用微信扫码二维码

分享至好友和朋友圈

WE ARE COMMITTED TO REPORTING THE LATEST FORESTRY ACADEMIC ACHIEVEMENTS

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光照强度对大熊猫取食缺苞箭竹可食性的影响

涂绪中 李德文

涂绪中, 李德文. 光照强度对大熊猫取食缺苞箭竹可食性的影响[J]. 四川林业科技, 2020, 41(5): 105−110 doi: 10.12172/202007030002
引用本文: 涂绪中, 李德文. 光照强度对大熊猫取食缺苞箭竹可食性的影响[J]. 四川林业科技, 2020, 41(5): 105−110 doi: 10.12172/202007030002
Tu X Z, Li D W. Effects of light intensity on edibility of Fargesia denudata[J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(5): 105−110 doi: 10.12172/202007030002
Citation: Tu X Z, Li D W. Effects of light intensity on edibility of Fargesia denudata [J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(5): 105−110 doi: 10.12172/202007030002

光照强度对大熊猫取食缺苞箭竹可食性的影响


doi: 10.12172/202007030002
详细信息
    作者简介:

    涂绪中(1962-),男,高级工程师,学士,895479556@qq.com

Effects of Light Intensity on Edibility of Fargesia denudata

More Information
  • 摘要: 缺苞箭竹(Fargesia denudata)是岷山山系大熊猫取食率最高的竹种,其可食性研究是评估大熊猫食物营养状况和适口性的关键。为了揭示不同光照强度对缺苞箭竹营养成分和适口性的影响,本文以四川王朗国家级自然保护区自然生长于林下、林缘和林窗光环境下的缺苞箭竹为研究对象,对其笋、茎、叶中的可食性成分进行分析。结果表明:(1)林下低光照强度环境有利于缺苞箭竹笋中总酚的积累,而不利于粗蛋白、粗脂肪、氨基酸总量的积累;有利于茎中粗蛋白、粗脂肪和氨基酸总量的积累,而不利于纤维素的积累;有利于叶中氨基酸总量、纤维素的积累,而不利于粗蛋白、单宁的积累。(2)林窗中光照强度环境有利于缺苞箭竹笋中粗脂肪、氨基酸总量的积累,不利于茎和叶中粗蛋白的积累,也不利于叶中纤维素、总酚的积累。(3)林窗高光照强度环境有利于缺苞箭竹笋中粗蛋白的积累,而不利于氨基酸总量、总酚的积累;有利于茎中纤维素的积累,而不利于粗蛋白、粗脂肪、氨基酸总量的积累,有利于叶中粗蛋白、单宁、总酚的积累,而不利于氨基酸总量、纤维素的积累。不同光照强度对缺苞箭竹笋、茎、叶的可食性成分含量的影响有差异,为丰富大熊猫取食竹种的可食性研究内容,建议在大熊猫可食竹的可食性研究中应注重不同竹种、不同器官、不同微环境的对比研究。
  • 图  1  缺苞箭竹的笋、茎、叶中粗蛋白含量及其光照强度效应

    注:图中a、b、c表示同一光照强度下的某可食性成分在笋、茎、叶中的差异;A、B、C为光照强度对笋、茎、叶中某可食性成分的含量差异;下同。

    Fig.  1  Crude protein content in shoots, stems and leaves of Fargesia denudata and its light intensity effect

    图  2  缺苞箭竹的笋、茎、叶中粗脂肪含量及其光照强度效应

    Fig.  2  Crude fat content in the shoots, stems and leaves of Fargesia denudata and its light intensity effect

    图  3  缺苞箭竹的笋、茎、叶中氨基酸总量含量及其光照强度环境效应

    Fig.  3  Total amino acids content in shoots, stems and leaves of Fargesia denudata and its light intensity effect

    图  4  缺苞箭竹的笋、茎、叶中纤维素含量及其光照强度环境效应

    Fig.  4  Cellulose content in shoots, stems and leaves of Fargesia denudata and its light intensity effect

    图  5  缺苞箭竹的笋、茎、叶中单宁含量及其光照强度环境效应

    Fig.  5  Tannin content in shoots, stems and leaves of Fargesia denudata and its light intensity effect

    图  6  缺苞箭竹的笋、茎、叶中总酚含量及其光照强度环境效应

    Fig.  6  Total phenols content in shoots, stems and leaves of Fargesia denudata and its light intensity effect

