on ITS sequence

    表  1   供试材料表

    Table  1   Basic information of the tested materials

    样品编号取样地点野生种/栽培种
    B_1云南普洱栽培种
    B_2云南保山栽培种
    B_3云南普洱栽培种
    B_4四川都江堰虹口野生种
    B_5四川都江堰虹口野生种
    B_6四川大邑雾山野生种
    B_7四川沐川野生种
    B_8四川内江栽培种
    B_9四川内江栽培种
    B_10四川水磨野生种
    B_11四川雅安野生种
    B_12四川康定野生种
    B_13四川彭州栽培种
    B_14四川彭州栽培种
    B_15云南红河栽培种
    B_16四川内江栽培种
    B_17四川内江栽培种
    B_18四川水磨野生种
    B_19四川内江栽培种
    B_20云南普洱栽培种
    B_21四川汶川野生种
    B_22云南曲靖栽培种
    B_23四川重庆栽培种
    B_24四川水磨野生种
    B_25四川沐川野生种
    B_26四川内江栽培种
    B_27四川内江栽培种
    B_28四川内江栽培种
    B_29四川水磨野生种
    B_30四川彭州栽培种
    下载: 导出CSV

    表  2   引物序列

    Table  2   Primer sequences

    基因名称5′-3′
    nrDNA ITSP1CGTAACAAGGTTTCCGTAGGTGAAC
    P2TTATTGATATGCTTAAACTCAGCGGG
    ycf1F1ACCTGAATCATTTTATGTATTGG
    R1TTTGGTACCTCTTATTATCGACC
    下载: 导出CSV

    表  3   序列长度及GC含量

    Table  3   Sequence length and GC content

    编号ITS序列长度/bpGC含量/%ycf1序列长度/bpGC含量/%
    B_170361.5989028.31
    B_270361.4590727.89
    B_369661.6496927.76
    B_470461.0889428.19
    B_570261.4090028.22
    B_672860.9990028.11
    B_770460.8086428.36
    B_870360.4688128.15
    B_972660.7489128.28
    B_1071360.8790428.21
    B_1166360.0390227.94
    B_1266460.2488628.33
    B_1371660.6193028.28
    B_1472161.0388528.47
    B_1570561.2889328.22
    B_1672160.6190527.96
    B_1771960.7890728.22
    B_1872060.6989528.22
    B_1971061.1390028.11
    B_2069961.3790028.11
    B_2171161.0489328.22
    B_2271760.9590228.05
    B_2371661.5991028.02
    B_2471761.0990628.15
    B_2566860.4887328.29
    B_2671260.6790728.00
    B_2771660.8988428.28
    B_2871760.8189928.14
    B_2973060.8290928.16
    B_3074259.9795128.08
    下载: 导出CSV

    表  4   叶绿体ycf1基因变异情况

    Table  4   Variation of ycf1 genes in chloroplasts

    单倍型1234
    A型TGC
    B型AGC
    C型TAA
    D型TAC
    E型ATGC
      注:“·”表示与单倍型A型核苷酸相同,“−”表示缺失或插入。
    下载: 导出CSV

    表  5   nrDNA ITS基因变异情况

    Table  5   Variation of nrDNA ITS genes

    单倍型12345678910111213141516
    ACGTTCACCGAACTGG
    B···············
    C······T·······A
    D······T·······A
    E···············
    FTAC·TGTT·GGT·AA
    GTAC·TGTT·GGT·AA
    HTAAC·TGTTTGGT·AA
    ITACCTGTTGGTCAA
    J······T·······
    K···············
    单倍型17181920212223242526272829303132
    ACACGCTCAGGTCTC
    B········T·····
    C···A·····A····
    D···A··········
    E········T··T··
    FT·AT·T···G·CT
    GTGAT·T··G·G·CT
    HATCTGC·G·CT
    IT··AT·T···G·CT
    J···A··········
    K·····C···T··T··
      注:“·”表示与单倍型A型核苷酸相同,“−”表示缺失或插入。
    下载: 导出CSV
  • [1] 任风鸣,刘艳,李滢,等. 白及属药用植物的资源分布及繁育[J]. 中草药,2016,47(24):4478−4487. DOI: 10.7501/j.issn.0253-2670.2016.24.029
    [2] 周先建,张美,林娟,等. 四川白及属药用植物资源调查[J]. 安徽农业科学,2019,47(22):178−180. DOI: 10.3969/j.issn.0517-6611.2019.22.052
    [3] 卢郅凯,洪溢,金栋,等. 白及的综合利用价值及繁殖栽培技术探讨[J]. 南方农业,2019,13(28):10−13.
    [4] 朱娇, 黄卫昌, 曹建国, 等. 我国白及属植物资源评价及其筛选[J/OL]. 热带作物学报: 1−15[2020-04-30]. http://kns.cnki.net/kcms/detail/46.1019.S.20200224.1743.002.html.
    [5] 林立,聂鲜钰,陆春云,等. 基于多糖和白及胶及矿质元素分析的白及种质资源特征研究[J]. 中药材,2019,42(5):1000−1006.
    [6] 黎君. 白及的遗传多样性分析与DNA指纹图谱研究[D]. 陕西理工大学, 2017.
    [7] 段义忠,王建武,亢福仁,等. 蒙古扁桃nrDNA ITS和cpDNA trnH-psbA序列分子进化特点研究[J]. 基因组学与应用生物学,2018,37(7):3035−3041.
    [8] 宋爽,周洋帆,黄丽,等. ITS2条形码对白及属植物的初步分析研究[J]. 云南农业大学学报(自然科学),2017,32(1):95−100.
    [9]

    Kurt M, Neubig W, Mark W, et al. Phylogenetic utility of ycf1 in orchids: a plastid gene more variable than matK[J]. Plant Syst Evol, 2009, 277: 75−84. DOI: 10.1007/s00606-008-0105-0

    [10] 吴劲松,张宇思,刘薇,等. 白及属药用植物DNA条形码的确立及其应用[J]. 药学学报,2014,49(10):1466−1474.
    [11]

    Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599.

    [12] 孙宇龙. 白及的假鱗茎诱导、遗传资源鉴定与评价的研究[D]. 南京师范大学, 2015.
    [13] 周天华,黎君,丁家玺,等. 白及种质资源及其近缘种的SSR指纹图谱研究[J]. 西北植物学报,2017,37(4):673−681. DOI: 10.7606/j.issn.1000-4025.2017.04.673
    [14] 林立. 白及种质资源评价及种子种苗质量标准研究[D]. 贵州大学, 2019.
  • 期刊类型引用(0)

    其他类型引用(1)

图(1)  /  表(5)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  348
  • PDF下载量:  19
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-07-06
  • 网络出版日期:  2020-12-23
  • 刊出日期:  2021-02-03

目录

/

返回文章
返回