[1] Fritts H C. TREE RINGS AND CLIMATE[J]. Scientific American, 1972, 226(5): 92−101. doi: 10.1038/scientificamerican0572-92
[2] Babst F, Bodesheim P, Charney N, et al. When tree rings go global: Challenges and opportunities for retro-and prospective insight[J]. Quaternary Science Reviews, 2018, 197: 1−20. doi: 10.1016/j.quascirev.2018.07.009
[3] 李彩娟,陈拓,王波,等. 树轮异常结构的研究进展[J]. 生态学杂志,2019,38(05):1538−1550.
[4] 王树芝,赵秀海. 树轮生态学研究进展[J]. 世界林业研究,2010,23(02):17−21.
[5] 曹受金,曹福祥,祁承经等. 气候变化对树轮异常结构的影响及应用研究进展[J]. 生态环境学报,2010,19(02):494−498.
[6] D'arrigo R, Frank D, Jacoby G, et al. Spatial response to major volcanic events in or about AD 536, 934 and 1258: frost rings and other dendrochronological evidence from Mongolia and northern Siberia: comment on RB Stothers, ‘Volcanic dry fogs, climate cooling, and plague pandemics in Europe and the Middle East’(Climatic Change, 42, 1999)[J]. Climatic Change, 2001, 49: 239−246. doi: 10.1023/A:1010727122905
[7] Mayr S, Bardage S, Brändström J. Hydraulic and anatomical properties of light bands in Norway spruce compression wood[J]. Tree physiology, 2006, 26(1): 17−23. doi: 10.1093/treephys/26.1.17
[8] Fayle D C F. Frost rings formed in 14-m tall red pine[J]. The Forestry Chronicle, 1981, 57(3): 123−123. doi: 10.5558/tfc57123-3
[9] Hadad M A, Molina J A, Juñent F A R, et al. Frost record in tree rings linked to atmospheric circulation in northern Patagonia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 524: 201−211. doi: 10.1016/j.palaeo.2019.03.041
[10] Hadad M, Tardif J C, Conciatori F, et al. Climate and atmospheric circulation related to frost-ring formation in <italic>Picea mariana</italic> trees from the Boreal Plains, interior North America[J]. Weather and Climate Extremes, 2020, 29: 100264. doi: 10.1016/j.wace.2020.100264
[11] Sass-Klaassen U, Fonti P, Cherubini P, et al. A tree-centered approach to assess impacts of extreme climatic events on forests[J]. Frontiers in Plant Science, 2016, 7: 1069.
[12] Novak K, De Luis M, Gričar J, et al. Missing and dark rings associated with drought in <italic>Pinus halepensis</italic>[J]. Iawa Journal, 2016, 37(2): 260−274. doi: 10.1163/22941932-20160133
[13] Novak K, De Luis M, Saz M A, et al. Missing rings in Pinus halepensis-the missing link to relate the tree-ring record to extreme climatic events[J]. Frontiers in plant science, 2016, 7: 727.
[14] 王燕凤. 树木年轮图像的边缘检测与树龄测量方法研究 [D].浙江农林大学,2017.
[15] De Micco V, Campelo F, De Luis M, et al. Intra-annual density fluctuations in tree rings: how, when, where, and why?[J]. IAWA Journal, 2016, 37(2): 232−259. doi: 10.1163/22941932-20160132
[16] Panayotov M P, Zafirov N, Cherubini P. Fingerprints of extreme climate events in <italic>Pinus sylvestri</italic>s tree rings from Bulgaria[J]. Trees, 2013, 27: 211−227. doi: 10.1007/s00468-012-0789-1
[17] Piermattei A, Crivellaro A, Carrer M, et al. The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers[J]. Trees, 2015, 29: 613−620. doi: 10.1007/s00468-014-1107-x
[18] Gurskaya M A. Effect of summer monthly temperatures on light tree ring formation in three larch species (<italic>Larix</italic>) in the northern forest–tundra of Siberia[J]. Russian Journal of Ecology, 2019, 50: 343−351. doi: 10.1134/S1067413619040088
[19] Vitali V, Büntgen U, Bauhus J. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany[J]. Global change biology, 2017, 23(12): 5108−5119. doi: 10.1111/gcb.13774
[20] Fournier M, Alméras T, Clair B, et al. Biomechanical action and biological functions[M]//The biology of reaction wood. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 139-169.