    表  1  样地基本信息

    Tab.  1  Basic information of the sample plots

    样地编号海拔坡度/°坡向样地环境优势种光照强度
    1281018西南林下岷江冷杉低光照
    2280520西南林下岷江冷杉低光照
    3279019西南林缘岷江冷杉中光照
    4280020西南林缘岷江冷杉中光照
    5279522西南林窗岷江冷杉高光照
    6281019西南林窗岷江冷杉高光照
    下载: 导出CSV
  • [1] 胡锦矗, 夏勒. 卧龙的大熊猫[M]. 成都: 四川科学技术出版社, 1985.
    [2] 胡锦矗. 大熊猫的摄食行为[J]. 生物学通报,1995(9):14−8.
    [3] 张全建,赖长鸿,龚旭,等. 缺苞箭竹(Fargesia denudata)和拐棍竹(F. Robusta)的饲用品质差异[J]. 生态学杂志,2020,39(5):1527−37.
    [4] Da Costa G, Lamy E, Silva F C E, et al. Salivary amylase induction by tannin-enriched diets as a possible countermeasure against tannins[J]. Journal of Chemical Ecology, 2008, 34(3): 376−87. doi: 10.1007/s10886-007-9413-z
    [5] Okuda T, Ito H. Tannins of constant structure in medicinal and food plants-hydrolyzable tannins and polyphenols related to tannins[J]. Molecules, 2011, 16(3): 2191−217. doi: 10.3390/molecules16032191
    [6] Reed J D. Nutritional toxicology of tannins and related polyphenols in forage legumes[J]. Journal of Animal Science, 1995, 73(5): 1516−28. doi: 10.2527/1995.7351516x
    [7] Vanhoven W. Tannins and digestibility in greater kudu[J]. Canadian Journal of Animal Science, 1984, 64: 177−8.
    [8] Macedo A F, Leal-Costa M V, Tavares E S, et al. The effect of light quality on leaf production and development of in vitro-cultured plants of alternanthera brasiliana kuntze[J]. Environmental and Experimental Botany, 2011, 70(1): 43−50. doi: 10.1016/j.envexpbot.2010.05.012
    [9] 乔新荣,刘国顺,郭桥燕,等. 光照强度对烤烟化学成分及物理特性的影响[J]. 河南农业科学,2007(5):40−3. doi: 10.3969/j.issn.1004-3268.2007.05.011
    [10] 罗刚跃,陈兆平,程双奇. 不同季节及遮阴条件下多年生花生和郁南假花生的营养成分的研究[J]. 自然科学版,2000(3):85−7.
    [11] 李卫国,王建波. 光照和氮素对外来植物凤眼莲生长和生理特性的影响[J]. 理学版,2007(4):457−62.
    [12] 冯颖竹,余土元,陈惠阳,等. 环境光强对糯玉米籽粒主要品质成分的影响[J]. 生态环境,2007(3):926−30.
    [13] 刘明,肖佳雷,李炜,等. 不同播期对北方寒地麦后复种饲料油菜产量和品质的影响[J]. 安徽农业科学,2014,42(36):12933−4. doi: 10.3969/j.issn.0517-6611.2014.36.053
    [14] 顾振新,饭本光雄,田川彰南,等. 弱光照射和无机营养供给对冷藏绿芦笋品质变化的影响[J]. 南京农业大学学报,2001(4):84−8.
    [15] 王文杰,李文馨,许慧男,等. 不同生境白屈菜(chelidonium majus)生活史型特征及其与不同器官单宁、黄酮、生物碱含量的关系[J]. 生态学报,2008(11):5228−37. doi: 10.3321/j.issn:1000-0933.2008.11.004
    [16] 李继泉,金幼菊. 环境因子对植物他感化合物的影响[J]. 河北林果研究,1999(3):285−92. doi: 10.3969/j.issn.1007-4961.1999.03.021
    [17] 柳凤娟,向双,阳小成,等. 两种光照生境下4种常绿阔叶树的单位叶面积干重、光合能力与化学防御物质含量比较[J]. 应用与环境生物学报,2010,16(4):462−7.
    [18] 毛立彦,慕小倩,董改改,等. 光照强度对曼陀罗和紫花曼陀罗生长发育的影响[J]. 植物生态学报,2012,36(3):243−52.
