[1] Wu J P, Liu Z F, Sun Y X, et al. Effect of understory removal and tree girdling on soil microbial community composition litter decomposition in two Eucalyptus plantations in South China[J]. Funcitional Ecloogy, 2011, (25)4: 921−931.
[2] Comita L S, Queenborough S A, Murphy S J, et al. Testing predictions of the Janzen Connell hypothesis: a meta analysis of experimental evidence for distance and density dependent seed and seedling survival[J]. Journal of Ecology, 2014, 102(4): 845−856. doi: 10.1111/1365-2745.12232
[3] 兰道云,毕华兴,赵丹阳,等. 晋西黄土区不同密度油松人工林保育土壤功能评价[J]. 水土保持学报,2022,36(02):189−196.
[4] Russell E S, Liu H, Thistle H, et al. Effects of thinning a forest stand on sub~canopy turbulence[J]. Agricultural and forest meteorology, 2018, 248: 295−305. doi: 10.1016/j.agrformet.2017.10.019
[5] Lei J, Du H, Duan A, et al. Effect of Stand Density and Soil Layer on Soil Nutrients of a 37 year old Cunninghamia lanceolata Plantation in Naxi, Sichuan Province, China[J]. Sustainability, 2019, 11(19): 5410. doi: 10.3390/su11195410
[6] Ali A, Dai D, Akhtar K, et al. Response of understory vegetation, tree regeneration, and soil quality to manipulated stand density in a Pinus massoniana plantation[J]. Global Ecology and Conservation, 2019, 20: e775.
[7] Hernández J, Del Pino A, Vance E D, et al. Eucalyptus and Pinus stand density effects on soil carbon sequestration[J]. Forest Ecology and Management, 2016, 368: 28−38. doi: 10.1016/j.foreco.2016.03.007
[8] 王凯,赵成姣,张日升,等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志,2020,39(03):741−748.
[9] 张勇强,李智超,厚凌宇,等. 林分密度对杉木人工林下物种多样性和土壤养分的影响[J]. 土壤学报,2020,57(1):250−259.
[10] Nan W, Ta F, Meng X, et al. Effects of age and density of Pinus sylvestris var. mongolica on soil moisture in the semiarid Mu Us Dunefield, northern China[J]. Forest Ecology and Management, 2020, 473: 118313. doi: 10.1016/j.foreco.2020.118313
[11] 李茜,孙亚男,林丽,等. 放牧高寒嵩草草地不同演替阶段土壤酶活性及养分演变特征[J]. 应用生态学报,2019,30(07):2267−2274.
[12] 许淼平,任成杰,张伟,等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 2018,29(7):2445−2454.
[13] Kara Ö, Bolat İ, Çakıroğlu K, et al. Plant canopy effects on litter accumulation and soil microbial biomass in two temperate forests[J]. Biology and fertility of soils, 2008, 45(2): 193−198. doi: 10.1007/s00374-008-0327-x
[14] Lucas-Borja M E, Hedo J, Cerda A, et al. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine (Pinus nigra Ar. sspsalzmannii) Forest[J]. Sci Total Environ, 2016, 562: 145−154. doi: 10.1016/j.scitotenv.2016.03.160
[15] Nohrstedt, Rjan H. Response of Coniferous Forest Ecosystems on Mineral Soils to Nutrient Additions: A Review of Swedish Experiences[J]. Scandinavian Journal of Forest Research, 2001, 16(6): 555−573. doi: 10.1080/02827580152699385
[16] Scholten T, Goebes P, Kuehn P, et al. On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems a study from SE China[J]. Journal of Plant Ecology, 2017, 10(1): 111−127. doi: 10.1093/jpe/rtw065
[17] 杨章旗,吴东山,贾婕,等. 马尾松中幼林的密度效应[J]. 东北林业大学学报,2020,48(10):19−24. doi: 10.3969/j.issn.1000-5382.2020.10.004
[18] 王达明,杨正华,邹丽,等. 西南桦人工林的林分密度研究[J]. 西部林业科学,2013(1):13−19. doi: 10.3969/j.issn.1672-8246.2013.01.003
[19] Fredericksen T S, Agramont A R E. Regeneration patterns of Eastern white pine (Pinus strobus L. ) in hardwood-dominated forests in Virginia, USA[J]. New Forests, 2013, 44(1): 51−61. doi: 10.1007/s11056-011-9300-x
[20] Versace S, Garfì V, Dalponte M, et al. Species interactions in pure and mixed species stands of silver fir and European beech in Mediterranean mountains[J]. iForest Biogeosciences and Forestry, 2021, 14(1): 1−11. doi: 10.3832/ifor3476-013
[21] Torresan C, Del R M, Hilmers T, et al. Importance of tree species size dominance and heterogeneity on the productivity of spruce fir beech mountain forest stands in Europe[J]. Forest ecology and management, 2020, 457: 117716. doi: 10.1016/j.foreco.2019.117716
[22] Brunner A, Forrester D I. Tree species mixture effects on stem growth vary with stand density – An analysis based on individual tree responses[J]. Forest Ecology and Management, 2020, 473: 118334. doi: 10.1016/j.foreco.2020.118334
[23] 辜云杰,李晓清,杨汉波,等. 基于MaxEnt生态位模型预测楠木在中国的潜在适宜栽培区[J]. 西北林学院学报,2021,36(02):136−141. doi: 10.3969/j.issn.1001-7461.2021.02.20
[24] Wei H E, Tingxing H U, Wang R, et al. Effect of Fertilization on Photosynthetic Physiology and Growth Characteristics of Phoebe zhennan Seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6): 1187−1197.
