[1] He T, Lamont BB, Pausas JG. Fire as a key driver of Earth's biodiversity[J]. Biological Reviews., 2019, 94(6): 1983−2010. doi: 10.1111/brv.12544
[2] Archibald S, Lehmann C E R, Belcher C M, et al. Biological and geophysical feedbacks with fire in the Earth system[J]. Environmental Research Letters, 2018, 13(3): 033003. doi: 10.1088/1748-9326/aa9ead
[3] Miller R G, Tangney R, Enright N J, et al. Mechanisms of fire seasonality effects on plant populations[J]. Trends in ecology & evolution, 2019, 34(12): 1104−1117.
[4] Bardgett R D, Bowman W D, Kaufmann R, et al. A temporal approach to linking aboveground and belowground ecology[J]. Trends in ecology & evolution, 2005, 20(11): 634−641.
[5] Mikita-Barbato R A, Kelly J J, Tate III R L. Wildfire effects on the properties and microbial community structure of organic horizon soils in the New Jersey Pinelands[J]. Soil Biology and Biochemistry, 2015, 86: 67−76. doi: 10.1016/j.soilbio.2015.03.021
[6] Harris J A. Measurements of the soil microbial community for estimating the success of restoration[J]. European Journal of Soil Science, 2003, 54(4): 801−808. doi: 10.1046/j.1351-0754.2003.0559.x
[7] Peay K G, Kennedy P G, Talbot J M. Dimensions of biodiversity in the Earth mycobiome[J]. Nature Reviews Microbiology, 2016, 14(7): 434−447. doi: 10.1038/nrmicro.2016.59
[8] Wang X, Li G H, Zou C G, et al. Bacteria can mobilize nematode-trapping fungi to kill nematodes[J]. Nature communications, 2014, 5(1): 1−9.
[9] 周庆,欧晓昆,张志明. 地下生态系统对生态恢复的影响[J]. 生态学杂志.,2007(09):1445−1453.
[10] 佘容,杨晓燕,肖文. 火干扰下的森林土壤微生物研究现状分析[J]. 四川林业科技.,2021,42(3):94−101.
[11] 陶玉柱,邸雪颖. 火对森林土壤微生物群落的干扰作用及其机制研究进展[J]. 林业科学.,2013,49(11):146−157.
[12]

Dove N C, Hart S C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis[J]. Fire Ecology, 2017, 13(2): 37−65. doi: 10.4996/fireecology.130237746
[13]

Beyers J L, Neary D G, Ryan K C, et al. Wildland fire in ecosystems: effects of fire on soil and water[M]. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2005.
[14]

Oono R. A confidence interval analysis of sampling effort, sequencing depth, and taxonomic resolution of fungal community ecology in the era of high-throughput sequencing[J]. PloS one, 2017, 12(12): e0189796. doi: 10.1371/journal.pone.0189796
[15] 杨成德,龙瑞军,陈秀蓉,等. 土壤微生物功能群及其研究进展[J]. 土壤通报,2008(02):421−425. doi: 10.3321/j.issn:0564-3945.2008.02.043
[16]

Zhang K Q, Hyde K D. Nematode-trapping fungi[M]. Dordrecht: Springer, 2014.
[17] 张克勤. 中国真菌志. 第三十三卷, 节丛孢及相关属[M]. 科学出版社, 2006.
[18]

Zhang F, Zhou X J, Monkai J, et al. Two new species of nematode-trapping fungi (Dactylellina, Orbiliaceae) from burned forest in Yunnan, China[J]. Phytotaxa, 2020, 452(1): 65−74. doi: 10.11646/phytotaxa.452.1.6
[19]

Liu S, Su H, Su X, et al. Arthrobotrys xiangyunensis, a novel nematode-trapping taxon from a hot-spring in Yunnan Province, China[J]. Phytotaxa, 2014, 174(2): 89−96. doi: 10.11646/phytotaxa.174.2.3
[20]

Zhang Y, Qiao M, Baral H O, et al. Morphological and molecular characterization of Orbilia pseudopolybrocha and O. tonghaiensis, two new species of Orbiliaceae from China[J]. International journal of systematic and evolutionary microbiology, 2020, 70(4): 2664−2676. doi: 10.1099/ijsem.0.004088
[21]

Quijada L, Baral H O, Beltrán-Tejera E, et al. Orbilia jesu-laurae (Ascomycota, Orbiliomycetes), a new species of neotropical nematode-trapping fungus from Puerto Rico, supported by morphology and molecular phylogenetics[J]. Willdenowia, 2020, 50(2): 241−251. doi: 10.3372/wi.50.50210
[22]

Zhang F, Liu S R, Zhou X J, et al. Fusarium xiangyunensis (Nectriaceae), a remarkable new species of nematophagous fungi from Yunnan, China[J]. Phytotaxa, 2020, 450(3): 273−284. doi: 10.11646/phytotaxa.450.3.3
[23] 范喜杰. 捕食线虫真菌毒力影响因素研究[D]. 大理大学, 2018.
[24] 张君成. 手工挑取真菌单孢子显微操作技巧[J]. 植物保护,2008(02):98−100. doi: 10.3969/j.issn.0529-1542.2008.02.026
[25]

Jeewon R, Liew E, HyDe K D. Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters[J]. Molecular Phylogenetics & Evolution, 2002, 25(3): 378−392.
[26]

White T J, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[J]. PCR protocols:a guide to methods and applications, 1990, 18(1): 315−322.
[27]

Jousset A, Bienhold C, Chatzinotas A, et al. Where less may be more: how the rare biosphere pulls ecosystems strings[J]. The ISME journal, 2017, 11(4): 853−862. doi: 10.1038/ismej.2016.174
[28] 周新娟. 火烧对捕食线虫真菌群落结构的影响研究[D]. 大理大学, 2019.
[29]

Bárcenas-Moreno G, Bååth E. Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities[J]. Soil Biology and Biochemistry, 2009, 41(12): 2517−2526. doi: 10.1016/j.soilbio.2009.09.010
[30] 白爱芹,傅伯杰,曲来叶,等. 大兴安岭火烧迹地恢复初期土壤微生物群落特征[J]. 生态学报,2012,32(15):4762−4771.
[31] 周新娟,邓巍,滕曼,等. 火烧对苍山捕食线虫真菌群落结构的影响[J]. 大理大学学报,2018,3(12):82−86. doi: 10.3969/j.issn.2096-2266.2018.12.018
[32]

Rong S, Xin-Juan Z, Hai-Qing W, et al. Succession of soil nematode-trapping fungi following fire disturbance in forest[J]. Journal of Forest Research, 2020, 25(6): 433−438. doi: 10.1080/13416979.2020.1793465