    [19] Carter J, Ackleh A S, Leonard B P, et al. Giant panda (ailuropoda melanoleuca) population dynamics and bamboo (subfamily bambusoideae) life history: A structured population approach to examining carrying capacity when the prey are semelparous[J]. Ecological Modelling, 1999, 123(2−3): 207−23. doi: 10.1016/S0304-3800(99)00145-3
    [20] 项潇,马月伟,余丽丽,等. 国内大熊猫栖息地研究进展[J]. 四川林业科技,2018,39(06):31−5.
    [21] Wei W, Nie Y G, Zhang Z J, et al. Hunting bamboo: Foraging patch selection and utilization by giant pandas and implications for conservation[J]. Biological Conservation, 2015, 186: 260−7. doi: 10.1016/j.biocon.2015.03.023
    [22] 张丽英. 饲料分析及饲料质量检测技术 2版[M]. 北京: 中国农业大学出版社, 2003.
    [23] 刘绍. 食品分析与检验[M]. 武汉: 华中科技大学出版社, 2011.
    [24] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583−97. doi: 10.3168/jds.S0022-0302(91)78551-2
    [25] Taylor J, Bean S R, Ioerger B P, et al. Preferential binding of sorghum tannins with gamma-kafirin and the influence of tannin binding on kafirin digestibility and biodegradation[J]. Journal of Cereal Science, 2007, 46(1): 22−31. doi: 10.1016/j.jcs.2006.11.001
    [26] Chen L Y, Cheng C W, Liang J Y. Effect of esterification condensation on the folin-ciocalteu method for the quantitative measurement of total phenols[J]. Food Chemistry, 2015, 170: 10−5. doi: 10.1016/j.foodchem.2014.08.038
    [27] 冯斌. 林冠遮阴与海拔对大熊猫主食竹生长发育、适口性和营养成分的影响[D]; 四川农业大学, 2016.
    [28] 袁施彬,屈元元,张泽钧,等. 圈养大熊猫食谱组成与营养成分分析[J]. 兽类学报,2015,35(1):65−73.
    [29] Sumczynski D, Bubelova Z, Sneyd J, et al. Total phenolics, flavonoids, antioxidant activity, crude fibre and digestibility in non-traditional wheat flakes and muesli[J]. Food Chemistry, 2015, 174: 319−25. doi: 10.1016/j.foodchem.2014.11.065
    [30] 王丹林,郭庆学,王小蓉,等. 海拔对岷山大熊猫主食竹营养成分和氨基酸含量的影响[J]. 生态学报,2017,37(19):6440−7.
    [31] 赵晓虹,刘广平,马泽芳. 竹子中单宁含量的测定及其对大熊猫采食量的影响[J]. 东北林业大学学报,2001(2):67−71. doi: 10.3969/j.issn.1000-5382.2001.02.018
    [32] 王鹏彦,李德生,周应敏,等. 野化培训大熊猫在特定时期采食半枯竹的原因分析[J]. 应用与环境生物学报,2007(3):345−8. doi: 10.3321/j.issn:1006-687X.2007.03.013
    [33] 唐朝臣,罗峰,李欣禹,等. 甜高粱产量及品质相关性状对环境因子反应度分析[J]. 作物学报,2015,41(10):1612−8.
    [34] 韩燕,王丹林,郭庆学,等. 环境胁迫下食源植物的适口性和营养成分变化研究进展[J]. 家畜生态学报,2018,39(4):1−5. doi: 10.3969/j.issn.1673-1182.2018.04.001
  • [1] 秦炜锐, 刘景怡, 宋心强, 付明霞, 潘翰, 程勇, 薛飞, 周材权, 杨彪.  大熊猫国家公园荥经片区大熊猫可食竹生物量模型 . 四川林业科技, 2024, 45(): 1-7. doi: 10.12172/202309070001
    [2] 朱育旗, 夏勇.  海拔和遮阴对缺苞箭竹大小的影响 . 四川林业科技, 2023, 44(4): 97-103. doi: 10.12172/202305220001