[21] 唐亚,谢嘉穗,李蓬勃,等. 树木年代学在山地自然灾害研究中的应用[J]. 工程科学与技术,2018,50(03):24−32.
[22] 苌姗姗,石洋,刘元,等. 应拉木胶质层解剖结构及化学主成分结构特征[J]. 林业科学,2018,54(02):153−161.
[23] 刘星,彭俊懿,石江涛等. 樟子松幼龄材的应力木解剖特征和化学组成[J]. 中南林业科技大学学报,2022,42(08):158−165.
[24] Braeuning A, De Ridder M, Zafirov N, et al. Tree-ring features: indicators of extreme event impacts[J]. Iawa Journal, 2016, 37(2): 206−231. doi: 10.1163/22941932-20160131
[25] McLean J P, Jin G, Brennan M, et al. Using NIR and ATR-FTIR spectroscopy to rapidly detect compression wood in <italic>Pinus radiata</italic>[J]. Canadian Journal of Forest Research, 2014, 44(7): 820−830. doi: 10.1139/cjfr-2013-0329
[26] 黄振英. 马尾松正常木与应压木生长应力及材性的比较研究[D]. 安徽农业大学,2004.
[27] 王健,蓝惠萍,吴星碧. 松树树脂道综述[J]. 中国农业信息,2014(07):231.
[28] 张建奇,郄佳志,张永. 青海云杉创伤树脂道分布调查[J]. 山地学报,2020,38(05):710−716.
[29] Ionela S A, Sidor C, Popa I. Scots pine tree ring structure modifications and relation with climate[J]. Eurasian Journal of Forest Science, 2016, 4(2): 1−7. doi: 10.31195/ejejfs.283536
[30] Matisons R, Gaertner H, Elferts D, et al. Occurrence of ‘blue’and ‘frost’rings reveal frost sensitivity of eastern Baltic provenances of Scots pine[J]. Forest Ecology and Management, 2020, 457: 117729. doi: 10.1016/j.foreco.2019.117729
[31] Montwé D, Isaac-Renton M, Hamann A, et al. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration[J]. Nature communications, 2018, 9(1): 1574. doi: 10.1038/s41467-018-04039-5
[32] Margolis E Q, Guiterman C H, Chavardès R D, et al. The North American tree-ring fire-scar network[J]. Ecosphere, 2022, 13(7): e4159. doi: 10.1002/ecs2.4159
[33] Gindl W, Grabner M, Wimmer R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width[J]. Trees, 2000, 14: 409−414. doi: 10.1007/s004680000057
[34] De Luis M, Gričar J, Čufar K, et al. Seasonal dynamics of wood formation in <italic>Pinus halepensis</italic> from dry and semi-arid ecosystems in Spain[J]. IAWA journal, 2007, 28(4): 389−404. doi: 10.1163/22941932-90001651
[35] 朱良军,李宗善,王晓春. 树轮木质部解剖特征及其与环境变化的关系[J]. 植物生态学报,2017,41(02):238−251.
[36] Gurskaya M, Moiseev P, Wilmking M. Does slope exposure affect frost ring formation in Picea obovata growing at treeline in the Southern Urals?[J]. Silva fennica, 2016, 50(3).
[37] Tardif J C, Salzer M W, Conciatori F, et al. Formation, structure and climatic significance of blue rings and frost rings in high elevation bristlecone pine (<italic>Pinus longaeva</italic> DK Bailey)[J]. Quaternary Science Reviews, 2020, 244: 106516. doi: 10.1016/j.quascirev.2020.106516
[38] Therrell M D, Elliott E A, Meko M D, et al. Streamflow variability indicated by false rings in bald cypress (taxodium distichum (l. ) rich. )[J]. Forests, 2020, 11(10): 1100. doi: 10.3390/f11101100
[39] Liang E, Dawadi B, Pederson N, et al. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature?[J]. Ecology, 2014, 95(9): 2453−2465. doi: 10.1890/13-1904.1
[40] Robson J R M, Conciatori F, Tardif J C, et al. Tree-ring response of jack pine and scots pine to budworm defoliation in central Canada[J]. Forest Ecology and Management, 2015, 347: 83−95. doi: 10.1016/j.foreco.2015.03.018
[41] Khishigjargal M , Dulamsuren C , Leuschner H H , et al. Climate effects on inter- and intra-annual larch stemwood anomalies in the Mongolian forest-steppe[J]. Acta Oecologica, 2014, 55: 113−121.
