[1] Escribano P, Viruel M A, Hormaza J I. Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species[J]. Annals of Applied Biology, 2008, 153(1): 25−32. doi: 10.1111/j.1744-7348.2008.00232.x
[2] 杨汉波,张蕊,王帮顺,等. 基于 SSR 标记的木荷核心种质构建[J]. 林业科学,2017,53(6):37−46. doi: 10.11707/j.1001-7488.20170605
[3]

Frankel O H. Plant genetic resources today: a critical appraisal[J]. Crop genetic resources: conservation and evaluation, 1984: 241−256.
[4] 吴涛,陈少瑜,肖良俊,等. 基于 SSR 标记的云南省核桃种质资源遗传多样性及核心种质构建[J]. 植物遗传资源学报,2020,21(3):767−774.
[5] 毛秀红,朱士利,李善文,等. 基于荧光 SSR 标记的毛白杨核心种质构建[J]. 北京林业大学学报,2020,42(7):40−47. doi: 10.12171/j.1000-1522.20190413
[6]

Yang H, Liu Q, Zhang R, et al. Genetic diversity of second generation-parental germplasm of masson pine revealed by SSR markers and establishment of a core germplasm collection[J]. Scandinavian Journal of Forest Research, 2021, 36(7-8): 524−531. doi: 10.1080/02827581.2021.1981432
[7]

Sun R X, Lin F R, Huang P, et al. Moderate genetic diversity and genetic differentiation in the relict tree Liquidambar formosana Hance revealed by genic simple sequence repeat markers. Frontiers in Plant Science, 2016, 7: 1411−1421.
[8]

Zhong Y, Wang Y, Sun Z, et al. Genetic diversity of a natural population of Akebia trifoliata (Thunb. ) Koidz and extraction of a core collection using simple sequence repeat markers[J]. Frontiers in Genetics, 2021: 1571.
[9]

Revord R S, Lovell S, Brown P, et al. Using genotyping-by-sequencing derived SNPs to examine the genetic and identify a core set of Corylus americana germplasm. Tree Genetic & Genomes, 2020, 16: 65.
[10]

Yang H, An W, Gu Y, et al. Integrative Metabolomic and Transcriptomic Analysis Reveals the Mechanism of Specific Color Formation in <italic>Phoebe zhennan</italic> Heartwood[J]. International Journal of Molecular Sciences, 2022, 23(21): 13569. doi: 10.3390/ijms232113569
[11]

Yang H, An W, Wang F, et al. Integrated Transcriptomic, Metabolomic, and Physiological Analyses Reveal New Insights into Fragrance Formation in the Heartwood of Phoebe hui[J]. International Journal of Molecular Sciences, 2022, 23(22): 14044. doi: 10.3390/ijms232214044
[12]

Lowe A J, Boshier D, Ward M, et al. Genetic resource impacts of habitat loss and degradation, reconciling empirical evidence and predicted theory for neotropical trees. Heredity, 2005, 95 (4): 255−273.
[13]

Zhu Y, An W, Peng J, et al. Genetic Diversity of Nanmu (<italic>Phoebe zhennan</italic> S. Lee. et FN Wei) Breeding Population and Extraction of Core Collection Using nSSR, cpSSR and Phenotypic Markers[J]. Forests, 2022, 13(8): 1320. doi: 10.3390/f13081320
[14]

Schoen D J, Brown A H D. Maximising genetic diversity in core collections of wild relatives of crop species[J]. 1995.
[15]

Cipriani G, Spadotto A, Jurman I, et al. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L. ) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin[J]. Theoretical and Applied Genetics, 2010, 121: 1569−1585. doi: 10.1007/s00122-010-1411-9
[16] 张春雨,陈学森,张艳敏,等. 采用分子标记构建新疆野苹果核心种质的方法[J]. 中国农业科学,2009,42(2):597−604. doi: 10.3864/j.issn.0578-1752.2009.02.026
[17]

Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128−2129. doi: 10.1093/bioinformatics/bti282
[18]

Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Molecular ecology, 2007, 16(5): 1099−1106. doi: 10.1111/j.1365-294X.2007.03089.x
[19]

Peakall R O D, Smouse P E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research[J]. Molecular ecology notes, 2006, 6(1): 288−295. doi: 10.1111/j.1471-8286.2005.01155.x
[20] 王建成,胡晋,黄歆贤,等. 植物遗传资源核心种质新概念与应用进展[J]. 种子,2008,27(5):47−50. doi: 10.3969/j.issn.1001-4705.2008.05.014
[21] 姜俊烨,杨涛,王芳,等. 国内外蚕豆核心种质 SSR 遗传多样性对比及微核心种质构建[J]. 作物学报,2014,40(7):1311−1319.
[22] 宗绪晓,关建平,王述民,等. 国外栽培豌豆遗传多样性分析及核心种质构建[J]. 作物学报,2008,34(9):1518−1528. doi: 10.3321/j.issn:0496-3490.2008.09.005
[23] 王红霞,赵书岗,高仪,等. 基于 AFLP 分子标记的核桃核心种质的构建[J]. 中国农业科学,2013,46(23):4985−4995. doi: 10.3864/j.issn.0578-1752.2013.23.015
[24] 张君玉. 利用 SSR 和 SRAP 分子标记构建葡萄核心种质[J]. 洛阳: 河南科技大学硕士学位论文, 2012.
[25] 刘新龙,刘洪博,马丽,等. 利用分子标记数据逐步聚类取样构建甘蔗杂交品种核心种质库[J]. 作物学报,2014,40(11):1885−1894.
[26]

Liang W, Dondini L, De Franceschi P, et al. Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm[J]. Plant Molecular Biology Reporter, 2015, 33: 458−473. doi: 10.1007/s11105-014-0754-9
[27] 刘勇, 孙中海, 刘德春, 等. 利用分子标记技术选择柚类核心种质资源. 果树学报, 2006, 23(3), 339−345.
[28] 曾宪君, 李丹, 胡彦鹏, 等. 欧洲黑杨优质核心种质库的初步构建. 林业科学, 2014, 50(9), 51−58.
[29] 刘娟,廖康,曼苏尔,等. 利用 ISSR 分子标记构建南疆杏种质资源核心种质[J]. 果树学报,2015(3):374−384.
[30] 唐源江,曹雯静,吴坤林. 基于 SRAP 标记的国兰种质资源遗传多样性分析及分子身份证构建[J]. 中国农业科学,2015,48(9):1795−1806. doi: 10.3864/j.issn.0578-1752.2015.09.13
[31] 郭娟, 樊军锋, 梁军, 等. 利用 SRAP 标记鉴别美洲黑杨及指纹图谱构建. 西北林学院学报, 2014, 29(2), 98-102. 沈敬理等(2015)
[32] 何旭东, 郑纪伟, 孙冲, 等. 33 个杨柳品种指纹图谱构建. 南京林业大学学报 (自然科学版), 2021, 45(2), 35.