    [3] 田春洋, 洪明生, 龙珏洁, 谢建妹.  大熊猫主食竹叶围细菌多样性的季节性变化 . 四川林业科技, 2021, 42(5): 1-7. doi: 10.12172/202107050001
    [4] 白文科, 董鑫, 王光磊, 杨旭煜, 古晓东, 周材权.  人为采笋对大叶筇竹生长及大熊猫采食的影响 . 四川林业科技, 2019, 40(4): 80-83,96. doi: 10.16779/j.cnki.1003-5508.2019.04.016
    [5] 王建芳, 谭志雄, 王元川.  中度干扰对不同光照条件下草地物种多样性的影响 . 四川林业科技, 2019, 40(4): 51-56. doi: 10.16779/j.cnki.1003-5508.2019.04.010
    [6] 李忠, 何胜山, 罗永, 周世强, 孙萌萌, 屈元元, 周小平, 张和民.  大熊猫野化培训的生境选择特性 . 四川林业科技, 2018, 39(6): 20-24,39. doi: 10.16779/j.cnki.1003-5508.2018.06.004
    [7] 陈绪玲, 李裕冬, 杨海琼, 朱英.  峨眉山圈养大熊猫夏季昼夜活动节律 . 四川林业科技, 2017, 38(1): 90-91,102. doi: 10.16779/j.cnki.1003-5508.2017.01.023
    [8] 宋仕贤, 张明春, 张亚辉, 黄炎, 李德生, 周小平, 张和民.  野化培训大熊猫领域行为的初步研究 . 四川林业科技, 2016, 37(3): 112-115. doi: 10.16779/j.cnki.1003-5508.2016.03.023
    [9] 晏志谦.  大熊猫生态游憩产品设计和体验营销策略研究 . 四川林业科技, 2016, 37(2): 53-57. doi: 10.16779/j.cnki.1003-5508.2016.02.010
    [10] 徐飞, 朱英, 张贵权.  峨眉山地区多种水果饲喂大熊猫的观察实验 . 四川林业科技, 2016, 37(1): 70-72. doi: 10.16779/j.cnki.1003-5508.2016.01.016
    [11] 郑睿, 孙承东, 周燕霞, 胡进耀, 余凌帆.  二郎山大熊猫种群数量调查 . 四川林业科技, 2016, 37(1): 118-120. doi: 10.16779/j.cnki.1003-5508.2016.01.027
    [12] 刘明冲, 郭勤, 周靖.  大熊猫“巢域理论”与案例分析 . 四川林业科技, 2016, 37(6): 63-65. doi: 10.16779/j.cnki.1003-5508.2016.06.013
    [13] 周星宇, 吉礼鸿.  大熊猫的真假妊娠试验 . 四川林业科技, 2016, 37(6): 91-93. doi: 10.16779/j.cnki.1003-5508.2016.06.020
    [14] 张明春, 谢浩, 黄炎, 李德生, 黄金燕, 吴代福, 陆良媛, 张和民.  野化培训大熊猫对人工巢穴利用的初步研究 . 四川林业科技, 2015, 36(6): 23-26. doi: 10.16779/j.cnki.1003-5508.2015.06.004
    [15] 张晋东, 李玉杰, 黄金燕.  地震对野生大熊猫影响的研究进展 . 四川林业科技, 2015, 36(4): 111-115. doi: 10.16779/j.cnki.1003-5508.2015.04.024
    [16] 骆宗诗, 赵顺才, 刘小云.  光照和辐射条件与林业生产的关系 . 四川林业科技, 2015, 36(3): 80-84. doi: 10.16779/j.cnki.1003-5508.2015.03.016
    [17] 王撼, 旷培刚, 李悦, 桂林华.  大熊猫黄土梁廊道景观破碎化进程分析 . 四川林业科技, 2014, 35(2): 47-51,84. doi: 10.16779/j.cnki.1003-5508.2014.02.012
    [18] 陈亚, 张贵权, 陈绪玲.  峨眉山地区多种竹笋饲喂大熊猫的观察试验 . 四川林业科技, 2014, 35(3): 51-53. doi: 10.16779/j.cnki.1003-5508.2014.03.011
    [19] 罗永, 黄炎, 刘洋, 李德生, 张和民.  动物听觉通讯与大熊猫保护 . 四川林业科技, 2014, 35(5): 59-64. doi: 10.16779/j.cnki.1003-5508.2014.05.013
    [20] 周世强, 周季秋, 王伟月, 张亚辉, 黄金燕, 李德生, 张和民.  峨眉山和神农架地区森林环境与野生大熊猫栖息地特征的比较 . 四川林业科技, 2013, 34(6): 33-38. doi: 10.16779/j.cnki.1003-5508.2013.06.008
  • 加载中
  • 图(6) / 表(1)
    计量
    • 文章访问数:  491
    • HTML全文浏览量:  161
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-03
    • 网络出版日期:  2020-08-12
    • 刊出日期:  2020-10-12

