[1] 牛远,胡小贞,王琳杰等. 抚仙湖流域山水林田湖草生态保护修复思路与实践[J]. 环境工程技术学报,2019,9(5):482−490. doi: 10.12153/j.issn.1674-991X.2019.08.010
[2] 李边疆. 土地利用与生态环境关系研究[D]. 南京农业大学, 2007.
[3] 刘羿. 县域森林可持续经营规划研究[D]. 南京林业大学, 2012.
[4] 陈积敏. 森林生态系统适应性管理对区域经济系统的影响研究[D]. 南京林业大学, 2012.
[5] 赵晓春. 贺兰山典型森林类型凋落物层水文效应研究[D]. 西北农林科技大学, 2011.
[6] 张锐. 重庆市四面山几种人工林的水土保持功能研究[D]. 北京林业大学, 2008.
[7] IM, LEE, KURAJI, et al. Soil conservation service curve number determination for forest cover using rainfall and runoff data in experimental forests[J]. Journal of Forest Research, 2020, 25(4): 204−213. doi: 10.1080/13416979.2020.1785072
[8] MOGES D M, KMOCH A, BHAT H G, et al. Future soil loss in highland Ethiopia under changing climate and land use[J]. Regional Environmental Change, 2020, 20(3).
[9] 余新晓,鲁绍伟,靳芳等. 中国森林生态系统服务功能价值评估[J]. 生态学报,2005(8):2096−2102. doi: 10.3321/j.issn:1000-0933.2005.08.038
[10] 鲁绍伟,毛富玲,靳芳等. 中国森林生态系统水源涵养功能[J]. 水土保持研究,2005(4):223−226. doi: 10.3969/j.issn.1005-3409.2005.04.064
[11] 王佑民. 中国林地枯落物持水保土作用研究概况[J]. 水土保持学报,2000(4):108−113. doi: 10.3321/j.issn:1009-2242.2000.04.025
[12] 朱金兆,刘建军,朱清科,等. 森林凋落物层水文生态功能研究[J]. 北京林业大学学报,2002(1):30−34.
[13] 赵蓉英,许丽敏. 文献计量学发展演进与研究前沿的知识图谱探析[J]. 中国图书馆学报,2010,36(5):60−68.
[14] 施生旭,童佩珊. 基于CiteSpace的城市群生态安全研究发展态势分析[J]. 生态学报,2018,38(22):8234−8246.
[15] 吴健,王敏,靳志辉等. 土壤环境中多环芳烃研究的回顾与展望——基于Web of Science大数据的文献计量分析[J]. 土壤学报,2016,53(5):1085−1096.
[16] 阳富强,林子燚,邱东阳. 基于CiteSpace的国内城市公共安全可视化研究分析[J]. 福州大学学报(自然科学版),2021,49(1):121−127.
[17] 杜刚,孙作人,苗建军. 基于文献计量的碳排放强度研究前沿理论综述[J]. 经济学动态,2012(4):88−91.
[18] CHEN C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359−377. doi: 10.1002/asi.20317
[19] Chen C, Chen Y. Searching for clinical evidence in CiteSpace[J]. AMIA. Annual Symposium proceedings/AMIA Symposium. AMIA Symposium, 2005, 2005: 121.
[20] 贾维辰,李文光,余明媚. 中文期刊知识图谱研究范式的优化[J]. 中国远程教育,2020(11).
[21] 聂恒辉,陈大春. 我国大数据应用研究热点统计及趋势[J]. 电子技术与软件工程,2020(13):124−125.
[22] GUIRUI Y, ZHI C, LEIMING Z, et al. Recognizing the Scientific Mission of Flux Tower Observation Networks& mdash; Lay the Solid Scientific Data Foundation for Solving Ecological Issues Related to Global Change[J]. Journal of Resources and Ecology, 2017, 8(2).
[23] 林波,刘庆,吴彦等. 森林凋落物研究进展[J]. 生态学杂志,2004(1):60−64. doi: 10.3321/j.issn:1000-4890.2004.01.014
[24] 李杰, 陈超美. CiteSpace: 科技文本挖掘及可视化[M]. 首都经济贸易大学出版社. 2016.
[25] YOHANNES N M, MARTIN K, D. S C, et al. Target screening of plant secondary metabolites in river waters by liquid chromatography coupled to high-resolution mass spectrometry (LC–HRMS)[J]. Environmental Sciences Europe, 2020, 32(1).
[26] KAZEMI F, BEECHAM S, GIBBS J, et al. Factors affecting terrestrial invertebrate diversity in bioretention basins in an Australian urban environment[J]. Landscape and Urban Planning, 2009, 92(3): 304−313.
[27] HAO H, CHENG L, GUO Z, et al. Plant community characteristics and functional traits as drivers of soil erodibility mitigation along a land degradation gradient[J]. Land Degradation & Development, 2020, 31(14): 1851−1863.
[28] 陈悦,陈超美,刘则渊等. CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2):242−253. doi: 10.3969/j.issn.1003-2053.2015.02.009
[29] PRESTON C M, TROFYMOW J A, CANADIAN INTERSITE DECOMPOSITION E. Variability in litter quality and its relationship to litter decay in Canadian forests[J]. Can J Bot-Rev Can Bot, 2000, 78(10): 1269−1287. doi: 10.1139/cjb-78-10-1269
[30] WARDLE D A. The influence of biotic interactions on soil biodiversity[J]. Ecol Lett, 2006, 9(7): 870−886. doi: 10.1111/j.1461-0248.2006.00931.x
[31] BERG B. Litter decomposition and organic matter turnover in northern forest soils[J]. For Ecol Manage, 2000, 133(1−2): 13−22. doi: 10.1016/S0378-1127(99)00294-7
[32] PIETKAINEN A S, HAIMI J, SIITONEN J. Short-term responses of soil macroarthropod community to clear felling and alternative forest regeneration methods[J]. For Ecol Manage, 2003, 172(2−3): 339−353. doi: 10.1016/S0378-1127(01)00811-8
[33] VALACHOVIC Y S, CALDWELL B A, CROMACK K, et al. Leaf litter chemistry controls on decomposition of Pacific Northwest trees and woody shrubs[J]. Can J For Res, 2004, 34(10): 2131−2147. doi: 10.1139/x04-089
[34] REICH P B, OLEKSYN J, MODRZYNSKI J, et al. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species[J]. Ecol Lett, 2005, 8(8): 811−818. doi: 10.1111/j.1461-0248.2005.00779.x
[35] HäTTENSCHWILER S, TIUNOV A V, SCHEU S. Biodiversity and Litter Decomposition in Terrestrial Ecosystems[J]. Annual Review of Ecology, Evolution, and Systematics, 2005, 36(1): 191−218. doi: 10.1146/annurev.ecolsys.36.112904.151932
[36] CORNWELL W K, CORNELISSEN J H C, AMATANGELO K, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J]. Ecol Lett, 2008, 11(10): 1065−1071. doi: 10.1111/j.1461-0248.2008.01219.x
[37] 王建勋,华丽,邓世超等. 基于CiteSpace国内干旱遥感监测的知识图谱分析[J]. 干旱区地理,2019,42(1):154−161.
[38] 孙威,毛凌潇. 基于CiteSpace方法的京津冀协同发展研究演化[J]. 地理学报,2018,73(12):2378−2391. doi: 10.11821/dlxb201812008
[39] ZHANG X. Research on Visual Analysis of Big Data Based on CiteSpace III[J]. Management Science and Engineering, 2016, 10(4): 697−702.