[1] 杨旭,徐阳,龚榜初,等. 大别山区两种柿资源种实表型性状的多样性[J]. 林业科学研究,2022, 35(4):188−196.
[2] Kearney M, Porter W. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges[J]. Ecology Letters, 2009, 12(4): 334−350. doi: 10.1111/j.1461-0248.2008.01277.x
[3] 刘宪钊,韩文斌,高瑞东,等. 不同环境类型对华北落叶松分布的潜在影响[J]. 生态学报 ,2021,41(5):885−1893.
[4] 张东方,张琴,郭杰,等. 基于MaxEnt模型的当归全球生态适宜区和生态特征研究[J]. 生态学报,2017, 37(15):5111−5120.
[5] 马剑,刘贤德,金铭,等. 祁连山青海云杉林土壤理化性质和酶活性海拔分布特征[J]. 水土保持学报,2019, 33(02):207−213.
[6] 郭燕青,史梦竹,李建宇,等. 基于Maxent模型的假臭草潜在分布区预测[J]. 热带亚热带植物学报,2019, 27(3):250−260.
[7] 张晓玮,蒋玉梅,毕阳,等. 基于MaxEnt模型的中国沙棘潜在适宜分布区分析[J]. 生态学报,2022, 42(4):1420−1428.
[8] 廖剑锋,易自力,李世成,等. 基于Maxent模型的双药芒不同时期潜在分布研究[J]. 生态学报,2020, 40(22):8297−8305.
[9] 山丹,朱媛君,王百竹,等. 呼伦贝尔沙地北部沙带植物群落分布格局与土壤特性的关系[J]. 中国沙漠,2020, 40(01):145−155.
[10] 赵鹏,屈建军,韩庆杰,等. 敦煌绿洲边缘植物群落与土壤养分互馈关系[J]. 中国沙漠,2018, 38(4):791−799.
[11] Corlett R T, Tomlinson K W. Climate change and edaphic specialists: irresistible force meets immovable object? [J]. Trends in Ecology & Evolution, 2020, 35(4):367−376.
[12] 宁瑶,雷金睿,宋希强,等. 石灰岩特有植物海南凤仙花潜在适宜生境分布模拟[J]. 植物生态学报,2018, 42(9):946−954.
[13] Francisco-Ortega J, Wang F G, Wang Z S, et al. Endemic seed plant species from Hainan island: a checklist[J]. The Botanical Review, 2010, 76(3): 295−345. doi: 10.1007/s12229-010-9054-8
[14] Weber J. A taxonomic revision of <italic>Cassytha</italic> (Lauraceae) in Australia[J]. Journal of the Adelaide Botanic Gardens, 1981, 3(3): 187−262.
[15] Awang K, Conran J G, Waycott M, et al. Cuticular and ultrastructure characters on Cassytha L. (Lauraceae) Stem[J]. 2018. Available online at:https://www.researchgate.net/publication/325870821 (accessed November 18, 2022).
[16] Diniz M A. Lauraceae of the Flora Zambesiaca area[J]. Kirkia,1996,16(1):55−68
[17] Wardini T H. Plant Resources of South-East Asia[J]. Taxon, 2001, 3(2): 164.
[18] Li H W, Li J, Huang P H, et al. Lauraceae [M]// Wu Z Y, Peter H, Raven. Flora of China. vol. 7. Beijing, China and Missouri, USA: Science Press and Missouri Botanical Garden Press, 2008: 102–254.
[19] 李扬汉,姚东瑞. 寄生杂草无根藤的特性,危害与防除[J]. 杂草科学,1991(3):4−5.
[20] Mahadevan N, Jayasuriya K M G G. Water-impermeable fruits of the parasitic angiosperm <italic>Cassytha filiformis</italic> (Lauraceae): confirmation of physical dormancy in Magnoliidae and evolutionary considerations[J]. Australian Journal of Botany, 2013, 61(4): 322−329. doi: 10.1071/BT12275
[21] Heide-Jørgensen, H S. Parasitic Flowering Plants[M]. Leiden: Koninklijke Brill NV, 2008.
[22] Muir, J. The beach drift of South Africa[J]. South African Journal of Botany, 1993, 18: 5−10.
[23] Philips S P, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distribution[J]. Ecological Modeling, 2006, 190(3/4): 231−259.
[24] 陈新美,雷渊才,张雄清,等. 样本量对MaxEnt模型预测物种分布精度和稳定性的影响[J]. 林业科学,2012, 48(1):53−59.
[25] Luo X, Hu Q J, Zhou P P, et al. Chasing ghosts: Allopolyploid origin of <italic>Oxyria sinensis</italic> (Polygonaceae) from its only diploid congener and an unknown ancestor[J]. Molecular Ecology, 2017, 26(11): 3037−3049. doi: 10.1111/mec.14097
[26] 王璐,许晓岗,李垚. 末次盛冰期以来陀螺果潜在地理分布格局变迁预测[J]. 生态学杂志,2018, 37(1):278−286.
[27] 王运生,谢丙炎,万方浩,等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性,2007, 15(4):365−372.
[28] 李振华,王艳芳,伊勒泰,等. 阿拉善地区荒漠肉苁蓉生态适宜性区划研究[J]. 中国中药杂志,2015, 40(5):785−792.
[29] 秦思思,颜玉娟,欧阳晟. 基于MaxEnt模型和ArcGIS预测蜡梅适生域在中国的潜在分布[J]. 生态科学,2020,39(3):49−56.