    光照强度对大熊猫取食缺苞箭竹可食性的影响

    doi: 10.12172/202007030002
      作者简介:

      涂绪中(1962-),男,高级工程师,学士,895479556@qq.com

    摘要: 缺苞箭竹(Fargesia denudata)是岷山山系大熊猫取食率最高的竹种,其可食性研究是评估大熊猫食物营养状况和适口性的关键。为了揭示不同光照强度对缺苞箭竹营养成分和适口性的影响,本文以四川王朗国家级自然保护区自然生长于林下、林缘和林窗光环境下的缺苞箭竹为研究对象,对其笋、茎、叶中的可食性成分进行分析。结果表明:(1)林下低光照强度环境有利于缺苞箭竹笋中总酚的积累,而不利于粗蛋白、粗脂肪、氨基酸总量的积累;有利于茎中粗蛋白、粗脂肪和氨基酸总量的积累,而不利于纤维素的积累;有利于叶中氨基酸总量、纤维素的积累,而不利于粗蛋白、单宁的积累。(2)林窗中光照强度环境有利于缺苞箭竹笋中粗脂肪、氨基酸总量的积累,不利于茎和叶中粗蛋白的积累,也不利于叶中纤维素、总酚的积累。(3)林窗高光照强度环境有利于缺苞箭竹笋中粗蛋白的积累,而不利于氨基酸总量、总酚的积累;有利于茎中纤维素的积累,而不利于粗蛋白、粗脂肪、氨基酸总量的积累,有利于叶中粗蛋白、单宁、总酚的积累,而不利于氨基酸总量、纤维素的积累。不同光照强度对缺苞箭竹笋、茎、叶的可食性成分含量的影响有差异,为丰富大熊猫取食竹种的可食性研究内容,建议在大熊猫可食竹的可食性研究中应注重不同竹种、不同器官、不同微环境的对比研究。

    English Abstract

    • 野生大熊猫(Ailuropoda melanoleuca)的食性十分狭窄,几乎只吃竹子[1, 2],关于大熊猫取食竹种的可食性一直是其保护和研究的重点内容之一。大熊猫取食竹种的可食性包括营养成分和单宁、总酚等次级代谢产物[3],由于单宁、总酚具有涩味、苦味[4, 5]和毒性[6],并会与膳食蛋白结合形成一种难以消化的复合体,并与消化酶结合使之失去活性[7],因此大熊猫取食竹种中单宁、总酚的含量已成为大熊猫取食竹种可食性研究的重要内容。

      光照是调控植物生长发育的关键环境因子,影响着植物的生长发育、光合作用、光形态建成等[8],并会直接影响着植物营养成分的含量[9]及植物的次级代谢产物等[8]。研究显示遮阴会降低郁南假花生(Desmodium heterocarpum)中粗蛋白、纤维素的含量,而适当提高光照能提高粗蛋白和纤维素的含量[10],且光照的增加会显著提高凤眼莲(Eichhornia crassipes)中蛋白质的含量[11],糯玉米籽粒中的粗蛋白和氨基酸含量随着光强的减弱而增加,但其中的粗脂肪会随着光照强度的减弱而降低[12],也有研究显示长时间光照有利于增加饲料油菜中粗蛋白、粗脂肪、粗纤维等营养物质的含量[13],并有研究显示弱光照处理条件下绿芦笋(Asparagus offinalis)合成的纤维素低于比黑暗处理条件[14]。因此,光照强度对植物中营养成分含量具有一定的影响。在单宁含量上,空地中的白屈菜(Chelidonium majus)低于遮阴环境下,且单宁含量表现为叶片>种>根>茎[15]。在森林和非洲热带雨林中,植物中的酚含量与植物受到的光照强度呈正相关[16],处于林窗环境的光叶山矾(Symplocos lancifolia)、四川山矾(S. setchuensis)、四川毛蕊茶(Camellia lawii)和细枝柃(Eurya loquaiana)个体叶片中单位质量和面积的总酚含量低于林下个体[17],而曼陀罗(Datura stramonium) 及其变种紫花曼陀罗(D. stramonium var. tatual)中的总酚含量与光照强度呈正相关[18]。因此,光照强度也会影响植物中单宁、总酚的含量。虽然当前以大熊猫取食竹种的可食性研究已层出不穷,但鲜有研究涉及不同光照强度环境下取食竹种的可食性研究,不利于取食竹种的可食性评价,有必要对其进行补充和完善。

