[1] Zhou Qihai, Wei Hua, Tang Huaxing, et al. Niche separation of sympatric macaques, Macaca assamensis and M. mulatta, in limestone habitats of Nonggang, China[J]. Primates, 2014, 55(1): 125−137. doi: 10.1007/s10329-013-0385-z
[2] Pianka E R. Competition and niche theory[M]// Maver-ick A. Theoretical ecology (second edition). Durham: Blackwell. 1981.
[3] Hardin G. Competitive exclusion principle[J]. Sci-ence, 1960, 131(3409): 1292−1297. doi: 10.1126/science.131.3409.1292
[4] 储诚进,王酉石,刘宇,等. 物种共存理论研究进展[J]. 生物多样性,2017,25(4):345−354.
[5] 夏珊珊,胡大明,邓玥,等. 同域分布红腹锦鸡和红腹角雉在不同空间尺度下的生境分化[J]. 生态学报,2019,39(5):147−158.
[6] 邹启先,彭彩淳,杨雄威,等. 两种同域分布鹿科动物的共存时空格局[J]. 野生动物学报,2021,42(1):5−13.
[7]

Schreier B M, Harcourt A H, Somi C. Interspecific Competition and Niche Separation in Primates: A Global Analysis[J]. Biotropica, 2010, 41(3): 283−291.
[8] 尚玉昌. 动物的行为节律[J]. 生物学通报,2006(10):12−14.
[9] 晏鸣霄,孙楠,顾伯健,等. 同域分布的绿孔雀与白鹇时空生态位分化[J]. 四川动物,2021,40(2):150−158. doi: 10.11984/j.issn.1000-7083.20200418
[10] 辛桂瑜,张廷瑞,陈金莲,等. 同域分布的黑颈长尾雉和白鹇冬季期觅食节律与时间分化比较研究[J]. 野生动物学报,2021,42(2):445−451. doi: 10.3969/j.issn.1000-0127.2021.02.017
[11] 刘鹏,刘振生,高惠,等. 基于红外相机技术的贺兰山同域分布阿拉善马鹿和岩羊活动规律研究[J]. 生态学报,2019,39(24):9365−9372.
[12]

Di Bitetti Mario S, Di Blanco Yamil E, Pereira Javier A, et al. Time Partitioning Favors the Coexistence of Sympatric Crab-Eating Foxes (Cerdocyon thous) and Pampas Foxes (Lycalopex gymnocercus)[J]. Journal of Mammalogy, 2009, 90(2): 479−490. doi: 10.1644/08-MAMM-A-113.1
[13] 姚维,汪国海,林建忠,等. 同域分布鼬獾和食蟹獴活动节律的比较[J]. 兽类学报,2021,41(2):128−135.
[14] 李友邦,农娟丽,杨婉琳,等. 弄岗同域分布赤腹松鼠和红颊长吻松鼠活动节律研究[J]. 广西师范大学学报(自然科学版),2021,39(1):71−78.
[15] 李鑫,袁帅,付和平,等. 荒漠区两种优势鼠种的活动节律及其影响因子[J]. 兽类学报,2020,40(6):585−594.
[16]

O’Connell A F, Nichols J D, Karanth K U. Camera trapsin animal ecology: methods and analyses [M]. Japan: Springer Science & Business Media. 2010.
[17]

Steenweg R, Hebblewhite M, Kays R, et al. Scaling-up camera traps: Monitoring the planet's biodiversity with networks of remote sensors[J]. Frontiers in Ecology and the Environment, 2017, 15: 26−34. doi: 10.1002/fee.1448
[18] 蒋志刚, 刘少英, 吴毅, 等. 中国哺乳动物多样性(第2版). 生物多样性, 2017, 25(8): 886-895.
[19] 蒋志刚. 中国哺乳动物多样性及地理分布[M]. 北京: 科学出版社. 2015.
[20]

IUCN. The IUCN red list of threatened species [EB/OL]. 2020. [2020-03-30].https:// www.iucnredlist. org.
[21] 国家林业和草原局. 国家重点保护野生动物名录[EB/OL]. 2021. (2021-02-05) [2021-02-05]. http:// www. forcstry.gov.cn/ main/5461/20210205/122418860831352.html.
[22] Andrew T. Smith, 解焱. 中国兽类野外手册[M]. 湖南教育出版社, 2009.
[23] 欧善华,盛和林,陆厚基. 黑麂和毛冠鹿的食性[J]. 上海师范学院学报(自然科学版),1981(1):116−120.
[24] 孙佳欣,李佳琦,万雅琼,等. 四川9种有蹄类动物夏秋季活动节律研究[J]. 生态与农村环境学报,2018,34(11):1003−1009. doi: 10.11934/j.issn.1673-4831.2018.11.007
[25] 文嫱. 贡嘎山自然保护区重点保护植物资源调查与评价[D]. 四川农业大学, 2018.
[26] 四川省林业勘察设计研究院. 四川贡嘎山国家级自然保护区总体规划(2019-2030)[M]. 2019

