[1] Benjamin B ,Cyrille V ,Patrick L B , et al.Venation networks and the origin of the leaf economics spectrum.[J].Ecology letters,2011,14(2):91−100.
[2] Alex F ,P J M ,Etienne R .Corner's rules pass the test of time: little effect of phenology on leaf-shoot and other scaling relationships.[J].Annals of botany,2020,126(7):1129−1139.
[3] Baird AS, Taylor SH, Pasquet-Kok J, et al. Developmental and biophysical determinants of grass leaf size worldwide[J]. Nature, 2021, 592(7853): 242−247. doi: 10.1038/s41586-021-03370-0
[4] Poorter L, Rozendaal DM. Leaf size and leaf display of thirty-eight tropical tree species[J]. Oecologia., 2008, 158(1): 35−46. doi: 10.1007/s00442-008-1131-x
[5] Niinemets U, Portsmuth A, Tobias M. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants[J]. New Phytologist, 2006, 171(1): 91−104. doi: 10.1111/j.1469-8137.2006.01741.x
[6] Xiang S , Wu N , Sun S . Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis[J]. Trees, 2009, 23(3): 637−647.
[7] Li G , Yang D , Sun S . Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude[J]. Functional Ecology, 2010, 22(4): 557−564.
[8] Price CA, Weitz JS. Allometric covariation: a hallmark behavior of plants and leaves[J]. New Phytologist, 2012, 193(4): 882−889. doi: 10.1111/j.1469-8137.2011.04022.x
[9] 祝介东,孟婷婷,倪健,等. 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异[J]. 植物生态学报,2011,35(07):687−698.
[10]

Selaya, NG, Oomen, et al. Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession[J]. Journal of Ecology, 2008, 96(6): 1211−1221. doi: 10.1111/j.1365-2745.2008.01441.x
[11]

Kenzo T, Inoue Y, Yoshimura M, et al. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees[J]. Oecologia, 2015, 177(1): 191−202.
[12]

Yan ER, Wang XH, Chang SX, et al. Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests[J]. Tree Physiology, 2013, 33(6): 609−617. doi: 10.1093/treephys/tpt042
[13]

Lusk H C ,Reich B P ,Montgomery A R , et al. Why are evergreen leaves so contrary about shade?[J]. Trends in Ecology Evolution, 2008, 23(6): 299−303.
[14]

Lusk CH, Reich PB, Montgomery RA, et al. Why are evergreen leaves so contrary about shade? [J]Trends Ecology & Evolution. 2008, 23(6): 299−303.
[15]

Ishii H, Hamada Y, Utsugi H. Variation in light-intercepting area and photosynthetic rate of sun and shade shoots of two Picea species in relation to the angle of incoming light[J]. Tree Physiology, 2012, 32(10): 1227−1236. doi: 10.1093/treephys/tps090
[16]

Ü. NIINEMETS,A. PORTSMUTH,M. TOBIAS.Leaf Shape and Venation Pattern Alter the Support Investments within Leaf Lamina in Temperate Species: A Neglected Source of Leaf Physiological Differentiation?[J].Functional Ecology,2007,21(1):28−40.
[17]

Huang, YX, Lechowicz, Martin, J, et al. The underlying basis for the trade-off between leaf size and leafing intensity[J]. Functional Ecology, 2016, 30(2): 199−205. doi: 10.1111/1365-2435.12491
[18] 张海燕,陈立明. 东北“三大硬阔”叶片和叶轴质量分配比较[J]. 东北林业大学学报,2016,44(06):33−35+91. doi: 10.3969/j.issn.1000-5382.2016.06.009
[19] 申芳芳,张万里,李德志. 植物叶序研究的源流与发展[J]. 东北林业大学学报,2006(05):83−86. doi: 10.3969/j.issn.1000-5382.2006.05.031
[20]

Efroni I, Eshed Y, Lifschitz E. Morphogenesis of simple and compound leaves: a critical review[J]. Plant Cell, 2010, 22(4): 1019−1032. doi: 10.1105/tpc.109.073601
[21]

Song J, Yang D, Niu CY, et al. Correlation between leaf size and hydraulic architecture in five compound-leaved tree species of a temperate forest in NE China[J]. Forest ecology and management, 2018, 418: 63−72. doi: 10.1016/j.foreco.2017.08.005
[22]

Giulini A, Wang J, Jackson D. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1[J]. Nature, 2004, 430(7003): 1031−1034. doi: 10.1038/nature02778
[23]

Reinhardt D, Pesce ER, Stieger P, et al. Regulation of phyllotaxis by polar auxin transport[J]. Nature, 2003, 426(6964): 255−260. doi: 10.1038/nature02081
[24]

Givnish, T. J. Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints[J]. New Phytologist, 2008, 106: 131−160.
[25]