      缺苞箭竹(Fargesia denudata)是岷山山系野生大熊猫最重要的食物来源[2, 19]。在大熊猫栖息地破碎化程度不断增加且面积不断减小[20]的情况下,作为食物资源的缺苞箭竹数量和质量是大熊猫觅食行为和栖息地利用的主要驱动力[21],也是岷山山系野生大熊猫保护时需重点关注的一环。但目前对不同光照强度下缺苞箭竹可食性的研究仍然不足,不利于从光照强度影响下的可食性角度认识缺苞箭竹的质量,因此以缺苞箭竹为研究对象,比较天然林下、林缘和林窗内3种不同自然光照强度环境下的缺苞箭竹笋、茎、叶的营养成分和次级代谢产物含量,明确不同光照强度环境下的可食性成分差异,以期对此方面的内容进行补充和完善,为大熊猫取食竹种的可食性评价提供科学依据。

      • 四川王朗国家级自然保护区(103°55′—104°10′E, 32°49′—33°02′N)属于岷山山系,位于四川省平武县境内,海拔为2300~4980 m,总面积约325 km2。研究区地处青藏高原和四川盆地过渡地带,属半湿润气候,11月至4月为干季,5月到10月为湿季,年均温2.5~2.9 ℃,7月平均气温12.7 ℃,1月平均气温–6.1 ℃。年降水量859.9 mm,集中于5—8月。区内植物垂直带谱明显,海拔2 300~2 600 m为针阔混交林或落叶阔叶林,2 600~3 500 m为紫果云杉-方枝柏林和岷江冷杉林,3 500~4 400 m为亚高山灌丛草甸,4 400~4 900 m为高山流石滩植被,4 900 m以上为高山荒漠带。

      • 2018年9月,在四川王朗国家级自然保护区内海拔约2 800 m区域处选择坡度、坡向、土壤类型等基本一致的区域作为样地设置区,将林下(全光照的10%~15%)、林缘(全光照的20%~25%)和天然林窗(全光照的40%~45%)划分为低光照、中光照和高光照。在不同光照强度下各设置2个100 m2的样地(见表1),样地间距不小于50 m。在每个样地随机设置3个1 m×1 m的样方,样方内的竹笋和1年生克隆分株沿地表剪取,取笋、茎、叶鲜样各1 kg作为样品,并将样品于105 ℃烘箱中杀青30 min后于70 ℃烘至恒重,然后研磨、过筛、装袋保存,后期测定其笋、茎和叶中的粗蛋白、粗脂肪、氨基酸总量、纤维素、单宁和总酚含量。

        表 1  样地基本信息

        Table 1.  Basic information of the sample plots

        样地编号海拔坡度/°坡向样地环境优势种光照强度
        1281018西南林下岷江冷杉低光照
        2280520西南林下岷江冷杉低光照
        3279019西南林缘岷江冷杉中光照
        4280020西南林缘岷江冷杉中光照
        5279522西南林窗岷江冷杉高光照
        6281019西南林窗岷江冷杉高光照
      • 粗蛋白采用凯氏定氮法[22],粗脂肪采用乙醚浸提法[22],氨基酸总量采用茚三酮比色法[23],纤维素采用应用凡氏法(Van Soest)[24],单宁采用柠檬酸铁铵法[25],总酚采用福林试剂法[26]

      • 本文运用IBM SPSS Statistics 22软件分析数据,分别对不同光照强度环境下的缺苞箭竹笋、茎、叶可食性测定指标作单因素方差分析(One-way ANOVA),处理间的差异采用Tukey检验。所有数据均用平均值±标准误表示,显著性水平为0.05。使用Origin 8.0 软件绘制统计图。

      • 在同一光照强度下,缺苞箭竹的笋、茎、叶中粗蛋白含量差异显著(P < 0.05),表现为叶>茎>笋,但生长于林下环境的缺苞箭竹笋和茎的粗蛋白含量无显著差异(P > 0.05, 见图1)。在笋中,粗蛋白含量表现为林窗>林缘>林下,且仅林窗和林下存在显著性含量差异(P < 0.05);在茎中,粗蛋白含量表现为林下>林缘>林窗,且林下的含量显著高于林缘和林窗(P < 0.05),而林缘和林窗并无显著性含量差异(P > 0.05);在叶中,粗蛋白含量表现为林窗>林缘>林下,且林窗的含量显著高于林下和林缘(P < 0.05),而林下和林缘并无显著性含量差异(P > 0.05)。缺苞箭竹叶具有最高的粗蛋白含量,而茎中含量最低;且其生长于林窗环境的笋和叶、林下环境的茎中粗蛋白含量较高,而林下环境的笋和叶、林缘环境的茎和叶、林窗环境的茎中粗蛋白含量较低。