[30] Vanagas G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems[J]. Interactive Cardio Vascular & Thoracic Surgery, 2004, 3(2): 319−322.
[31] 朱耿平,刘国卿,卜文俊,等. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性,2013, 21(1):90−98.
[32] 李璇,李垚,方炎明. 基于优化的MaxEnt模型预测白栎在中国的潜在分布区[J]. 林业科学,2018, 54(8):153−164.
[33] 麻亚鸿. 基于最大熵模型(MaxEnt)和地理信息系统(ArcGIS)预测藓类植物的地理分布范围—以广西花坪自然保护区为例[D]. 上海:上海师范大学,2013.
[34] 张雷,王琳琳,刘世荣,等. 生境概率预测值转换为二元值过程中4个阈值选择方法的比较评估—以珙桐和杉木生境预估为例[J]. 植物生态学报,2017, 41(4):387−395.
[35] Yang X Q, Kushwaha S P S, Saran S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, <italic>Justicia adhatoda</italic> L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83−87. doi: 10.1016/j.ecoleng.2012.12.004
[36] 张雪妮,杨晓东,吕光辉. 水盐梯度下荒漠植物多样性格局及其与土壤环境的关系[J]. 生态学报,2016, 36(11):3206−3215.
[37] Fan B, Tao W, Qin G ,et al. Soil micro-climate variation in relation to slope aspect, position, and curvature in a forested catchment[J]. Agricultural and Forest Meteorology, 2020, 290: 107999. doi: 10.1016/j.agrformet.2020.107999
[38] Huang E, Chen Y, Fang M, et al. Environmental drivers of plant distributions at global and regional scales[J]. Global Ecology & Biogeography, 2021, 30(3): 697−709.
[39] Babst F ,Bouriaud O ,Poulter B, et al. Twentieth century redistribution in climatic drivers of global tree growth[J]. Science Advances, 2019, 5(1): eaat4313. doi: 10.1126/sciadv.aat4313
[40] Addo-Bediako A, Chown S L, Gaston K J. Thermal tolerance, climatic variability and latitude[J]. Proceedings of the Royal Society:Biological Sciences, 2000, 267(1445): 739−745. doi: 10.1098/rspb.2000.1065
[41] Sunday J, Bennett J M, Calosi P, et al. Thermal tolerance patterns across latitude and elevation[J]. The Royal Society, 2019, 374(1778). doi: 10.1098/RSTB.2019.0036
[42] 朱淑娟,王方琳,刘有军,等. 土壤水分和种子大小对梭梭种子萌发,出苗和幼苗生长的影响[J]. 西北林学院学报,2021(6):16−21.
[43] Onwuka, B, Mang, B. Effects of soil temperature on some soil properties and plant growth[J]. Plants & Agriculture Research, 2018, 8(1): 34−37.
[44] Song X, Nakamura A, Sun Z, et al. Elevational distribution of adult trees and seedlings in a tropical montane transect, Southwest China[J]. Mountain Research & Development, 2016, 36: 342−354.
[45] Song X Y, Li J Q, Zhang WF, et al. Variant responses of tree seedling to seasonal drought stress along an elevational transect in tropical montane forests[J]. Scientific Reports, 2016, 6: 36438. doi: 10.1038/srep36438
[46] 弓明钦. 无根藤生物学特性及其危害的初步研究[J]. 热带林业,1986(2):7−13.
[47] Kokubugata G, Yokota M. Host Specificity of <italic>Cassytha filiformis</italic> and <italic>C. pergracilis</italic> (Lauraceae) in the Ryukyu Archipelago[J]. Bulletin of the National Museum of Nature & Science, 2012, 38(2): 47−53.
[48] Maciunas, E. C., Watling, J. R., Facelli, J. M., et al. Seed traits and fate support probable primary dispersal of a native hemi-parasitic vine Cassytha pubescens (Lauraceae) by Isoodon obesulus, an endangered marsupial, in southern Australia[J]. Transactions of the Royal Society of South Australia, 2022, 146(2): 249–261.
[49] Staude I R, Navarro L M, Pereira, H M. Range size predicts the risk of local extinction from habitat loss. Global Ecology & Biogeography, 2020, 29(1): 16–25.
[50] Xu W B, Svenning J C, Chen G K, et al. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China[J]. Proceedings of the National Academy of Sciences, 2019, 52: 26674−26681.
[51] Zhang L, Jing Z, Li Z, et al. Predictive Modeling of Suitable Habitats for Cinnamomum Camphora (L.) Presl Using Maxent Model under Climate Change in China[J]. International Journal of Environmental Research and Public Health, 2019, 16(17): 3185. doi: 10.3390/ijerph16173185
[52] Tˇešitel J, Cirocco R M, Facelli J M, et al. Native parasitic plants: biological control for plant invasions? [J] Applied Vegetation Science, 2020, 23: 464–469.
[53] Nelson S C. Cassytha filiformis[J]. Plant Disease, 2008, 42.
[54] 蔡静芸,张明明,粟海军,等. 生态位模型在物种生境选择中的应用研究[J]. 经济动物学报,2014, 18(1):47−52.
[55] 乔慧捷,胡军华,黄继红. 生态位模型的理论基础、发展方向与挑战[J]. 中国科学:生命科学,2013, 43(11):915−927.