[25] 周宗瑞,李庸禄. 楠木人工栽培技术试验研究[J]. 湖南林业科技,1990(01):11−14.
[26] 龙汉利,张炜,宋鹏,. 四川楠木生长初步分析[J]. 四川林业科技,2011,32(04):89−91. doi: 10.3969/j.issn.1003-5508.2011.04.019
[27] 方精云,王襄平,沈泽昊,等. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性,2009,17(06):533−548.
[28] 吴鞠,陈瑜,刘海轩,等. 林分密度及混交度对长白山天然风景林树木形态的影响[J]. 林业科学,2018,54(12):12−21.
[29] 鲁如坤. 土壤农业化学分析方法[M]. 中国农业科技出版社,2000:13−14,107−108,147−148,159−162,180−181.
[30] 关松荫. 土壤酶及其研究法[M]. 农业出版社,1986:274-276,294-298,309-311.
[31] Sinsabaugh R L, Reynolds H, Long T M. Rapid assay for amidohydrolase (urease) activity in environmental samples[J]. Soil Biology and Biochemistry, 2000, 32(14): 2095−2097. doi: 10.1016/S0038-0717(00)00102-4
[32] Fan J, Wang J Y, Hu X F, et al. Seasonal dynamics of soil nitrogen availability and phosphorus fractions under urban forest remnants of different vegetation communities in Southern China[J]. Urban For Urban Gree, 2014, 13(3): 576−585. doi: 10.1016/j.ufug.2014.03.002
[33] Sitienei K, Kirui K, Kamau D, et al. Effect of Plant Density and Nitrogen Fertilizer Application Rates on Nutrient Content of Clonal Tea Leaf[J]. International Journal of Plant & Soil Science, 2016, 11(2): 1−8.
[34] 郝建锋,王德艺,李艳,等. 不同林分密度下川北白云山地区喜树人工林的群落结构和物种多样性[J]. 植物研究,2015,35(05):772−778.
[35] 章志都,徐程扬,蔡宝军,等. 林分密度对山桃树冠结构的影响研究[J]. 北京林业大学学报,2009,31(06):187−192.
[36] 徐程扬,张华,贾忠奎,等. 林分密度和立地类型对北京山区侧柏人工林根系的影响[J]. 北京林业大学学报,2007(04):95−99. doi: 10.3321/j.issn:1000-1522.2007.04.022
[37] 楚秀丽,王艺,金国庆,等. 不同生境、初植密度及林龄木荷人工林生长、材性变异及林分分化[J]. 林业科学,2014,50(06):152−159.
[38] Pachas A N A, Shelton H M, Lambrides C J, et al. Effect of tree density on competition between Leucaena leucocephala and Chloris gayana using a Nelder Wheel trial. I. Aboveground interactions[J]. Crop and pasture science, 2018, 69(4): 419−429. doi: 10.1071/CP17311
[39] 童书振,盛炜彤,张建国. 杉木林分密度效应研究[J]. 林业科学研究,2002(01):66−75. doi: 10.3321/j.issn:1001-1498.2002.01.011
[40] 周树平,梁坤南,杜健,等. 不同密度柚木人工林林下植被及土壤理化性质的研究[J]. 植物研究,2017,37(02):200−210.
[41] 王岳,王海燕,李旭,等. 不同密度下近天然落叶松云冷杉林各土层土壤理化特征[J]. 草业科学,2014,31(08):1424−1429.
[42] 王玲,赵广亮,周红娟,等. 华北地区油松人工林林分密度对土壤化学性质和酶活性的影响[J]. 中南林业科技大学学报,2020,40(12):9−16+33.
[43] Baena C W, Andrés-Abellán M, Lucas-Borja M E, et al. Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain)[J]. Forest Ecology & Management, 2013, 308(Complete): 223−230.
[44] 赵汝东,樊剑波,何园球,等. 林分密度对马尾松林下土壤养分及酶活性的影响[J]. 土壤,2012,44(02):297−301. doi: 10.3969/j.issn.0253-9829.2012.02.019
[45] 梁燕芳,罗华龙,蒋林,等. 不同间伐强度对杂交松人工林土壤理化性质及酶活性的影响[J]. 北华大学学报(自然科学版),2022,23(04):521−529.
[46] 卢雯,邱雷,丁辉,等. 密度调控对女贞人工林土壤铵态氮和硝态氮季节变化的影响[J]. 西南林业大学学报,2014,34(02):1−7. doi: 10.3969/j.issn.2095-1914.2014.02.001
[47] 陈祥伟,陈立新,刘伟琦. 不同森林类型土壤氮矿化的研究[J]. 东北林业大学学报,1999(01):6−10.
[48] 王岩松,马保明,高海平 等. 晋西黄土区油松和刺槐人工林土壤养分及其化学计量比对林分密度的响应[J]. 北京林业大学学报,2020,42(08):81−93.