[1] 罗玲,王宗明,毛德华,等.沼泽湿地主要类型英文词汇内涵及辨析[J].生态学杂志,2016,35(3):834~842.
[2] Vitousek P M,Aber J D,Howarth R W,et al.Human Alteration of the global nitrogen cycle:sources and consequences[J].Ecological Applications,1997,7(3):737~750.
[3] 罗先香,闫琴,于晓莉,等.河口湿地氮素生物地球化学循环研究[J].环境科学与技术,2009,32(b12):181~187.
[4] 王维奇,王纯,曾从盛,等.闽江河口不同河段芦苇湿地土壤碳氮磷生态化学计量学特征[J].生态学报,2012(13):4087~4093.
[5] 牟晓杰,孙志高,刘兴土.黄河口滨岸潮滩湿地土壤碳、氮的空间分异特征[J].地理科学,2012(12):1551~1529.
[6] 甘华阳,张顺之,梁开,等.北部湾北部滨海湿地水体和表层沉积物中营养元素分布与污染评价[J].湿地科学,2012(3):285~298.
[7] 王霞,何成达,赵锦辉.氮素在人工湿地基质中分布研究[J].江苏环境科技,2006(6):20~21,24.
[8] 周旺明,秦胜金,刘景双,等.沼泽湿地土壤氮矿化对温度变化及冻融的响应[J].农业环境科学学报,2011(4):806~811.
[9] 曲向荣,贾宏宇,张海荣,等.辽东湾芦苇湿地对陆源营养物质净化作用的初步研究[J].应用生态学报,2000(2):270~272.
[10] 刘景双,于君宝,王金达.淡水沼泽湿地泥炭沉积中氮素分布特征[J].环境科学,2003(2):41~45.
[11] Hana Ĉížková,Pechar L,Štěpán Husák,et al.Chemical characteristics of soils and pore waters of three wetland sites dominated by Phragmites australis:relation to vegetation composition and reed performance[J].Aquatic Botany,2001,69(2):235~249.
[12] 李贵才,韩兴国,黄建辉,等.森林生态系统土壤氮矿化影响因素研究进展[J].生态学报,2001(7):1187~1195.
[13] Martin J F,Reddy K R.Interaction and spatial distribution of wetland nitrogen process[J].Ecological Modeling,1997,105(1):1~21.
[14] Kang S,Kang H,Ko D,et al.Nitrogen removal from a riverine wetland:a field survey and simulation study of Phragmites japonica[J].Ecological Engineering,2002(18):467~475.
[15] 张子清,王鹏,陈威名,等.芦苇对氮磷营养盐的吸收特征[J].化学工程与装备,2017(1):8~10.
[16] 王洋,刘景双,孙志高,等.湿地系统氮的生物地球化学研究概述[J].湿地科学,2006(4):311~320.
[17] Peng S Z,Yang S H,Xu J Z,et al.Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements[J].Paddy & Water Environment,2011,9(3):333~342.
[18] 白军红,王庆改,余国营.吉林省向海沼泽湿地土壤中氮素分布特征及生产效应研究[J].土壤通报,2002,33(2):113~116.
[19] 白娜,王立,孔东升.黑河自然保护区沼泽湿地土壤化学性质的空间分布特征研究[J].草业学报,2017,26(5):15~28.
[20] Twilley R R,Chen R.Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River estuary,Florida[J].Estuaries,1999,22(4):955~970.
[21] Zhu W X,Ehrenfeld J G.Nitrogen mineralization and nitrification in suburban and undeveloped Atlantic White Cedar wetlands[J].Journal of Environmental Quality,1999,28(2):523~529.
[22] Jensen K.Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate[J].Applied & Environmental Microbiology,1993,59(10):3287~3296.
[23] 林贤彪.闽江口湿地沉积物硝化作用及其环境影响因子探讨[D].福建师范大学,2014.
[24] Howarth R W,Billen G,Swaney D,et al.Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean:Natural and human influences[J].Biogeochemistry,1996,35(1):75~139.
[25] Groffman P M,Hanson G C.Wetland denitrification:influence of site quality and relationships with wetland delineation protocols[J].Soil Science Society of America Journal,1997,61(1):323~329.
[26] Hooda A K,Weston C J,Chen D.Denitrification in effluent-irrigated clay soil under Eucalyptus Globulus plantation in South-Eastern Australia[J].Forest Ecology & Management,2003,179(1):547~558.
[27] 周旺明,秦胜金,刘景双,等.沼泽湿地土壤氮矿化对温度变化及冻融的响应[J].农业环境科学学报,2011,30(4):806~811.
[28] 王雪,郭雪莲,郑荣波,等.放牧对滇西北高原纳帕海沼泽化草甸湿地土壤氮转化的影响[J].生态学报,2018,38(7):2308~2314.
[29] 李冬冬,仝川,黄佳芳.河口感潮沼泽湿地CO2、CH4排放通量对氮沉降的短期响应[J].实验室研究与探索,2018,37(2):19~22

,44.
[30] 邓昭衡,高居娟,周雨露,等.氮沉降对冻融培养期泥炭土二氧化碳排放的影响[J].土壤通报,2015(4):962~966.
[31] 李里,刘伟.氮沉降和水位下降对湿地生态系统的影响[J].湿地科学与管理,2011(4):48~52.
[32] 胡敏杰,仝川.氮输入对天然湿地温室气体通量的影响及机制[J].生态学杂志,2014,33(7):1969~1976.
[33] Jukka A,Sanna S,Hannu N,et al.Winter CO2,CH4 and N2O fluxes on some natural and drained boreal peatlands[J].Biogeochemistry,1999,44(2):163~186.
[34] 张艺,王春梅,许可,等.若尔盖湿地土壤温室气体排放对模拟氮沉降增加的初期响应[J].北京林业大学学报,2016,38(8):54~63.
[35] Wolf A H,Patz J N.Reactive nitrogen and human health:acute and long-term implications[J].Ambio,2002,31(2):120~125.
[36] 梁艳,干珠扎布,曹旭娟,等.模拟氮沉降对藏北高寒草甸温室气体排放的影响[J].生态学报,2017,37(2):485~494.
[37] 张艺,王春梅,许可,等.若尔盖湿地土壤温室气体排放对模拟氮沉降增加的初期响应[J].北京林业大学学报,2016,38(8):58~67.