[1] RHUDE A J. Structural glued laminated timber: History of its origins and early development[J]. water resources & power, 1996, 46(1): 15.
[2] GRASSER K. K. . Development of Cross Laminated Timber in the United States of America[D]. knoxville: University of tennessee, 2015.
[3] Li Q. , Wang Z. Q. , Liang Z. J. , et al. Shear properties of hybrid CLT fabricated with lumber and OSB[J]. Construction and Building Materials, 2020, 261: 120504, 10.1016/j. conbuildmat. 2020.120504.
[4] Michele. B. , Michela N. , Benedetto P. , et al. Comparison of different bonding parameters in the production of beech and combined beech-spruce CLT by standard and optimized tests methods[J]. Construction and Building Materials, 2020, 265, 10.1016/j. conbuildmat. 2020.120168.
[5] Bui A. T. , Oudjene M. , Lardeur P. , et al. Towards experimental and numerical assessment of the vibrational serviceability comfort of adhesive free laminated timber beams and CLT panels assembled using compressed wood dowels[J]. Engineering Structures, 2020, 216, 10.1016/j. engstruct. 2020.110586.
[6] Bahmanzad A. , Clouston L. P. , Arwade R. S. , et al. Shear Properties of Eastern Hemlock with Respect to Fiber Orientation for Use in Cross Laminated Timber[J]. Journal of Materials in Civil Engineering, 2020, 32(7), 10.1061/(ASCE)MT. 1943-5533.0003232.
[7] CAO G. M., SHMULSKY R., LIU M. Characterizing Star-sawn Pattern Produced and Orthogonally Glued Specimens of Southern Pine[J]. Forest Products Journal, 2019, 69(1): 53−60. doi: 10.13073/FPJ-D-18-00031
[8] CAO Y. W., STREET J., LI M. H., et al. Evaluation of the effect of knots on rolling shear strength of cross laminated timber (CLT)[J]. Construction and Building Materials, 2019, 222: 579−587. doi: 10.1016/j.conbuildmat.2019.06.165
[9] ZEIBA, DREW. First dowel-laminated timber building in the U. S. set to open in Des Moines[N]. The Architects Newspaper, 2019-06-04.
[10] ROBERTO S. , LUCA M., DAVIDE T., et al. A Dissipative Connector for CLT Buildings: Concept, Design and Testing[J]. Materials, 2016, 9(3): 139. doi: 10.3390/ma9030139
[11] 张彦娟,俞友明,马灵飞. 人工林杉木结构集成材胶合工艺的研究[J]. 木材工业,2008(4):7−9+12. doi: 10.19455/j.mcgy.2008.04.003
[12] 秦理哲,林兰英,傅峰,等. 柳杉实木胶合工艺及性能研究[J]. 木材工业,2014,28(6):5−8.
[13] 龚迎春. 国产日本落叶松正交胶合木制备工艺及力学性能评价[D]. 中国林业科学研究院, 北京市, 2017.
[14] 张龙,彭思,王建和,等. 云南松正交胶合木胶合工艺探索[J]. 林产工业,2020,57(8):19−24. doi: 10.19531/j.issn1001-5299.202008005
[15] 王建和,卫佩行,高子震,等. 加拿大西部铁杉正交胶合木胶合性能与耐久性初探[J]. 林产工业,2017,44(4):12−15,25.
[16] 宁凡,王解军,饶真宇. 组坯方式对正交胶合木双向板弯曲性能的影响[J]. 中南林业科技大学学报,2020,40(7):153−161.
[17] 李敏敏,谢文博,王正,等. 正交胶合木铁杉规格材弹性模量的动态测试及应力分等[J]. 林产工业,2018,45(7):28−32.
[18] 王志强,付红梅,戴骁汉,等. 不同树种木材复合交错层压胶合木的力学性能[J]. 中南林业科技大学学报,2014,34(12):141−145. doi: 10.3969/j.issn.1673-923X.2014.12.026
[19] 龚迎春,武国芳,任海青. 人工林落叶松制备不同等级正交胶合木力学性能评价及理论计算[J]. 中国人造板,2019,26(4):21−25.
[20] 高子震. 铁杉正交胶合木设计制造与性能评价[D]. 南京林业大学, 江苏省, 2017.
[21] 王韵璐,曹瑜,王正,等. 加拿大铁杉正交胶合木弯曲性能预测与评估[J]. 林产工业,2017,44(7):15−20.
[22] 何敏娟,孙晓峰,李征. 正交胶合木结构在地震作用下的层间位移角研究[J]. 特种结构,2017,34(1):1−6.
[23] 孙晓峰, 何敏娟, 李征. 铁杉正交胶合木板弯曲及剪切性能[J/OL]. 建筑结构学报: 1−8.[2020−10−17].https://doi.org/10.14006/j.jzjgxb.2019.0238.
[24] 董惟群. 竹木复合正交胶合木胶合工艺及力学性能评价[D]. 南京林业大学, 2019.
[25] 吴建飞,王纬,袁红梅,等. 竹木复合建筑混凝土模板的工艺研究[J]. 森林与环境学报,2020,40(3):329−335.
[26] 陈天长. 桉木—毛竹复合集装箱底板用胶合板工艺及经济效益研究[D]. 广西大学, 2019.
[27] 童健. 竹木复合胶合板的叠层结构设计探讨[J]. 林产工业,2020,57(4):65−67. doi: 10.19531/j.issn1001-5299.202004015
[28] 刘其松. 竹桉复合集成地板生产技术[J]. 福建林业科技,2019,46(3):80−85.
[29] 张晓春,胡迪,蒋身学. 竹木复合材料在我国的应用[J]. 中国人造板,2011,18(2):6−9. doi: 10.3969/j.issn.1673-5064.2011.02.002
[30] LIU M. , WU Y. Q., WAN H. et al. A new concept of wood bonding design for strength enhanced southern yellow pine wood products[J]. Construction and Building Materials 157, 2017: 694−699.