内部资料).
[27] 林建忠,李生强,汪国海,等. 公顷网格与公里网格红外相机监测方案比较——以广西弄岗保护区为例[J]. 广西师范大学学报(自然科学版),2020,38(3):92−103.
[28] 杨彪,李生强,杨旭,等. 四川自然保护红外相机数据管理系统的研发及其应用[J]. 四川林业科技,2021,42(1):141−148.
[29]

O'Brien T G, Kinnaird M F, Wibisono H T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape[J]. Animal Conservation, 2010, 6(2): 131−139.
[30]

Ridout M S, Linkie M. Estimating overlap of daily activity patterns from camera trap data[J]. Journal of Agricultural Biological & Environmental Statistics, 2009, 14(3): 322−337.
[31]

Meredith M, Ridout M. Overlap: Estimates of coefficientof overlapping for animal activity patterns[EB/OL]. 2014.https://CRAN.R-project.org/package=overlap. (accessed on 2019-01-07).
[32]

Rowcliffe M. Activity: Animal Activity Statistics[EB/OL]. 2016.https://CRAN.R-project.org/package =activity. (accessed on 2019-01-07).
[33] 陈立军,束祖飞,肖治术. 应用红外相机数据研究动物活动节律——以广东车八岭保护区鸡形目鸟类为例[J]. 生物多样性,2019,27(3):266−272. doi: 10.17520/biods.2018178
[34]

Oliveira-Santos L, Zucco C A, Agostinelli C. Using conditional circular kernel density functions to test hypotheses on animal circadian activity[J]. Animal Behaviour, 2013, 85(1): 269−280. doi: 10.1016/j.anbehav.2012.09.033
[35]

Azevedo F C, Lemos F G, Freitas-Junior M C, et al. Puma activity patterns and temporal overlap with prey in a human‐modified landscape at Southeastern Brazil[J]. Journal of Zoology, 2018, 305(4): 246−255. doi: 10.1111/jzo.12558
[36]

Carter N H, Shrestha B K, Karki J B, et al. Coesxistence betwen wildlife and humans at fine spatial scales[J]. Proceedigs of theNational Academy of Sciences of the United States of America, 2012, 109(38): 15360−15365. doi: 10.1073/pnas.1210490109
[37]

R Core team. R: a language and environment for Statistical Comupting[EB/OL]. R Foundation for Statistical com puting, Vienna, Austria. 2019. [2020 -01-02]. https: //www. r-project. org.
[38] 戴正先,杨光美,胡灿实,等. 贵州习水国家级自然保护区马来豪猪活动节律及其气象影响因素初探[J]. 四川动物,2021,40(4):415−423.
[39] 段利娟. 王朗自然保护区大熊猫及其同域物种活动节律及栖息地利用研究[D]. 北京林业大学, 2014.
[40] 何兴成,付强,吴永杰,等. 水鹿的群体结构和活动节律分析[J]. 兽类学报,2019,39(2):134−141.
[41] 王盼. 卧龙自然保护区水鹿(Rusa Unicolor)的生境利用与活动模式[D]. 西华师范大学, 2020.
[42] 刘明星,朱必清,王语洁,等. 四川白河国家级自然保护区毛冠鹿(<italic>Elaphodus cephalophus</italic>)活动节律及季节变化[J]. 四川林业科技,2021,42(2):27−32.
[43] 胡磊. 基于红外自动相机技术的马鹿和狍活动节律与马鹿集群行为[D]. 北京林业大学, 2013.
[44] 李琦. 吉林汪清自然保护区东北虎主要猎物种群密度及活动节律的研究[D]. 东北林业大学, 2015.
[45]

Schoener T W. The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna[J]. Ecology, 1968, 49(4): 704−726. doi: 10.2307/1935534
[46]

Matsuo R, Ochiai K. Dietary Overlap Among Two Introduced and One Native Sympatric Carnivore Species, the Raccoon, the Masked Palm Civet, and the Raccoon Dog, in Chiba Prefecture, Japan[J]. Mammal Study, 2009, 34(4): 187−194. doi: 10.3106/041.034.0402
[47]

Schaller G B. Wildlife of the Tibetan Steppe[M]. Chicago: University of Chicago Press, 2000.
[48] 骆颖. 贺兰山岩羊(Pseudois nayaur)和马鹿(Cervus elaphus alxaicus)的食性及生境选择比较研究[D]. 东北林业大学, 2011.