Niinemets, Ü. , Kull, K. Leaf weight per area and leaf size of 85 Estonian woody species in relation to shade tolerance and light availability[J]. Forest Ecology and Management, 1994, 70(1-3): 1−10. doi: 10.1016/0378-1127(94)90070-1
[26]

Roth-Nebelsick, A. Evolution and function of leaf venation architecture: A review[J]. Annals of Botany, 2001, 87(5): 553−566. doi: 10.1006/anbo.2001.1391
[27]

Givnish, T. J. Leaf and canopy adaptations in tropical forests[J]. Physiological Ecology of Plants of the Wet Tropics, 1984: 51−84.
[28]

McDonald, P. G. , Fonseca, C. R. , Overton, J. M. , et al. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades?[J]Functional Ecology, 2003, 17(1): 50−57.
[29] 杨冬梅,章佳佳,周丹,等. 木本植物茎叶功能性状及其关系随环境变化的研究进展[J]. 生态学杂志,2012,31(03):702−713.
[30]

Bragg, J. G. , Westoby, M. Leaf size and foraging for light in a sclerophyll woodland[J]. Functional Ecology, 2002, 16(5): 633−639.
[31]

Milla R, Reich PB. The scaling of leaf area and mass: The cost of light interception increases with leaf size[J]. Proceedings of the Royal Society B:Biological Sciences, 2007, 274: 2109−2115. doi: 10.1098/rspb.2007.0417
[32]

Niinemets Ü, Portsmuth A, Tobias M. Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: A neglected source of leaf physiological differentiation?[J]. Functional Ecology, 2007, 21: 28−40. doi: 10.1111/j.1365-2435.2006.01221.x
[33]

Westoby M, Wright IJ. The leaf size-twig size spectrum and its relationship to other important spectra of variation among species[J]. Oecologia, 2003, 135: 621−628. doi: 10.1007/s00442-003-1231-6
[34]

Sun SC, Jin DM, Shi PL. The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: An invariant allometric scaling relationship[J]. Annals of Botany, 2006, 97: 97−107. doi: 10.1093/aob/mcj004
[35]

Yang DM, Niklas KJ, Xiang S, et al. Size-dependent leaf area ratio in plant twigs: Implication for leaf size optimization[J]. Annals of Botany, 2010, 105: 71−77. doi: 10.1093/aob/mcp262
[36]

Niinemets, Ü. , Keenan, T. F. , Hallik, L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types[J]. New Phytologist, 2015, 205(3): 973−993.
[37]

Weerasinghe LK, Creek D, Crous KY, et al. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland[J]. Tree Physiologist, 2014, 34(6): 564−584. doi: 10.1093/treephys/tpu016
[38]

Coble AP, VanderWall B, Mau A, et al. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest[J]. Tree Physiologist, 2016, 36(9): 1077−1091. doi: 10.1093/treephys/tpw043
[39]

Dong, N. , Prentice, I. C. , Wright, I. J. , et al. Components of leaf-trait variation along environmental gradients[J]. New Phytologist,2020, 228: 82−94.
[40]

Gspaltl M, Bauerle W, Binkley D, et al. Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes[J]. Forest Ecology and Management., 2013, 15(288): 49−59.
[41]

Sack L, Scoffoni C, Mcknown AD, et al. Deveolpmental-based scaling of leaf venation architecture explains global ecological patterns[J]. Nature Communications, 2012, 3(1): 1−10.
[42]

Hudson JMG, Henry GHR, Cornwell W K. Taller and larger: shifts in Arctic tundra leaf trait after 16 years of experimental warming[J]. Global Change Biology, 2011, 7(2): 1013−1021.
[43] 何芸雨,郭水良,王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报,2019,43(12):1021−1035. doi: 10.17521/cjpe.2019.0122
[44]

Niklas K J , Cobb E D , Niinemets U ,et al."Diminishing returns" in the scaling of functional leaf traits across and within species groups[J].Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21):8891−8896.
[45]

Apgaua, D. M. G. , Ishida, F. Y. , Tng, D. Y. P. , et al. Functional traits and water transport strategies in lowland tropical rainforest trees[J]. Plos One, 2015, 10(6): e0130799.
[46] 金鹰. 东北温带森林10种树种叶—茎—根水力和经济性状耦联关系研究[D]. 东北林业大学,2017.
[47] 任金培,李俊鹏,王卫锋,等. 八个树种叶水力性状对水分条件的响应及其驱动因素[J]. 植物生态学报,2021,45(09):942−951.
[48] 金鹰,王传宽. 植物叶片水力与经济性状权衡关系的研究进展[J]. 植物生态学报,2015,39(10):1021−1032.
[49] 熊映杰,于果,魏凯璐,等. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报,2022,46(02):136−147.