[42] Bräuning A. Tree-ring evidence of ‘Little Ice Age’glacier advances in southern Tibet[J]. The Holocene, 2006, 16(3): 369−380. doi: 10.1191/0959683606hl922rp
[43] Cherubini P, Schweingruber F H, Forster T. Morphology and ecological significance of intra-annual radial cracks in living conifers[J]. Trees, 1997, 11: 216−222. doi: 10.1007/s004680050078
[44] Cameron A D. Mitigating the risk of drought-induced stem cracks in conifers in a changing climate[J]. Scandinavian Journal of Forest Research, 2019, 34(8): 667−672. doi: 10.1080/02827581.2019.1692900
[45] Kubler H. Mechanism of frost crack formation in trees-a review and synthesis[J]. Forest Science, 1983, 29(3): 559−568.
[46] Murakami S, Ohsaki H, Sato M, et al. Intra-ring radial cracks in Sakhalin spruce (<italic>Picea glehnii</italic>) from artificial forest[J]. Journal of Wood Science, 2023, 69(1): 1−6. doi: 10.1186/s10086-022-02073-y
[47] Grabner M, Cherubini P, Rozenberg P, et al. Summer drought and low earlywood density induce intra-annual radial cracks in conifers[J]. Scandinavian Journal of Forest Research, 2006, 21(2): 151−157. doi: 10.1080/02827580600642100
[48] Zeltiņš P, Katrevičs J, Gailis A, et al. Stem cracks of Norway spruce (<italic>Picea abies</italic> (L. ) Karst. ) provenances in Western Latvia[J]. Forestry Studies, 2016, 65(1): 57−63. doi: 10.1515/fsmu-2016-0012
[49] Groover A. Gravitropisms and reaction woods of forest trees-evolution, functions and mechanisms[J]. New Phytologist, 2016, 211(3): 790−802. doi: 10.1111/nph.13968
[50] Esper J, Büntgen U, Luterbacher J, et al. Testing the hypothesis of post-volcanic missing rings in temperature sensitive dendrochronological data[J]. Dendrochronologia, 2013, 31(3): 216−222. doi: 10.1016/j.dendro.2012.11.002
[51] 付玉,韩用顺,张扬建,等. 树线对气候变化响应的研究进展[J]. 生态学杂志,2014,33(03):799−805.
[52] Barbosa A C, Stahle D W, Burnette D J, et al. Meteorological factors associated with frost rings in Rocky Mountain Bristlecone Pine at Mt. Goliath, Colorado[J]. Tree-Ring Research, 2019, 75(2): 101−115. doi: 10.3959/1536-1098-75.2.101
[53] 方克艳,陈秋艳,刘昶智,等. 树木年代学的研究进展[J]. 应用生态学报,2014,25(07):1879−1888.
[54] Anchukaitis K J, Wilson R, Briffa K R, et al. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions[J]. Quaternary Science Reviews, 2017, 163: 1−22. doi: 10.1016/j.quascirev.2017.02.020
[55] Piermattei A, Crivellaro A, Krusic P J, et al. A millennium-long ‘Blue Ring’chronology from the Spanish Pyrenees reveals severe ephemeral summer cooling after volcanic eruptions[J]. Environmental Research Letters, 2020, 15(12): 124016. doi: 10.1088/1748-9326/abc120
[56] 邵雪梅,黄磊,刘洪滨,等. 树轮记录的青海德令哈地区千年降水变化[J]. 中国科学D辑:地球科学,2004(02):145−153.
[57] Yang B, Qin C, Wang J, et al. A 3, 500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2014, 111(8): 2903−2908. doi: 10.1073/pnas.1319238111
[58] Vittoz P, Stewart G H, Duncan R P. Earthquake impacts in old-growth Nothofagus forests in New Zealand[J]. Journal of Vegetation Science, 2001, 12(3): 417−426. doi: 10.2307/3236856
[59] Bekker M F, Metcalf D P, Harley G L. Hydrology and hillslope processes explain spatial variation in tree-ring responses to the 1983 earthquake at Borah Peak, Idaho, USA[J]. Earth Surface Processes and Landforms, 2018, 43(15): 3074−3085. doi: 10.1002/esp.4470
[60] Ballesteros J A, Stoffel M, Bodoque J M, et al. Changes in wood anatomy in tree rings of <italic>Pinus pinaster</italic> Ait. following wounding by flash floods[J]. Tree-Ring Research, 2010, 66(2): 93−103. doi: 10.3959/2009-4.1