        图  1  缺苞箭竹的笋、茎、叶中粗蛋白含量及其光照强度效应

        Figure 1.  Crude protein content in shoots, stems and leaves of Fargesia denudata and its light intensity effect

      • 在同一光照强度下,缺苞箭竹的叶中粗脂肪含量显著高于笋、茎的含量(P < 0.05),且仅生长于林窗环境下的缺苞箭竹笋中粗脂肪含量显著高于茎(P < 0.05, 见图2)。在笋中,粗脂肪含量表现为林缘>林窗>林下,且仅林下和林缘的含量存在显著性差异(P < 0.05);在茎中,粗脂肪含量表现为林下>林缘>林窗,且存在显著性含量差异(P < 0.05);在叶中,粗脂肪含量表现为林下>林窗>林缘,但无显著性含量差异(P > 0.05)。说明缺苞箭竹的叶中具有最高的粗脂肪含量;且其生长于林缘环境的笋、林下环境的茎中粗脂肪含量较高,而林下环境的笋、林窗环境的茎中粗脂肪含量较低。

        图  2  缺苞箭竹的笋、茎、叶中粗脂肪含量及其光照强度效应

        Figure 2.  Crude fat content in the shoots, stems and leaves of Fargesia denudata and its light intensity effect

      • 在同一光照强度下,缺苞箭竹的氨基酸总量含量表现为笋>叶>茎,且笋、茎、叶三者在林缘和林窗中的含量存在显著性差异(P < 0.05),而林下环境笋和叶的含量显著高于茎(P < 0.05, 见图3)。在笋中,氨基酸总量含量表现为林缘>林下>林窗,且林缘的含量显著高于林下和林窗(P < 0.05);在茎和叶中,氨基酸总量含量均表现为林下>林缘>林窗,且林下与林窗存在显著性含量差异(P < 0.05)。说明缺苞箭竹的笋中氨基酸总量含量最高,茎中含量最低;且其生长于林缘的笋、林下环境的茎和叶中氨基酸总量含量较高,而林下环境的笋以及林窗的笋、茎和叶中氨基酸总量含量较低。

        图  3  缺苞箭竹的笋、茎、叶中氨基酸总量含量及其光照强度环境效应

        Figure 3.  Total amino acids content in shoots, stems and leaves of Fargesia denudata and its light intensity effect

      • 在同一光照强度下,缺苞箭竹的纤维素含量表现为笋>茎>叶,且林下环境的笋、茎、叶存在显著性含量差异(P < 0.05),林缘和林窗环境的笋、茎中纤维素含量显著高于叶的含量(P < 0.05,见图4)。在笋中,纤维素含量表现为林下>林窗>林缘,但三者间无显著性含量差异(P > 0.05);在茎中,表现为林窗>林缘>林下,且三者间存在显著性含量差异(P < 0.05);在叶中,表现为林下>林缘>林窗,且林下的含量显著高于林缘和林窗(P < 0.05)。说明缺苞箭竹的笋中纤维素含量高,叶中纤维素含量最低;且其生长于林窗环境的茎、林下环境的叶中纤维素含量较高,而林下环境的茎、林缘和林窗环境的叶中纤维素含量较低。

        图  4  缺苞箭竹的笋、茎、叶中纤维素含量及其光照强度环境效应

        Figure 4.  Cellulose content in shoots, stems and leaves of Fargesia denudata and its light intensity effect

      • 在同一光照强度下,缺苞箭竹的笋、茎、叶中单宁含量差异显著(P < 0.05),表现为叶>茎>笋。在笋中,单宁含量表现为林下>林缘>林窗,但三者间在含量上无显著性差异(P > 0.05, 见图5);在茎中,表现为林缘>林下>林窗,而三者间在含量上亦无显著性差异(P > 0.05);在叶中,表现为林窗>林缘>林下,且林下和林缘存在显著性含量差异(P < 0.05)。说明缺苞箭竹的叶中单宁含量最高,笋中单宁含量最低;且其生长于林窗环境的叶中具有较高的单宁含量,而林下环境的叶具有较低含量的单宁含量。

        图  5  缺苞箭竹的笋、茎、叶中单宁含量及其光照强度环境效应

        Figure 5.  Tannin content in shoots, stems and leaves of Fargesia denudata and its light intensity effect

      • 在同一光照强度下,缺苞箭竹的总酚含量表现为叶>茎>笋,且笋、茎、叶三者仅在林缘环境中的含量存在显著性差异(P < 0.05),在林下和林窗环境下叶的总酚含量显著高于笋、茎的含量(P < 0.05, 见图6)。在笋中,总酚含量表现为林下>林缘>林窗,且仅林下与林窗有显著性含量差异(P < 0.05);在茎中,亦表现为林下>林缘>林窗,但三者间在含量上无显著性差异(P > 0.05);在叶中,表现为林窗>林下>林缘,且仅林下与林窗有显著性含量差异(P < 0.05)。说明缺苞箭竹的叶中总酚含量最高,笋中总酚含量最低;且其生长于林下环境的笋、林窗环境的叶具有较高的总酚含量,而林窗环境的笋、林缘环境的叶具有较低的总酚含量。

        图  6  缺苞箭竹的笋、茎、叶中总酚含量及其光照强度环境效应

        Figure 6.  Total phenols content in shoots, stems and leaves of Fargesia denudata and its light intensity effect

      • 研究结果表明,不同光照强度下缺苞箭竹的笋、茎、叶中可食性成分表现出复杂性和差异性,即低光照强度环境有利于缺苞箭竹笋中总酚的积累,而不利于粗蛋白、粗脂肪、氨基酸总量的积累,有利于茎中粗蛋白、粗脂肪和氨基酸总量的积累,而不利于纤维素的积累,有利于叶中氨基酸总量、纤维素的积累,而不利于粗蛋白、单宁的积累;中光照强度环境有利于笋中粗脂肪、氨基酸总量的积累,不利于茎和叶中粗蛋白的积累,也不利于叶中纤维素、总酚的积累;高光照强度环境有利于笋中粗蛋白的积累,而不利于氨基酸总量、总酚的积累,有利于茎中纤维素的积累,而不利于粗蛋白、粗脂肪、氨基酸总量的积累,有利于叶中粗蛋白、单宁、总酚的积累,而不利于氨基酸总量、纤维素的积累。

        经比较发现,不同光照强度下缺苞箭竹的笋、茎、叶中可食性成分的含量与冯斌[27]在该区域海拔2 776 m的研究结果存在差异,如其林下环境的笋中粗蛋白、总脂肪含量最高,而本研究中对应光照强度环境下的笋中两成分含量较低。由于两研究的采样季节和海拔存在差异,且其设置了不同的海拔梯度,因此采样时间和海拔差异可能是引起差异的主要原因,为进一步弄清出现差异的原因,需对此做进一步的研究。

        由于大熊猫摄食与粗蛋白、粗脂肪及磷含量呈正相关关系[28],与粗纤维含量呈负相关关系[28],且粗纤维由纤维素和木质素组成[29],故大熊猫喜欢摄食纤维素低的取食竹种部位。氨基酸作为营养成分的标志,其含量越高越受动物喜爱[30],大熊猫喜食单宁含量低的部位[31, 32],且单宁是植物多酚[5],故大熊猫喜食单宁、总酚含量低的竹种部位。而在本研究中,不同光照强度环境下的缺苞箭竹的笋均具有高含量的氨基酸总量、纤维素和较低含量的单宁、总酚,茎均具有较低含量的粗蛋白、氨基酸总量,叶均具有高含量的粗蛋白、粗脂肪、单宁、总酚和较低含量的纤维素,上述这种缺苞箭竹笋、茎、叶具有的可食性特点可能是大熊猫喜食笋、叶的主要原因。

        缺苞箭竹粗蛋白和粗脂肪含量均表现为叶>笋>茎,这与冯斌[27]的研究结果基本一致,但林下环境的缺苞箭竹茎中粗脂肪含量高于笋,而表现为笋>茎>叶的纤维素含量与冯斌[27]的研究结果有差异(茎>笋>叶),单宁和总酚含量表现为叶>茎>笋,其与冯斌[27]的研究结果完全一致,说明同一地区的相似研究在结果上存一定的差异。研究显示环境条件、养分相互作用等会影响着植物中的成分含量[33, 34],同一地区的相似研究的异同可能与采样时间、微环境条件、土壤养分相互作用等因素有关,为进一步弄清出现差异性的原因,需对上述方面做进一步研究。

    参考文献 (34)

    目录

      /

      返回文章
      返回